

Key insights into decumulation strategies

Thomas Bernhardt & Catherine Donnelly Risk Insight Lab, Heriot-Watt University

www.risk-insight-lab.com

The 'Minimising Longevity and Investment Risk while Optimising Future Pension Plans' research programme is being funded by the Actuarial Research Centre.

22 November 2018 www.actuaries.org.uk/arc

Overview

- Introduction to the research programme
- Optimal decumulation strategies
- Our recent research
- Questions and comments

Introduction

Research programme: "Minimising Longevity and Investment Risk while Optimising Future Pension Plans":

- Customers' needs at the forefront.
- Provide customers with a real income in retirement that has the desired balance between stability and performance.
- Minimize costs for the customer.

Research topics

- Investment strategies throughout the customer's lifetime
- Investment return smoothing and/or risk sharing
- Longevity risk sharing (modern tontines)
- Performance measurement: investment risk vs income stability
- Market timing
- Guarantees: only when needed
- Robustness to assumptions

Research coalition

- Joint project led by Heriot-Watt and Cass Business School.
- Funded by the Actuarial Research Centre (ARC).
- Research network extends to Australia, Austria, Germany and Spain with tenured academics.
- IFoA ARC project website: https://www.actuaries.org.uk/learn-and-develop/research-and-knowledge/actuarial-research-centre-arc/research-programmes/minimising-longevity-and-investment-risk-while-optimising-future-pension-plans

Research outputs - selection

Papers

- Self-selection and risk sharing in a modern world of life-long annuities,
 by R. Gerrard, M. Hiabu, I. Kyriakou, J. P. Nielsen.
- Choice of Benchmark When Forecasting Long-term Stock Returns, by I.
 Kyriakou, P. Mousavi, J. P. Nielsen, M. Scholz.
- Product options for enhanced retirement income, by C. Donnelly and J. Young.
- Implementing individual savings' decisions for retirement with bounds on wealth, by C. Donnelly, M. Guillen, J.P. Nielsen, A.-M. Perez-Marin.
- State-of-the-Art Report on Investment Risk-Sharing, by R. Chehab and CRIOT C. Donnelly.

Research Centre

Research outputs relevant to this talk

 State-of-the-Art Report on Pension Decumulation Strategies, by T.Bernhardt and C. Donnelly (download from www.risk-sight-lab.com/outputs).

 Webinar on modern tontines (Actuarial Research Centre website, under this Research Programme).

> Actuarial Research Centre

 How much to invest in a tontine, by T.Bernhardt and C. Donnelly [submitted paper].

Key insights into decumulation strategies

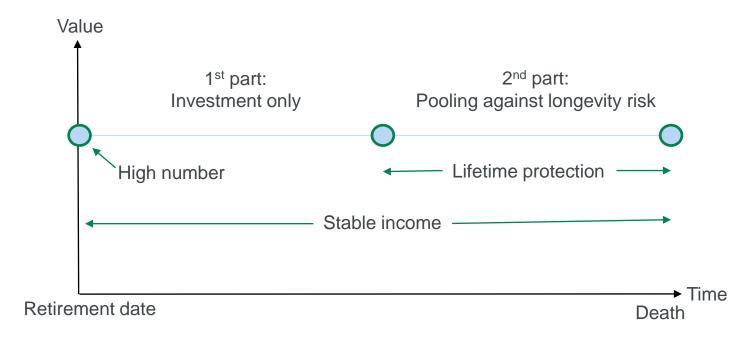
Thomas Bernhardt Risk Insight Lab, Heriot-Watt University

www.risk-insight-lab.com

The 'Minimising Longevity and Investment Risk while Optimising Future Pension Plans' research programme is being funded by the Actuarial Research Centre.

22 November 2018 www.actuaries.org.uk/arc

Optimal investment strategies


- State-of-the-Art Report on Pension Decumulation Strategies, by T.Bernhardt and C. Donnelly (download from www.risk-sight-lab.com/outputs).
 - Review of the literature on pension decumulation, mostly academic
- Covers investment and income withdrawal strategies, e.g.
 - how much to invest in equities vs bonds at each time.
 - how much to withdraw as an income every year.
- Investment in the financial markets is essential (Battocchio et al, 2017).

