ASSURANCE MAGAZINE,

JOURNAL

OF THE

INSTITUTE OF ACTUARIES.

On the Law of Mortality and the Construction of Annuity Tables. By William Matthew Makefam, Esq., of the Church of England Assurance Institution.
Most writers on the subject of life annuities have had occasion to lament the paucity of tables available for the performance of calculations involving two or more lives. The late Mr. David Jones has done much to supply this deficiency by the publication of complete sets of tables for two lives at various rates of interest; but, beyond this, it is extremely improbable that, under the present system, any considerable progress will be made, owing to the multiplicity of the different combinations when three or more lives are concerned, and the consequent magnitude of the task involved in the construction of complete sets of tables for such cases.

It is scarcely necessary, I presume, to enlarge to any great extent upon the advantages of a ready and expeditions mode of computing accurately the values of annuities on three or more lives, according to a certain predetermined table of mortality, in preference to the usual methods of approximation at present adopted for the purpose of avoiding calculations of formidable length. Although the values deduced by such methods of approximation, in many instances, are, perhaps, as near the truth as the values correctly deduced would be, yet it is generally felt that, having assumed a certain table of mortality as the basis of calculation, it is desirable that the results attained should be strictly consistent with that basis-in short, that our conclusions should be in accord-
ance with our premises. Granted that such a rate of mortality and such a rate of interest will obtain, then such a sum, and no other, is the value of the given annuity or other contingent benefit. To this very proper regard for logical consistency, which is the foundation of mathematical science, we owe the construction of tables of annuities certain to five or six decimal places; for it cannot be pretended that any assumed rate of interest represents the real value of money so exactly as to render such extreme accuracy at all necessary to the abstract justice of the case.

The chief object of the following investigation has, therefore, been to find a formula which should represent with sufficient accuracy the results of observations on the law of mortality; and which, at the same time, should be adapted to facilitate the construction of complete sets of tables of annuities involving several lives.

Part I.—On the Law of Mortality.

It seems to be generally admitted, that the theoretical law of mortality propounded by Mr. Gompertz, although by no means a perfect representation of the actual law, at the same time is so nearly borne out by facts, as to render it highly probable that further progress in the investigation will be made in the track thus opened up; in other words, that practical improvements in the construction of mortality tables may be looked for in some modification of Mr. Gompertz's formula.

As the subject is more conveniently treated logarithmically, the theoretical law in question may be defined by stating that the logarithms of the probabilities of living over any given period proceed in geometrical progression.

To see how far this theoretical law is supported by experience, let us examine the following data, derived from three of the most approved mortality tables:-

Age.	1. Cablishe Table.			2. Experience.			3. Govbrnment Annuttants.		
	Log. of Prob. of Living over 20 Years.	$\begin{aligned} & \text { Log. }{ }^{2} \\ & \text { of } \\ & \text { same. } \end{aligned}$	Difïorences	Log. of Prob. of Living over 20 Years.	$\begin{aligned} & \text { Log. } \\ & \text { of } \\ & \text { same. } \end{aligned}$	Differences	Log. of Prob. of Living over 20 Years	$\begin{aligned} & \text { Log. }{ }^{2} \\ & \text { of } \\ & \text { same. } \end{aligned}$	Differences.
	(-)			(-)			(-)		
20	07918	2.89862		$\cdot 07427$	$2 \cdot 87081$		$\cdot 10154$	1•00664	
40	$\cdot 14398$	$\overline{1} 15830$		-14797	$\overline{1} \cdot 17017$		$\cdot 15074$	[17823	
60	. 58237	1-76520		-63282	$\overline{1} \cdot 80128$	+6311	$\cdot 54127$	1.73341	+ 55.18

Now, if the Gompertzian theory were strictly true, the two terms in the column of differences would be equal; but, instead of this being the case, it appears that in each of the three instances the second difference is considerably greater than the first, which shows that the logarithms of the probabilities, instead of proceeding in uniform geometrical progression, increase (numerically) in a far greater ratio in the higher than in the lower ages.

