
A LINEAR APPROACH TO LOAN AND 

VALUATION PROBLEMS 

BY A. BRACE, B.A. 

An approach to loan and valuation problems through linear algebra is used to cast commonly applied 
rules into a general form suitable for routine use under complex conditions. An illustrative example is 
included. 

1 INTRODUCTION 

A loan repaid by nominal instalments n1, n2, . . . nk over k years is said to be of 
nominal amount N= n1+n2+ . . . +nk. Define the vector n=(n1, n2, . . . nk) to be 
the nominal repayment vector. 

Suppose that in year i interest gi (or 100gi%) is charged, capital is redeemed at 
λ i; (or 100 λ i%), and the loan repayment, to cover both interest and capital, is ri. Let 
Λ be the diagonal k x k capital redemption matrix with λ i in the (i, i) position for 
i=1,2,..., k and zeros elsewhere, so that the capital repayment vector is cT= Λ nT 
(n and nT are identical vectors, but written in row form and column form 
respectively). Write G for the upper triangular k x k interest matrix with gi in 
positions (i, ) for which i ≤ β and zeros elsewhere, and r for the repayment vector β 
(r1, r2, . . . rk). 

Then a loan can be formally defined as the system <n, Λ G>, while its structural 
variables n, Λ , G and r are connected by the equation 

( Λ +G)nT=rT. (1) 

Multiplication of (1) by Λ –1 casts it in the normal form 

(I+ F)nT= qT, (2) 

where I is the k x k identity matrix, F= Λ –1G is the normal interest matrix (with 
entries fi=gi/ λ i called normal interest rates), and qT= Λ –1rT is the normal 
repayment vector (with components qi=ri/ λ i called normal repayments). 

Many structural problems with loans revolve around processing (1) for 
information about n and/or r. Thus one might, for instance, find r given n, or, if r 
were given, attempt to invert Λ +G to find n (in the case of constant interest g and 
redemption at par set v=(1+g)–1; then ( Λ +G)–1 is the upper triangular k x k 
matrix with entries in the ( α , β ) position of v if α = β , –gv β – α +1 if α < β , and 0 if 
α > β ). Once the structure of a loan is known, valuation problems often require 
breaking repayments into total capital and total interest components. 

The Accumulation and following two theorems, proved at the beginning of the 
next section, conveniently generate much of the information one needs to know 
about the structure of loans; subsequent results help find its value. Together they 
enable quite complicated problems to be solved and checked in a routine manner. 
Moreover, the techniques can be applied to any problem, such as valuation of 
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securities, where the structural variables are connected by an equation like (1). 
An illustrative example that uses most of the results obtained, appears in the last 
section. 

2 RESULTS 

For i=1, 2, . . . , k set ui=1+fi[and vi=ui–1=(1+fi)–1], and define the amount 
consecutive payments q1, q2, . . . , qj (some of which may be negative) 

to be 

‘Amount’ is a generalization of the concept of ‘sum’, because if fi=f a constant, 
and qi=1 for i=1, 2, . . . ,j, then 

Our main result is 

Theorem 1 (Accumulation Theorem) 

In the case of constant interest g and repayment at par, the theorem reduces to 

which says that if repayments less interest on the full nominal amount are 
accumulated at interest g, then at the end of each consecutive year the amount 
accumulated equals capital repayments to date. In other words a loan can be 
regarded either as reducing, or as a constant interest payment on the whole loan 
with balance accumulated: at any time the capital repaid under the first 
formulation equals the amount accumulated under the latter. 

For convenience we introduce the notation D, DL and DU for the k x k matrices 
with, respectively: 1s in all positions; 1s in positions ( α , β ) for which α ≥ β and 0s 
elsewhere, making a lower triangular matrix; 1s in positions ( α , β ) for which α ≤ β 
and 0s Elsewhere, making an upper triangular matrix. Thus, if interest were a 
constant g, we could write G=gDU. 