Optimal investment strategies

A good retirement product looks like...

Optimal investment strategies

Variety of **objective functions** studied...

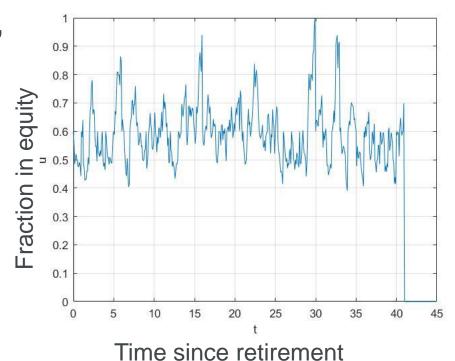
- (1) Max lifetime income $\mathbb{E}\left[\int_0^T U(t,c)dt + V(T,X)\right]$.
- (1) Min probability of wealth falling to zero.
- (2) Max above level $\mathbb{E}\left[\int_0^T U(t,c-h)dt + V(T,X-H)\right]$.
- (2) Max mean-variance $\mathbb{E}[X] \gamma Var[X]$.
- (2) Min distance from a target

$$\mathbb{E}\left[\int_0^T a \times (c-f)^2 dt + b \times (X-F)^2\right].$$

From maximizing/minimizing objective functions (1)

"Max lifetime income" or "Min probability of wealth falling to zero":

- Mutual fund separation,
- Constant mix strategy,
- Changing consumption,
- Deplete savings,
- Savings don't last forever,
- "4% rule" for a stable income
 - How long? How much left?


- ✓ Presenting equity as one thing.
- ✓ How insurance companies invest.
- Equity ↓ then Longevity risk ↑, ✓~50% in equity for lowest lifetime ruin.
 - *Unstable income.
 - ✓ Bequest is second order.
 - ✓ Annuity.

		Ini	itial ann	ual witho	drawal ra	ate	
Years	3.0%	3.5%	4.0%	4.5%	5.0%	5.5%	6.0%
15	100%	100%	100%	100%	99%	97%	91%
20	100%	100%	98%	95%	85%	66%	41%
25	100%	97%	92%	77%	51%	28%	12%
30	97%	92%	75%	49%	27%	12%	5%
35	94%	81%	57%	33%	14%	6%	3%

From maximizing/minimizing objective functions (2)

Optimizing remaining objective functions:

- Similar to "Max lifetime income", i.e. robust optimal solutions.
- Variance increases over time,
 - Needs control.
- Varying equity proportion,
 - How investment firms invest.
- Stable profit,
 - Predictable outcome.

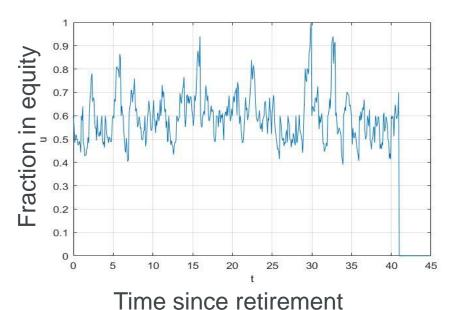
"4% rule", i.e. income drawdown

- e.g. 50% in equity.
- Withdraw x% from initial savings, then increase with inflation.
- Probability savings last for at least...

			Initial annu	ual withdrawal r	ate		
Years	3.0%	3.5%	4.0%	4.5%	5.0%	5.5%	6.0%
15	99.98%	99.83%	99.20%	97.30%	93.14%	87.00%	77.50%
20	98.53%	95.00%	87.70%	76.47%	63.24%	49.28%	36.48%
25	91.05%	79.27%	65.48%	48.87%	34.60%	23.52%	14.92%
30	77.37%	60.04%	43.44%	29.39%	18.63%	11.13%	6.33%
35	62.14%	44.17%	28.23%	18.16%	10.53%	5.65%	2.98%

Mean-variance objective function

- Annual optimization problem.
- Inflation adjusted percentage from initial savings.
- Probability savings last for at least...