But although the three terms in the first column do not obey the law assigned, yet they may be made to do so by the addition of a certain uniform quantity (x) to each term, such quantity being the numerical value of the following expression, in which the three given terms are denoted respectively by the letters a, b, and $c:$ -

$$
x=\frac{b^{2}-a c}{a+c-2 b} .
$$

The addition of this quantity to the logarithms of the probabilities is, of course, equivalent to multiplying the probabilities themselves by the number corresponding to the quantity added, considered as a logarithm ; and the definition of the law of mortality becomes-" the probabilities of living, increased or diminished in a certain constant ratio, form a series whose logarithms are in geometrical progression."

I proceed to describe the method of deducing the rate of mortality at every age according to the law last defined, and to exhibit the results in comparison with those derived from actual observations, and also with the results deduced by means of Mr. Gompertz's formula.

Let π_{x} denote the probability of living one year at age x, and $\pi_{x}{ }^{n}$ the probability of living n years at same age; then the three quantities in the first columns of the foregoing table will be represented by log. $\pi_{20}{ }^{201}$, log. $\pi_{40}{ }^{201}$, and log. $\pi_{60}{ }^{201}$. Further: let a^{20} stand for the quantity by which $\pi_{20}{ }^{\overline{201}}, \pi_{40}{ }^{2010}$, and $\pi_{60}{ }^{201}$, are to be multiplied in order that the law of geometrical progression may prevail, and let q^{20} be the common ratio of the three resulting terms. Now,

$$
\begin{aligned}
& \log \cdot \pi_{20^{20 \mid}}=\log \cdot \pi_{20}+\log \cdot \pi_{21}+\ldots \ldots \log \cdot \pi_{39} \\
& \log \cdot\left(a^{20} \pi_{20}{ }^{201}\right)=\log \cdot\left(a \pi_{20}\right)+\log \cdot\left(a \pi_{21}\right)+\ldots . \log \cdot\left(a \pi_{39}\right) ;
\end{aligned}
$$

and, by the assumed law of mortality,

$$
\begin{aligned}
\log .\left(a \pi_{21}\right) & =\log .\left(a \pi_{20}\right) \times q \\
\log \cdot\left(a \pi_{22}\right) & =\log .\left(a \pi_{20}\right) \times q^{2} \\
\& c . & =\quad \& c . ;
\end{aligned}
$$

whence

$$
\begin{gathered}
\log \cdot\left(a^{20} \pi_{20}{ }^{201}\right)=\log \cdot\left(a \pi_{20}\right)+\log \cdot\left(a \pi_{20}\right) \times q \cdots+\log \cdot\left(a \pi_{20}\right) \times q^{19} \\
=\log \cdot\left(a \pi_{20}\right) \times \frac{q^{20}-1}{q-1} \\
\therefore \log \cdot\left(a \pi_{20}\right)=\log \cdot\left(a^{20} \pi_{20} \overline{20}\right) \times \frac{q-1}{q^{20}-1} ;
\end{gathered}
$$

and having found, by the last equation, the first term of the series log. ${ }^{2}\left(a \pi_{x}\right)$, the successive terms are obtained by the repeated additions of $\log . q$, and the series $\log . \pi_{x}$ is then deduced by the simple subtraction of log. a from each term of log. $\left(a \pi_{x}\right)$.

It remains now to test the proposed formula by its application to actual observations, for which purpose I select the well-known "Experience" mortality amongst assured lives. In this case, the data for the ages between 20 and 80 is by far the most important in comparison with the rest; first, because the observations on the ages not included between those limits are made upon numbers too small to give much weight to the deductions made from them; and, secondly, because the great mass of the calculations of an Assurance Office will be but slightly affected by errors in estimating the rate of mortality at the excluded ages. For these reasons, the following law of mortality has been deduced entirely from the observations on lives between the ages of 20 and 80 , leaving the remaining portions of the table to be constructed on the assumption that the law so deduced may be taken to represent the true rate of mortality-say, from the age of 10 years upwards, to the extremity of human life.