Proof of Theorem 1 
Define the k x k accumulation matrix U to be a lower triangular matrix with 

entries in the ( α , β ) position of 0 if α < β , 1 if α = β , and u β +1u β +2 . . . u α if α > β . In 
addition, let FD be the k x k diagnonal matrix with fi in the (i, i) position and 0S 
elsewhere. 

The statement of the theorem in matrix form is 

and we now prove that. From (2) 
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The entry in the ( α , β ) position in U(I+F–FDD) is the inner product 

When that is 0, when it is 1, and when it is 

which, on repeated use of ui–fi=1 for i= , is found to be 1. Hence 
U(I+F–FDD)=DL and the result follows. 

In the sense that annuities and sums are dual, Theorem 1 has a dual in 
Theorem 2 below. 

Define the value of (k–j+ 1) consecutive payments qj, qj+1, . . , qk to be 

‘Value’ is a generalisation of the concept of ‘annuity’, because if fi=f a 
constant, and qi=1 for i=j, . . . , k, then So can be 
regarded as the value at the beginning of the jth period of all subsequent 
payments (if valuation is at fi in year i). 

The next result states that at any time the nominal amount outstanding equals 
the present value of all subsequent normal repayments. 

Theorem 2 (Amount Outstanding Theorem) 

Proof: Define the upper triangular k x k valuation matrix V to have entries 
in the ( ) position when , and 0S elsewhere. The statement of 

the theorem in matrix form is 

and we now prove that from (2) 

The entry in the ( ) position in V(I+F) is the inner product 
When that is 0, 

when it is 1, and when it is 
which, on repeated use of for descending 

a, is found to be 1. Hence V(I+F)=DU, and the result 
follows. 

From Theorems 1 and 2 

(3) 

which is a useful result for checking purposes. 
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For a cumulative sinking fund at constant interest g, redemption at par, and 
initial rate of sinking z, the amount of the loan is N = 1 and repayments are a 
constant g + z. Equation (3) then gives 

and, for the endpoints j = 0 and k, the two well-known formulae 

The value of any individual nj can be found from Theorems 1 and 2 in a number 
of ways, but the most useful formula is 

In many practical problems normal interest rates fi and repayments qi are both 
constant over a period of years, that is, fj=f α and qj=q α for j= α , α + 1, . . . , β. 
Denote this sort of useful period by the semi-open interval ( α – 1, β ] to show that 
the time under consideration runs from ( α –1) exclusive to β inclusive, and let 
g g = β –( α –1) be the length of the interval. In these circumstances we can talk 
about fj and qj (or anything else) being constant on the interval ( α – 1, β ] with 
values f α and q α respectively. 

The next result shows that under these conditions nominal repayments 
increase geometrically over the interval. 

Theorem 3: If fj and qj are constant on ( α – 1, b 1], then nj=n α uj– α on ( α –1, β] , 
where u=1+f α 

Proof: From Theorem 1 

while for j= α +1, α +2,..., β 

A corollary to Theorem 3 is that the total nominal amount N ( α –1, β ] repaid 
during ( α –1, β ] is 

(5) 

Equation (4), which stems from the Accumulation Theorem, and Theorem 3 
conveniently generate all nj, while equation (5) provides a check because the 
N( α –1, β ] must sum to N. 

The remaining results of this section dovetail with the results already obtained, 
which are about the structure of loans, to yield methods of obtaining values of 
loans. 
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Suppose valuation is to be at interest ι (iota). Set (1+ ι )–1=v (nu), and let 
(vector nu) 

be the valuation vector. (In future, care should be taken not to confuse i (aye) with 
ι (iota) and v (vee) with v (nu).) We define the present value of a series of payments 
r to be vrT. 

A further corollary to Theorem 3 is that the present value M( α –1, β ] of the 
nominal amounts repaid during ( α –1, β ] is 

where u = 1 + f α . 
Similarly, using (l), we define the present value A at interest rate ι of a loan 

<n, Λ , G> to be 

(7) 

where K=v( Λ nT)=v cT is the present value of capital repayments, and J=v(GnT) 
is the present value of the interest payments. Let M=vnT denote the present value 
of the nominal repayments. 