			Initial	annual withdra	wal rate		
Years	3.0%	3.5%	4.0%	4.5%	5.0%	5.5%	6.0%
15	98.95%	96.63%	94.17% -5.03	91.10%	89.60%	85.48%	77.82%
20	96.03%	90.07%	85.34% -2.36	80.35%	74.84%	63.14%	49.02%
25	91.99%	82.90%	75.49% +10.01	66.26%	46.09%	23.35%	12.63%
30	87.19% +9.82	75.03% +14.99	61.94% +18.50	37.28% +7.89	7.67% -10.96	1.48% -9.65	0.48% -5.85
HERTO	$T^{78.75\%}$	59.83%	30.65% +2.42	3.93%	0.15%	0%	0%
TATATI	Î.						Research Centre

Mean-variance objective function

- Annual optimization problem.
- Inflation adjusted percentage from initial savings.
- Probability savings last for at least...

	Initial annual withdrawal rate					
Years	3.0%	3.5%	4.0%			
15	98.95%	96.63%	94.17% -5.03			
20	96.03%	90.07%	85.34% -2.36			
25	91.99%	82.90%	75.49% +10.01			
30	87.19% +9.82	75.03% +14.99	61.94% +18.50			
35	78.75%	59.83%	30.65% +2.42			

Undesirable features of optimal strategies

Undesirable feature	Implication
Difficult to communicate	 Car mechanic analogy
Sensitive to parameters	 Indication for wrong set-up
Non-explicit indication for outcome	 Explicit in idealistic situation
No constraints	 Numerical solutions

Life annuities - features

Feature	Consequence
Guaranteed lifetime income	Premium reflects actuarially fair value + fees/solvency margin/other costs
Underlying low risk/low return investment strategy	Low annuity income
Longevity gains eventually out-pace investment gains	Happens around age 80
Not favourable to buy life annuity all the time	Optimal stopping problem

Life annuities - features

Feature	Consequence
Guaranteed lifetime income	Premium reflects actuarially fair value + fees/solvency margin/other costs
Underlying low risk/low return investment strategy	Low annuity income
Longevity gains eventually out-pace investment gains	
Not favourable to buy life annuity all the time	credit value
HEDIOT	investment annuity

75 age

Institute and Faculty

State of the art involving life annuities

- Annuity best option at high ages.
- Don't fully annuitization at the retirement date,
 - phase transition (stagger purchase).
 - deferred annuities.

Our innovations in pension decumulation

Catherine Donnelly Risk Insight Lab, Heriot-Watt University

www.risk-insight-lab.com

The 'Minimising Longevity and Investment Risk while Optimising Future Pension Plans' research programme is being funded by the Actuarial Research Centre.

22 November 2018 www.actuaries.org.uk/arc

What is a tontine?

A tontine is a structure to pool longevity risk.

 A pure tontine has no guarantees – the pool of people bear the longevity risk.

The purpose of modern tontines is to pay an income for life.

Imagine yourself

Seeking advice...

	Pure modern tontine		
Annual income	£7,100		
Age at which out-live savings	120 years		
Money left to heirs	Nothing		
Basis			
(Mortality, Investment returns), [allocation to tontine],[income if use unadjusted table]	(S1PMA-2, 2% p.a.), [100% allocation], [£7,700 on S1PMA]		

