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Introduction 

 

On behalf of the joint Longevity Basis Risk Working Group, established jointly by the Life 

and Longevity Markets Association (LLMA) and the Institute and Faculty of Actuaries 

(IFoA), I am delighted to introduce the results of Phase 2 of our research into the area of 

longevity basis risk. 

 

This technical report sets out a practical implementation of the methodology developed in 

Phase 1 of this work for a number of real-life datasets, and shows how index-based longevity 

hedges might be used to provide a significant reduction in the exposure of insurers, reinsurers, 

banks, and pension schemes to longevity risk. 

 

This report forms the key output of the second phase of this work, and has been 

commissioned and funded by the IFoA and the LLMA, and undertaken on our behalf by 

Macquarie University. 

 

The importance of longevity basis risk 

 

Longevity basis risk arises because different populations, or subpopulations, will inevitably 

experience different longevity outcomes. This is a significant issue for those wishing to hedge 

longevity risk using a published mortality index – whether they be pension schemes, insurers, 

reinsurers, or banks. Put simply, actual longevity outcomes, and therefore cashflows, of the 

hedged portfolio will differ from those under the hedging instrument. 

 

In addition, longevity basis risk can also present a wider issue for insurers using, in their 

reserving models, external data, such as population data, rather than their own policy data. 

The need to quantify any potential basis risk is receiving increasing focus, particularly under 

Solvency II. 
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Phase 1 of this research 

 

Phase 1 of this research focused on producing a methodology that could be used to quantify 

longevity basis risk and assess the level of risk reduction that might be brought about through 

the use of an index-based longevity hedge. It resulted in a framework that recognised the fact 

that different practitioners will have different portfolios, different volumes and histories of 

experience data, and different constraints of the models that they can use in practice. It 

provided specific models and techniques for different situations, which delivered a great 

starting point for Phase 2 of this work. 

 

Phase 2 of this research 

 

The purpose of Phase 2 is to: 

- determine the most relevant metrics for measuring longevity basis risk and hedge 

effectiveness; 

- apply the approach in Phase 1 to realistic worked examples based on appropriate data;  

- present a robust quantification of basis risk to third parties such as regulators; and  

- investigate the potential limitations of the time series processes. 

 

This report therefore builds on the Phase 1 findings and applies the models and 

methodologies of Phase 1 to a number of different datasets, portfolio sizes, and hedge 

structures in order to assess the level of longevity basis risk that would result under a wide 

range of scenarios and under a range of potential risk reduction metrics. The report therefore 

contains an extensive set of results within which we hope that all practitioners will find 

information that is useful and relevant to their individual circumstances. 

 

We are delighted to be able to present the results of this research and hope it will prove of 

value to practitioners and enable an important step change in the ability to assess longevity 

basis risk. On behalf of the Longevity Basis Risk Working Group, I would like to thank the 

research team for all of their hard work in delivering this unique and valuable output. 

 

Robert Bugg 

 

Chair of the LLMA and IFoA Joint Longevity Basis Risk Working Group 
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Reliance and Limitations 

 

This report has been produced by Macquarie University for the Longevity Basis Risk 

Working Group (LBRWG) of the Institute and Faculty of Actuaries (IFoA) and the Life and 

Longevity Markets Association (LLMA). 

 

This report is addressed to the LBRWG. It may be shared with members of the IFoA and 

LLMA and other relevant third parties. This report does not constitute advice and should not 

be considered a substitute for specific advice in relation to individual circumstances. Whilst 

care has been taken to ensure that the report is accurate, current, and useful, neither 

Macquarie University, University of Waterloo, Mercer Australia, the IFoA, nor the LLMA 

(collectively, the Parties) makes any warranty or representation, express or implied, as to the 

report’s accuracy, currency, and usefulness. The Parties disclaim all liability for any loss or 

damage suffered of whatever nature (direct, indirect, consequential, or other) as a result of or 

in relation to the use of this report and for actions taken by third parties as a consequence of 

the information contained in this report. 
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Executive Summary 

 