Our first theorem on the value of loans is a restatement of Makeham’s 
Theorem for the case when interest is constant, but the redemption rates may 
perhaps vary. 

Theorem 4 (Makeham’s Theorem): The present value A at rate ι of a loan at 
constant interest g, is 

Proof: From (7) we have merely to show 

The β component of the row vector vG is 

so that the vector itself is 

where e is the constant k-vector (1,1, . . . , 1). 
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Hence 

In the case where interest rates gi vary, however, the interest term in Theorem 4 
must be modified. Suppose, as often occurs in practice, that the interest rate gi is a 
constant g α on the interval ( α –1, β ]. Let G α be the interest matrix G with gi=g α 
for i= α , α +l, . . . , β and gi=0 for i< α or i> β . The contribution J( α –1, β ] from 
this interval to the present value of the interest payments J is 

Inserting a semi-colon after the ( α –1) and β components, the row vector vG α , can 
be written as 

. 

Hence 

(8) 

The terms in the bracket can generally be calculated easily with equations (5) 
and (6); they are worth stating in words. The term v α –1 N( α – 1,k] is the present 
value of the nominal amount outstanding at the beginning of the period ( α –1 ,β ]; 
M( α –1, β ] is the present value of nominal amounts repaid during ( α –1, β ]; 
v β N ( β ,k] is the present value of the nominal amount outstanding at the end of 

( α – 1, β ]. 
Thus, if interest and redemption rates vary, Makeham’s Theorem becomes 

Theorem 5 (Makeham’s General Theorem) 

where summation is over intervals ( α – 1, β ] on which gi is constant 

Often each of the individual terms in the statement of Theorem 5 can be 
calculated directly; seeing if they satisfy Makeham’s General Theorem is a useful 
check. 

Loans subject to tax can be valued with the aid of a final theorem 

Theorem 6 (Tax Theorem): Suppose a loan is purchased at price pN, and is subject 
to income tax at rate t (or 100t%) and capital gains tax at rate τ (or 100 τ %). The 
loan is worth 

0 
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Proof: The capital gains tax on capital repayment cj is 

399 

Hence the loan is worth 

and the result follows. 
If the purchase price is not known, a loan can be valued by setting p=A/N in 

the Tax Theorem. That gives 

3 AN ILLUSTRATIVE EXAMPLE 

The following problem is based on Example 9.7 of Donald’s ‘Compound 
Interest and Annuities Certain’ where it is described as complicated. Some 
refinements have been added to make it more complicated, yet still capable of 
being solved and checked in a routine manner with the results of the previous 
section. Conventional solutions to this type of problem generally seem to involve 
calculating various interdependent quantities sequentially through the period of 
the loan. That can increase the chances of a mistake, may be inconvenient to 
check, and introduces the possibility of roundoff errors. 

Problem: A loan of $500,000 is subject to the following conditions: 

(i) interest is at 5% per annum convertible quarterly for 15 years, and 4% per 
annum convertible half-yearly thereafter, 

(ii) redemption is at par for the first 10 years, 111 % for the next 5 years, and 
114 % thereafter 

(iii) up to $30,000 is available annually to service the loan, 
(iv) a special extra payment of $100,000 is required at the end of the 10th year, 
(v) income tax is at 40%, and capital gains tax is at 30%. 

Find the price to yield 5% per annum effective. 

Solution: Until the last stage of the valuation process we can suppose that the 
interests gi are convertible yearly. We first find the period k of the loan and the 
final repayment rk. Construct Table 1 listing gi, λ i, ri, fi, qi and qi–f; N for intervals 
on which fi and qi are constant; note that entries with asterisks anticipate results 
to be obtained. 