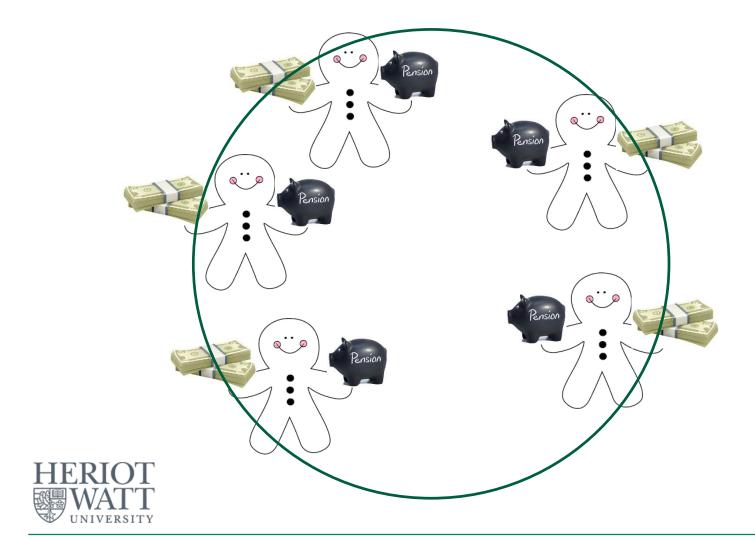
	Pure modern tontine	Modern tontine with bequest	
Annual income	£7,100	£6,600	
Age at which out-live savings	120 years	120 years	
Money left to heirs	Nothing	20% of pot at death	
Basis			
(Mortality, Investment returns), [allocation to tontine],[income if use unadjusted table]	(S1PMA-2, 2% p.a.), [100% allocation], [£7,700 on S1PMA]	(S1PMA-2, 2% p.a.), [80% allocation], [£7,100 on S1PMA]	

	Pure modern tontine	Modern tontine with bequest	Life annuity	
Annual income	£7,100	£6,600	£6,000	
Age at which out-live savings	120 years	120 years	Never	
Money left to heirs	Nothing	20% of pot at death	Nothing	
Basis				
(Mortality, Investment returns), [allocation to tontine],[income if use unadjusted table]	(S1PMA-2, 2% p.a.), [100% allocation], [£7,700 on S1PMA]	(S1PMA-2, 2% p.a.), [80% allocation], [£7,100 on S1PMA]	(S1PMA-4, UK yield curve), equivalently (S1PMA-2, -0.3% p.a.)	

	Pure modern tontine	Modern tontine with bequest	Life annuity	Income drawdown
Annual income	£7,100	£6,600	£6,000	£6,600
Age at which out-live savings	120 years	120 years	Never	87 years
Money left to heirs	Nothing	20% of pot at death	Nothing	Whatever left in pot at death
Basis				
(Mortality, Investment returns), [allocation to tontine],[income if use unadjusted table]	(S1PMA-2, 2% p.a.), [100% allocation], [£7,700 on S1PMA]	(S1PMA-2, 2% p.a.), [80% allocation], [£7,100 on S1PMA]	(S1PMA-4, UK yield curve), equivalently (S1PMA-2, -0.3% p.a.)	(S1PMA, 2% p.a.)

Life annuity feature

- Despite the previous table...
- Life annuity gives higher income than income drawdown,
 - if follow same investment strategy, and
 - ignore fees, costs, taxes, etc.


(Different investment strategy in previous table)

- Why? Pool longevity risk.
- We can pool longevity risk without buying life annuities.

Tontine

Modern tontines

• Aim: retirement income, not a life-death gamble.

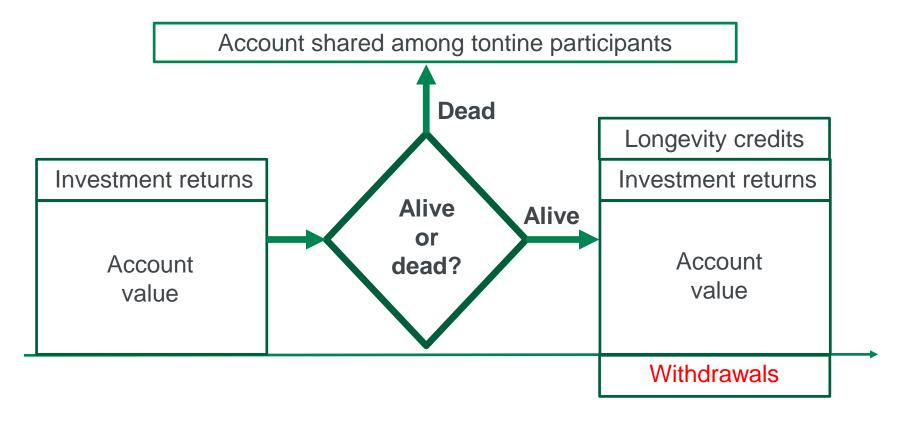
Various tontines structures have been proposed.