The data derived from the Experience observations gives

$$
\begin{aligned}
& \log \cdot \pi_{20} \overline{20}=-\cdot 07427=a, \\
& \log \cdot \pi_{40} \overline{20}=-14797=b, \\
& \log \cdot \pi_{60} \overline{20}=-63282=c .
\end{aligned}
$$

Adding to each of these terms the quantity log. a^{20}, deduced from the formula,

$$
\log \cdot a^{20}=\frac{b^{2}-a c}{a+c-2 b}=\cdot 06106
$$

we have

$$
\left.\begin{array}{ll}
\text { log. }\left(a^{20} \pi_{20}{ }^{\overline{20}}\right)=-\cdot 01321 & \log \cdot=\overline{2} \cdot 12091 \\
\text { log. }\left(a^{20} \pi_{40} \overline{20}\right.
\end{array}\right)=-\cdot 08691 \quad \log =\overline{2} \cdot 93906+81815=\log \cdot q^{20}
$$

whence we obtain the following values of the constants used in the process:-

$$
\begin{array}{rlrl}
q^{20} & =6 \cdot 578850 & \log . & =\cdot 8181500 \\
q^{20}-1 & =5 \cdot 578850 & & \log =\cdot 7465447 \\
q & =1 \cdot 098772 & \log . & =\cdot 0409075 \\
q-1 & =\cdot 098772 & \text { log. }=\overline{2} \cdot 9946338 \\
a^{20} & =1 \cdot 150959 & \log . & =\cdot 06106 \\
a & =1 \cdot 007054 & \log . & =\cdot 03053 \\
\text { log. }\left(a \pi_{20}\right) & =-\cdot 000233883 & \log =\overline{4} \cdot 3689987 .
\end{array}
$$

The following is a specimen of the actual process of finding the logarithms of the adjusted probabilities for each age :-

$$
\begin{aligned}
& \text { (-) } \\
& \log .{ }^{2}\left(a \pi_{20}\right)=\begin{aligned}
& \overline{4} \cdot 36899987 \\
& \cdot 0409075 \text { log. }\left(a \pi_{20}\right)=\cdot 000233883
\end{aligned} \quad .000023100 \\
& \log \cdot{ }^{2}\left(a \pi_{21}\right)=\begin{array}{r}
-\overline{4} \cdot 4099062 \\
.0409075
\end{array} \quad \log .\left(a \pi_{21}\right)=\cdot 000256983-.000025384 \\
& \begin{array}{rl}
\log .2\left(\alpha \pi_{22}\right)=\overline{4} \cdot 4508137 & \log .\left(\alpha \pi_{22}\right)= \\
.0409075 & 00282367 \\
\hline .000027889
\end{array} \\
& \begin{aligned}
& \log .{ }^{2}\left(a \pi^{23}\right)= \overline{4} \cdot 4917212 \\
& \cdot 0409075
\end{aligned} \quad \begin{array}{ll}
\log .\left(a \pi_{23}\right)=\cdot 000310256
\end{array} \cdot 000030645 \\
& \log .{ }^{2}\left(a \pi_{24}\right)=\overline{4} \cdot 5326287 \quad \log .\left(a \pi_{24}\right)=\cdot \underset{\& c .}{000340901}
\end{aligned}
$$

The differences of the series log. $\left(a \pi_{x}\right)$ are here taken out, and the value of log. π_{20} being found by subtracting log. a from the first term of the series (viz., log. $a \pi_{20}$), the successive addition of the differences gives the several values of $\log . \pi_{x}$ thus:-

$$
\begin{aligned}
& \log .\left(a \pi_{20}\right)=-\cdot 000233883 \\
&-\log a=-\cdot 003053000 \\
&=-\cdot 003286883=\log . \pi_{20} \\
& \Delta=\frac{-000023100}{} \\
& \& c . \quad \begin{array}{c}
-.003309983 \\
\& \mathrm{c} .
\end{array}=\log . \pi_{21} \\
& \&
\end{aligned}
$$

I now beg to direct the reader's attention to the following table, showing the annual mortality amongst 1,000 persons entering upon each year of age from 20 to 80 ; first, from the actual experience of the 17 Offices; secondly, from the Actuaries' Adjusted Table based upon it; thirdly, from the formula herein described; and, lastly, from Mr. Gompertz's own formula.

Annual Mortality per 1,000.