As per the call for research project proposals by the Longevity Basis Risk Working Group 

(LBRWG), the aim of the overall project is ‘to develop a readily-applicable methodology for 

quantifying the basis risk arising from the use of population-based mortality indices for 

managing the longevity risk inherent in specific blocks of pension benefits or annuitant 

liabilities’. The project was funded by the Institute and Faculty of Actuaries (IFoA) and the 

Life and Longevity Markets Association (LLMA). Phase 1 of this project was completed by 

Cass Business School and Hymans Robertson LLP in December 2014, in which a decision 

tree framework was developed to provide a guide on how to choose a two-population 

mortality model for the reference and book populations. It includes the M7-M5 model, the 

CAE+Cohorts model, and the characterisation approach. 

 

The current Phase 2 of the project has been undertaken by Macquarie University. It focuses 

on putting the earlier work conducted in Phase 1 into practice and measuring longevity basis 

risk under practical circumstances. This longevity basis risk arises from the potential 

mismatch between the longevity hedging instrument (reference population) and the pension 

or annuity portfolio (book population) being hedged. Generally speaking, there are three main 

sources of longevity basis risk, namely demographic basis risk (demographic or 

socioeconomic differences), sampling basis risk (random outcomes of individual lives), and 

structural basis risk (differences in payoff structures). While Phase 1 has proposed some two-

population mortality models for measuring demographic basis risk, Phase 2 takes all the three 

risk components into account and considers more realistic hedging scenarios using UK and 

Australian population and industry data.  

 

In accordance with the call for research project proposals, the major objectives of Phase 2 are 

to: (a) determine the most relevant metrics for measuring longevity basis risk and hedge 

effectiveness; (b) apply the approach in Phase 1 to realistic worked examples based on 

appropriate data; (c) present a robust quantification of basis risk to third parties such as 

regulators; and (d) investigate the potential limitations of the time series processes.  
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Risk Metrics 

 

The effectiveness of an index-based longevity hedge can be described as how much longevity 

risk is transferred away via the hedge. The retained portion of the risk can then be seen as 

longevity basis risk. In line with the current literature, we define the level of longevity risk 

reduction for a certain longevity hedge on a pension or annuity portfolio as: 

 
 

%100 
unhedgedrisk 

hedgedrisk
1reductionrisk longevity 








  

in which risk(unhedged) and risk(hedged) are the chosen measure of the portfolio’s longevity 

risk before and after taking the hedge. This metric represents the percentage of the portfolio’s 

initial longevity risk that is reduced by the hedge. Regarding the risk measure, we consider 

the usual choices in the literature including the variance, standard deviation, 99.5% value-at-

risk (VaR), and 99.5% expected shortfall (conditional VaR). The 99.5% VaR is of particular 

interest in practice, as this concept is adopted in the assessment of the Solvency Capital 

Requirement (SCR) under Solvency II. Different longevity hedging schemes could lead to 

different levels of risk reduction and potentials for capital savings. More details about the risk 

metrics and risk measures can be found in Section 3 and Appendix I. 

 

Realistic Examples 

 

Hypothetical cases of pension portfolios, based on UK and Australian industry datasets, are 

studied in Section 4, where standardised longevity swaps are used to construct the longevity 

hedge. In such a swap, two series of future cash flows are exchanged: one is linked to the 

percentage of the reference population who are alive on the payment dates, and the other is 

fixed at the start of the transaction. A number of hedging scenarios are examined, including a 

single cohort or multiple cohorts, an open or closed pension plan, varying portfolio sizes, and 

different levels of precision in the use of longevity swaps, for each UK and Australian 

subgroup. The major finding, from applying the two-population mortality models from Phase 

1, is that the risk reduction levels (regarding the present value of the aggregate position after 

hedging) are often around 50% to 80% for a large portfolio, while the risk reduction estimates 

are usually smaller than 50% for a small portfolio. The exact risk reduction level depends on 

the particular hedging scenario being considered. The modelling procedure, technical 

information, and Excel VBA codes are stated in Section 3 and Appendices I and II.  
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Robust Quantification 

 

An extensive sensitivity analysis on the hedging results by varying the initial model settings 

and assumptions is set out in Section 5. Based on the simulated results, the most important 

modelling assumptions and settings are the coherence property (i.e. constant book-to-

reference ratio of mortality rates at each age in the long run) and behaviour of simulated 

future variability, portfolio size, data size and characteristics, type of hedging instrument, 

simulation method, and additional model features such as mortality structural changes. 