 For a brief introduction to how to calculate longevity credits, see our October 2018 webinar (on IFoA ARC website)

Pure modern tontine – individual account structure

Longevity credits

Investment returns


Participant's account

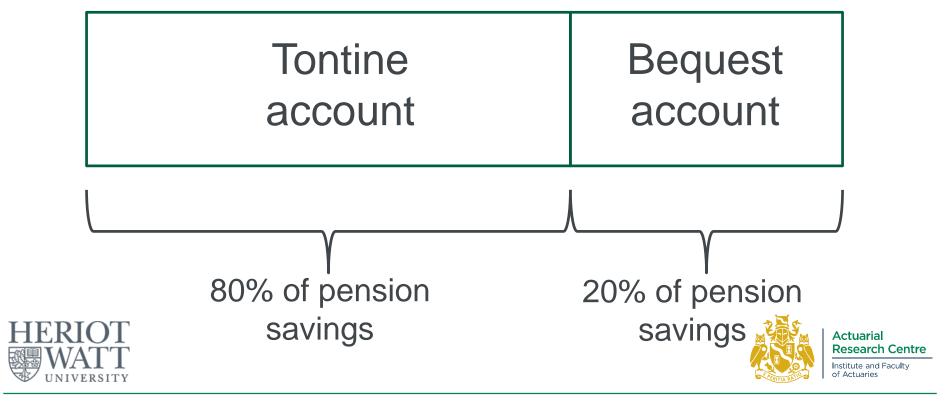
Withdrawals

Pure modern tontine

Minimising Longevity and Investment Risk while Optimising Future Pension Plans

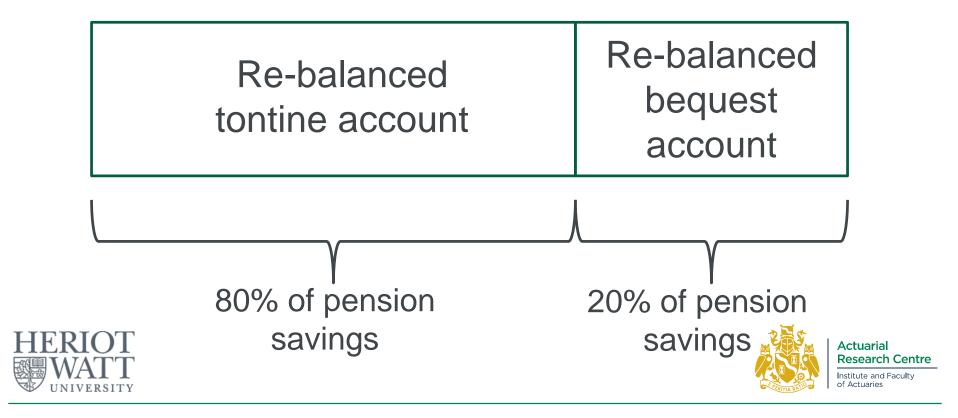
Recent project presentations

Sessional Research Event in May 2018:


Self-selection and Risk Sharing in a Modern World of Life-Long Annuities, presented by J.P. Nielsen.

 Here, present work with Thomas Bernhardt, Risk Insight Lab, Heriot-Watt University

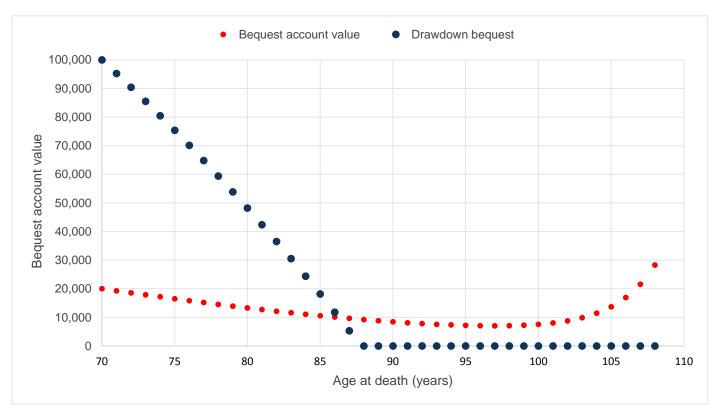
Split pension savings into two accounts, 80% in tontine account