Age.	Experience.	$\begin{gathered} \text { Actuaries' } \\ \text { Adjust- } \\ \text { ment. } \end{gathered}$	New Formula.	Gom. pertz's Formula.	Age.	Experience.	$\begin{gathered} \text { Actnaries' } \\ \text { Adjust- } \\ \text { ment. } \end{gathered}$	New Formula.	Gompertz's Formula.
20	$12 \cdot 38$	$7 \cdot 29$	$7 \cdot 55$	$3 \cdot 74$	50	16.30	15.94	15.99	$21 \cdot 10$
21	10.95	$7 \cdot 38$	$7 \cdot 59$	$3 \cdot 97$	51	$17 \cdot 20$	16.90	16.87	22.36
22	5.95	$7 \cdot 46$	$7 \cdot 66$	$4 \cdot 20$	52	18.95	17.95	17.85	2364
23	8.51	$7 \cdot 56$	7.71	$4 \cdot 46$	53	18.52	19.09	18.91	25.06
24.	6.74	$7 \cdot 67$	$7 \cdot 78$	$4 \cdot 72$	54	$18 \cdot 12$	$20 \cdot 31$	20.08	26.51
25	$7 \cdot 67$	$7 \cdot 77$	$7 \cdot 87$	$5 \cdot 00$	55	$24 \cdot 92$	$21 \cdot 66$	$21 \cdot 34$	28.08
26	$7 \cdot 15$	$7 \cdot 89$	$7 \cdot 94$	530	56	24.46	$23 \cdot 13$	22.76	29.74
27	$8 \cdot 94$	8.01	8.05	$5 \cdot 61$	57	$22 \cdot 01$	$24 \cdot 68$	24.29	$31 \cdot 48$
28	$7 \cdot 71$	$8 \cdot 14$	$8 \cdot 14$	5.95	58	23.98	26.39	26.00	$33 \cdot 30$
29	$5 \cdot 27$	$8 \cdot 28$	$8 \cdot 25$	$6 \cdot 30$	59	$30 \cdot 10$	$28 \cdot 25$	$27 \cdot 86$	35.28
30	$7 \cdot 19$	$8 \cdot 42$	8.37	$6 \cdot 68$	60	$30 \cdot 13$	$30 \cdot 34$	29.89	37.32
31	$7 \cdot 65$	$8 \cdot 58$	8.51	$7 \cdot 07$	61	32.83	$32 \cdot 61$	32.12	39.52
32	6.09	8.75	$8 \cdot 67$	$7 \cdot 49$	62	3164	$35 \cdot 12$	34.55	41.81
33	$9 \cdot 48$	$8 \cdot 92$	8.83	$7 \cdot 94$	63	$35 \cdot 30$	37.84	37.24	$44 \cdot 24$
34	$8 \cdot 88$	$9 \cdot 10$	901	$8 \cdot 41$	64	$48 \cdot 20$	$40 \cdot 83$	$40 \cdot 18$	46.83
35	10.57	$9 \cdot 29$	$9 \cdot 19$	891	65	$45 \cdot 29$	$44 \cdot 08$	$43 \cdot 40$	49.55
36	$9 \cdot 55$	$9 \cdot 48$	$9 \cdot 42$	$9 \cdot 43$	66	47.81	$47 \cdot 61$	46.92	52.43
37	$10 \cdot 08$	9.69	$9 \cdot 65$	10.00	67	4493	$51 \cdot 47$	50.77	$55 \cdot 44$
38	$9 \cdot 95$	991	$9 \cdot 92$	10.59	68	67.35	$55 \cdot 63$	54.98	58.67
39	$9 \cdot 57$	$10 \cdot 13$	10-19	11.21	69	6205	6009	59.61	$62 \cdot 05$
40	11.61	1036	10.51	11.88	70	$75 \cdot 53$	64.93	64.64	65.63
41	10.80	1061	10.85	$12 \cdot 58$	71	70.72	$70 \cdot 16$	$70 \cdot 13$	$69 \cdot 41$
42	10.56	10.89	1124	$13 \cdot 33$	72	$67 \cdot 20$	7580	$76 \cdot 15$	$73 \cdot 36$
43	10.61	11.25	$11 \cdot 65$	$14 \cdot 11$	73	$79 \cdot 36$	81.88	82.72	77.58
44	11.75	11.70	1213	14.95	74	91.82	88.47	89:88	82.03
45	$12 \cdot 17$	$12 \cdot 21$	12.63	15.86	75	100.54	95.56	$97 \cdot 68$	8667
46	10.99	1284	$13 \cdot 18$	16.76	76	102.35	$103 \cdot 18$	106.16	91.59
47	13.06	13.52	13.79	17.78	77	102.08	111.47	115.41	96.79
48	16.56	14.26	$14 \cdot 45$	18.79	78	134.55	$120 \cdot 44$	$125 \cdot 44$	102.26
49	$14 \cdot 85$	$15 \cdot 06$	$15 \cdot 17$	19.92	79	$134 \cdot 69$	13006	$136 \cdot 35$	108.01