Set k=15+z and apply the Accumulation Theorem (No. l), initially assuming 
that qk–fk N=8750. We get 

(8) 
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Table 1 

( α –1, β ] (0,9] (9,10] (10,15] (15,28*] (28*,29*] 

·05 ·05 ·04 ·04 
1 10/9 8/7 8/7 

130,000 30,000 30,000 3,598·16* 
·05 ·045 ·035 ·035 

30,000 130,000 27,000 26,250 3,148·39* 
5,000 105,000 4,500 8,750 — 

(*entries with asterisk s anticipate results to be obtained.) 

5,000 (1·05)( 1·045)5(1·035)z +105,000( 1·045)5(1.035)z 
+4,500 (1·035)z+8,750 
= 500,000 

or 

Hence z=[13·12]=14, and the term of the loan is k=29 years. 

Now apply equation (4) to find n1, n10, n11 and n16. 
Also find n29 with the aid of the Accumulation Theorem (No. 1), and then use the 
last component of equation (1) to get r29=(8/7+·04)n29, which in turn also gives 

Expressions for these ni appear below, and their values are displayed in 
the first row of Table 2; together they give the structure of the loan. 

The values of n1, n10, n11) n16 and n29 can be checked by calculating N 
with (5) for each of the five intervals and seeing if their sum is 500,000. On the 
third interval, for example, 

The values of N are displayed in the second row of Table 2, with their 
(row) sum 

N = 499,999·97 
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Table 2 
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(0,9] (9,10] (10,15] (15,28] (28,29] Row Sums 

nx 
N 
W 
K 
N 

J 

5,000·00 107,756·64 11,830·03 16,716·28 3,041·92 — 
55,132·82 107,756·64 64,718·66 269,349·93 3,041·92 N = 499,999·97 
42,857·14 66,153·23 34,256·06 91,451·27 739·02 M = 235,456·72 
42,857·14 66,153·23 38,062·29 104,515·74 844·59 K = 252,432·99 

500,000·00 444,867·18 337,110·54 272,391·88 3,041·92 — 
500,000·00 286,765·35 206,956·63 131,025·15 775·97 – 
170,377·51 13,655·49 41,675·42 31,038·33 29·56 J = 256,776·31 

in the final column. The last and last normal repayments are 

r29 = 3598·16 and q29 = 3148·39 

respectively. 
A check on the value of q29 can be made through the Amount Outstanding 

Theorem (No. 2). The expression 

should equal 500,000, and it does (to two decimal places). 
Knowing r29 we can, with(7), calculate A0 = vrT, the value of the loan if interests 

gj were paid yearly and there were no tax. That will be useful for checking, 
through Makeham’s General Theorem (No. 5), the values, which we will 
calculate directly, of K and the J 

= 509,209·30 

The value of M, needed when we apply equation (9) is the (row) sum of the 
M which are displayed in the third row of Table 2, and which are 
calculated with (6). For example 

That gives M (10,15] = 34,256·06, and, summing the row 

M = 235,456·72. 

The value of K is found by multiplying M by the appropriate to get 
the K displayed in the fourth row of Table 2, and adding. Hence 
K(10,15] = 10/9 M(10,15]= 38,062·29, and K = 252,432·99. 

To find the J (seventh row of Table 2), first calculate the N 
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(fifth row of Table 2) and the (sixth row of Table 2) from the 
N in the obvious way, and then apply equation (8). For example 

N(10,29] = N–N(0,9] – N(9,10) = 337,110·54, 
v10 N(10,29] = (1·05)-10 N(10,29] = 206,956·63, and 

J(10,15] = (·05/·05){v10 N(10,29]-M(10,15]-v15 N(15,29]} 
= 41,675·42. 

The row sum of the J is 

J = 256,776·31. 

As outlined above, the directly calculated values of J and K ought to add up to 
Ao , and they do (to two decimal places). 

The value A of the loan can now be obtained by applying equation (9) but with 
a slight modification to allow for the interests gi on the loan not being convertible 
yearly. 

or 

giving A = 388,380·69 (or 77·68%) 