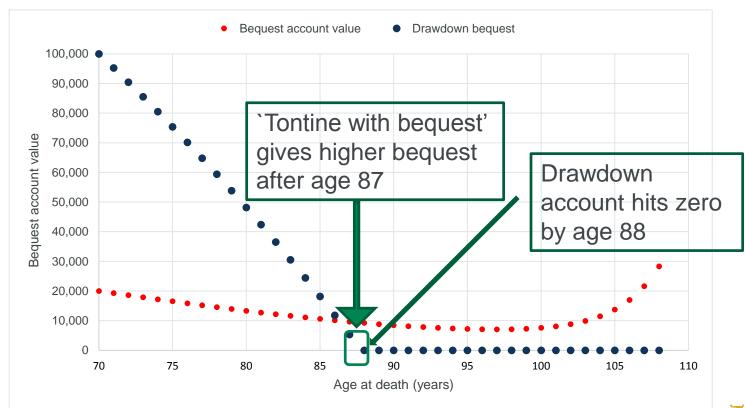
Longevity credits	
Investment returns	Investment returns
Tontine account	Bequest account
Withdrawal	Withdrawal

Rebalance accounts (re-distribute longevity credits)

Tontine account shared among tontine participants, Bequest account paid to estate **Dead** Longevity credits Investment returns Investment returns **Alive** Alive Previous tontine Previous tontine & bequest dead? & bequest accounts value accounts value Withdrawals Account



	Modern tontine with bequest	Income drawdown
Annual income	£6,600	£6,600
Age at which out-live savings	120 years	87 years
Money left to heirs	20% of pot at death	Whatever left in pot at death
Basis		
(Mortality, Investment returns), [allocation to tontine],[income if use unadjusted table]	(S1PMA-2, 2% p.a.), [80% allocation], [£7,100 on S1PMA]	(S1PMA, 2% p.a.)


Bequest account vs Drawdown bequest

Bequest account vs Drawdown bequest

Research question

What percentage of pension savings should you put in the tontine account?

- Allow for desire for income, bequest motive and risk aversion.
- Found that, for (normal) risk aversion, percentage is fairly stable and high.
- Harder to say for risk-seekers.
- Results are in theoretical model.
- Next step is to look at more realistic model.

Modern tontines - summary

- Reduce risk of running out of money in retirement.
- Should be structured to provide a stable, fairly constant income (not increasing exponentially with the longevity credit!).
- Provide a higher income than living off investment returns alone.
- Can seek higher investment returns than life annuity.
- Can incorporate bequests.

Modern tontines - applications

- Innovation in retirement products
 - e.g. allow for bequest: 'modern tontine with bequest'.
 - e.g. provide downside protection that too few deaths occur (minimum income) see Donnelly & Young (2017).
 - e.g. allow less liquid assets such as pensioner's house.
- Foundation for collective DC plans
 - Provides income without buying life annuities.
 - Could be integrated into DC plans as post-retirement option.

Questions

Comments

The views expressed in this presentation are those of the presenter.

The Actuarial Research Centre (ARC)

A gateway to global actuarial research

The Actuarial Research Centre (ARC) is the Institute and Faculty of Actuaries' (IFoA) network of actuarial researchers around the world.

The ARC seeks to deliver cutting-edge research programmes that address some of the significant, global challenges in actuarial science, through a partnership of the actuarial profession, the academic community and practitioners.

The 'Minimising Longevity and Investment Risk while Optimising Future Pension Plans' research programme is being funded by the ARC.

www.actuaries.org.uk/arc