It will be seen, by inspection, that the numbers in the third column follow very fairly the original and adjusted data in the first and second; while the last column, obtained by the application of Mr. Gompertz's formula unmodified, exhibits so little conformity with the original data, as to render it totally unfit to be adopted as a substitute.

I proceed, in the next part, to show how the method of construction herein proposed may be made of considerable utility in forming a complete set of annuity tables involving two or more lives.

Part 2.—On the Construction of Annuity Tables.

It will be convenient to abandon the logarithmic form hitherto adopted, and pursue the subject with the aid of the characters denoting simple quantities.

The following equations are deduced directly from the assumed law of mortality as defined in the first part.

$$
\begin{gathered}
a \pi_{n}=\boldsymbol{a} \pi_{n} \\
\boldsymbol{a} \pi_{n+1}=\left(\boldsymbol{\alpha} \pi_{n}\right)^{q} \\
a \pi_{n+2}=\left(\boldsymbol{a} \pi_{n}\right)^{q^{2}} \\
\cdots \cdots \cdot \cdot \\
a \pi_{n+r-1}=\left(\boldsymbol{\alpha} \pi_{n}\right)^{q^{r-1}} ;
\end{gathered}
$$

$a \pi_{n+r-1}=\left(\alpha \pi_{n}\right)^{q^{+1}} ;$
whence $a \pi_{n} \times a \pi_{n+1} \times \ldots \times \alpha \pi_{n+r-1}=\alpha^{*} \pi_{n}^{\eta}=\left(\alpha \pi_{n}\right)^{\frac{q^{r}-1}{q-1}}$.
Let $\mathrm{B}_{n}=\left(\alpha \pi_{n}\right)^{\frac{1}{q-1}}$, and we have $\mathrm{a}^{r} \pi_{n}^{\bar{r}}=\frac{\mathrm{B}_{n} q^{r}}{\mathrm{~B}_{n}}$.
consequently, if v^{r} be the value of $£ 1$ (certain) due r years hence, the value of $\mathfrak{f l}$ contingent on a life aged n years surviving the term of r years will be $\left(\frac{v}{a}\right)^{r} \cdot \frac{\mathrm{~B}_{n} q^{r}}{\mathbf{B}_{n}}=\frac{\mathbf{B}_{n} q^{r}}{\bar{B}_{n}} s^{r}$ (putting $\frac{v}{a}=s$). The value of an annuity, payable in advance, on a life aged n years, will, therefore, be represented by

$$
\frac{1}{\mathrm{~B}_{n}}\left(\mathrm{~B}_{n}+\mathrm{B}_{n}{ }^{q} s .+\mathrm{B}_{n}{ }^{q^{2}} s^{2}+\mathrm{B}_{n}^{q^{3}} s^{3} \ldots \text { ad infin. }\right) \quad[1]
$$

and, similarly, the value of an annuity on two joint lives aged respectively m and n, by

$$
\begin{gather*}
\frac{1}{\mathrm{~B}_{m n} \mathrm{~B}_{n}}\left(\mathrm{~B}_{n} \mathrm{~B}_{n}+\left(\mathrm{B}_{n n} \mathrm{~B}_{n}\right)^{q} t+\left(\mathrm{B}_{m} \mathrm{~B}_{n}\right)^{q^{2}} t^{2}+\ldots\right) \quad[2] \tag{2}\\
\text { where } t=\frac{v}{\alpha^{2}}
\end{gather*}
$$

In seeking for a suitable modification of Mr. Gompertz's formula, it is, of course, highly desirable to avoid introducing any unnecessary intricacy. Now, it will be observed that the additional constant, a, enters in the formula precisely in the same way as the element of interest, which may almost in practice be said to form an inseparable part of it; and consequently, that, for all practical purposes, the proposed modification does not alter the form of the function deduced by Mr. Gompertz.

If the two lives be of the same age, p, the value of the annuity becomes

$$
\frac{\mathbf{1}}{\left(\mathbf{B}_{p}^{2}\right)}\left\{\left(\mathrm{B}_{p}^{2}\right)+\left(\mathrm{B}_{p}^{2}\right)^{q} t+\left(\mathrm{B}_{p}^{2}\right)^{q^{2}} t^{2}+\ldots\right\} \quad[3]
$$

Comparing this with the formula [2], it will readily be seen that the value of an annuity on the two lives aged m and n will be the same as the value of an annuity on the two equal lives aged p, provided that $\mathrm{B}_{m} \mathrm{~B}_{n}=\mathrm{B}_{p}^{2}$. The same property, of course, holds good for any number of lives. Thus, the value of an annuity on three joint lives, each aged p, is

$$
\frac{1}{\left(\mathrm{~B}_{p}^{3}\right)}\left\{\left(\mathrm{B}_{p}^{3}\right)+\left(\mathrm{B}_{p}^{3}\right)^{q} z+\left(\mathrm{B}_{p}^{3}\right)^{q^{2}} z^{2}+\cdots\right\},
$$

which is also the value of an annuity on any other combination of three lives, aged respectively i, k, and l, provided

$$
\mathrm{B}_{\imath} \mathrm{B}_{k} \mathrm{~B}_{l}=\mathrm{B}_{p}^{3}
$$

The property in question, as I shall now proceed to show, gives the power of constructing a table of the correct values of annuities for any given number of lives (according to the law of mortality before explained), with a considerably less expenditure of time and labour than is required in constructing a complete set of tables for two lives only according to the usual method.

Taking the q th power of each side of the equation $\mathrm{B}_{n}=\left(a \pi_{n}\right)^{\frac{1}{q-1}}$, we have $\mathbf{B}_{n}^{q}=\left(a \pi_{n}\right)^{\frac{q}{q-1}}$; but $\left(a \pi_{n}\right)^{q}=a \pi_{n+1}$, wherefore $\mathrm{B}_{n}^{q}=\left(a \pi_{n+1}\right)^{\frac{1}{q-1}}$ $=\mathrm{B}_{n+1}$, and, generally, $\mathbf{B}_{n}^{q^{t}}=\mathrm{B}_{n+t}$; consequently, $\left(\mathbf{B}_{m} . \mathrm{B}_{n}\right)^{q t}=$ $\mathrm{B}_{m+t} \mathrm{~B}_{n+t}$, and $\left(\mathrm{B}_{p}^{2}\right)^{q t}=\mathrm{B}_{p+t}^{2}$; from which it appears that if $\mathbf{B}_{p}^{2}=\mathbf{B}_{m} \mathbf{B}_{n}$, then $\mathbf{B}_{p+t}^{2}=\mathbf{B}_{m+t} . \mathbf{B}_{n+t}$; and, therefore, having found p, the common age equivalent to m and n, the common age equivalent to ($m+t$) and $(n+t)$ will be $p+t$. Now, let m be the younger of the two ages m and n, and let $p=m+d$, then $p+t=(m+t)+d$; that is, the addition which must be made to the younger age m, to give the equivalent common age p, is the same which must be made to the younger of any other two ages where the defference is the same, viz., $n-m$.

I annex (Table I.) an extract from a table of annuities on two lives of equal ages, according to the proposed law of mortality, constructed in the usual way, but having the values of every tenth part of a year's difference in age inserted by interpolation. The latter process is rendered comparatively easy, by the fact that the values of annuities at consecutive ages are nearly in arithmetical progression. The further subdivision of the ages, when necessary, can be performed by the aid of the column of differences.

Before the table so formed can be used for finding the values of annuities on combinations of unequal ages, we must have a table showing the addition, d, to be made to the younger of two ages whose difference is k, in order to give the equivalent common age. Assume the younger age $=0$, then

$$
\begin{gathered}
\mathrm{B}_{d}^{2}=\mathrm{B}_{o} \mathrm{~B}_{k} \therefore\left(\mathrm{~B}_{o}^{g^{d}}\right)^{2}=\mathrm{B}_{o}\left(\mathrm{~B}_{o}^{q^{k}}\right), \\
\text { or } \mathrm{B}_{o}^{2 q^{d}}=\mathrm{B}_{o}^{1+q^{k}} \text {, whence } 2 q^{d}=1+q^{k}, \\
q^{d}=\frac{1+q^{k}}{2} \text {, or log. } q \times d=\log \cdot \frac{1+q^{k}}{2},
\end{gathered}
$$

$$
\therefore d=\frac{\log \cdot \frac{1+q^{k}}{2}}{\log \cdot q},
$$

by which formula the values of d_{x} in the annexed table have been computed.

In a similar way, it may be shown that, in the case of three lives, if k and l denote the differences between the youngest and the other two ages respectively, in order to find the equivalent common age we must add to the youngest age the quantity $\frac{\log \cdot \frac{1+q^{k}+q^{l}}{3}}{\log \cdot q}$. To calculate the value of this expression for every combination of k and l would be a work of considerable labour, but by means of a table of the values of q_{x} (vide Table II.), the quantity in question may be easily computed in any particular case. The annuity table for three, or indeed any number of lives, would, of course, be found precisely in the same way as the table for two lives, and would require, in its construction, the same amount of labour, and no more.

> Table I.—Two Joint Lives (Extract).

Common Age.	Annuuty.	Difference	Common Age	Annuity.	Difference
		$(-)$			
$39 \cdot 1$	$13 \cdot 4751$	229	$39 \cdot 6$	$13 \cdot 3601$	232
$39 \cdot 2$	$13 \cdot 4522$	229	$39 \cdot 7$	133369	232
$39 \cdot 3$	134293	230	398	$13 \cdot 3137$	233
394	$13 \cdot 4063$	231	$39 \cdot 9$	$13 \cdot 2904$	233
$39 \cdot 5$	133832	231	$40 \cdot$	$13 \cdot 2671$	234

Table II. (Extract).

x.	$\log \cdot q^{x}$	q^{x}.	d_{x}	x.	$\log \cdot q^{x}$	q^{x}.	d_{x}.
11	- 4499825	$2 \cdot 818270$	6.865	16	$\cdot 6545200$	4513568	10766
12	- 4908900	3096635	$7 \cdot 612$	17	-6954275	4.959381	11.591
13	-5317975	3402495	$8 \cdot 376$	18	-7363350	5-449229	$12 \cdot 429$
14	- 5727050	3738566	$9 \cdot 158$	19	-7772425	5.987458	13.280
15	-6136125	4•107830	$9 \cdot 954$	20	-8181500	$6 \cdot 578850$	$14 \cdot 143$

I conclude with an example of the actual process of determining: from the table the value of an annuity on two joint lives, and also of the equivalent common age in a case of three lives. The corresponding annuity in the latter case would, of course, be found from the table of three lives in precisely the same way as the annuity on the two lives.

310 On the Rationale of certain Actuarial Estimates. [Jan.
Example 1.-Required the value of an annuity on two joint lives aged respectively 30 and 45 .

Here, $k=15$ and (Table II.) $d_{15}=9.954$; wherefore the equivalent common age $=39 \cdot 954$. By Table I. we find the value of an annuity for the age $39 \cdot 9=13 \cdot 2904$, and the corresponding difference for one-tenth of a year $=\mathbf{- 2 3 3}$. Therefore,
$13 \cdot 2904$
$233 \times \cdot 5=117$
$233 \times \cdot 04=9$
-0126
$13 \cdot 2778=$ value required.
Example 2.-Required the common age equivalent to the three ages, 25,40 , and 45 ,

Here, $k=15, l=20$.

$$
\begin{aligned}
& 1 . \\
& q^{15}=4 \cdot 10783 \\
& q^{20}=6 \cdot 57885 \\
& \text { 3 } \longdiv { 1 1 \cdot 6 8 6 6 8 } \\
& 3.89556 \quad \log .=-59057 \\
& \text { log. } q=\cdot 04091 \\
& \therefore d_{15,20}=\frac{.59057}{.04091}=14 \cdot 436
\end{aligned}
$$

and common age required $=39 \cdot 436$.