Comparatively, the other variations tested seem to have rather limited impact on the 

computed hedging results. In addition, some backtesting and scenario testing are performed 

on the longevity hedging strategy. The testing results suggest that the hedging strategy works 

reasonably well when there are sizable unanticipated mortality improvements. By contrast, if 

the major mortality trends are well captured by the modelling process and these trends endure 

over time, the longevity hedge would not cause much change to the aggregate position of the 

pension portfolio. Moreover, when the longevity shocks are more significant for the book 

population than for the reference population, due to longevity basis risk, the reduction in the 

portfolio loss from the hedge would still be considerable, given that the longevity shocks on 

the reference and book populations are broadly in the same direction. 

 

Furthermore, a brief summary of all the simulated hedging results is presented in Section 7. A 

qualitative assessment table and a simple ‘rule-of-thumb’ formula are demonstrated as a 

possible quick guide for practitioners and regulators in assessing the effectiveness of an 

index-based longevity hedge. For instance, an assessment table can contain a number of 

major qualitative questions about the extent of longevity basis risk, in which a score of 0 to 

10 (from mild to significant) is given to each question. The total score then represents a rough 

estimate of the level of longevity risk reduction. Some relevant questions include the size of 

the pension plan, how the book and reference populations are related, the assumed pace of 

reaching coherence between the two populations, and the presence of mortality structural 

changes. Moreover, a simple linear regression can also be applied to the risk reduction levels 

using a range of explanatory variables, which are related to the pension plan characteristics, 

hedging structure, model settings, and assumptions, as a simple way of quantifying longevity 

basis risk. Note that these quick guides are model-dependent and are highly specific to the 

datasets being modelled. If suitable resources and expertise are available, practitioners are 

encouraged to use the detailed technical information in this report or other relevant references 

to construct their own models and perform more accurate calculations. Finally, a number of 

practical issues in implementing index-based hedging solutions are also discussed.  
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Time Series 

 

A sensitivity analysis on time series modelling is conducted in Section 6. Given the likely 

short data length of the book population, the feasible choices of time series processes are 

quite limited. Several modifications to the original time series processes in the M7-M5 and 

CAE+Cohorts models are tested, such as choosing a higher order for the autoregressive 

processes in the book component, using univariate time series processes in the reference 

component under the M7-M5 model, relaxing the independence assumption between the time 

series error terms of the reference and book components, and applying some other extensions 

like introducing non-coherence via an extra linear term. The testing results indicate that the 

time series modelling assumptions sorted in a decreasing order of importance are the 

behaviour of simulated future variability of the book component, the pace of reaching 

coherence, and then the other correlation assumptions. Proper judgement, reference materials, 

experts’ opinions, and thorough testing are needed for making appropriate time series 

modelling assumptions in practice. Further research is also required when more data of longer 

periods and for different kinds of book populations can be collected in the future. More 

technical details and the Excel VBA codes for time series modelling are provided in 

Appendices I and II. 
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1 Introduction 

 

Continual decline in mortality is a global phenomenon. This persistent trend has been driven 

mainly by substantial enhancements in nutrition, hygiene, medical technology, health care, 

and education since the last century. While it is certainly no mean feat for humans, it imposes 

a significant challenge on pension plan sponsors and annuity providers. The so-called 

longevity risk is the risk that pension plans or annuity portfolios pay more than anticipated 

due to unexpected mortality improvements. Broadly speaking, the risk consists of two 

components, namely systematic longevity risk and non-systematic longevity risk. The latter 

can usually be alleviated by increasing the portfolio size, but the former cannot be diversified 

by pooling in the same way. At present, governments and insurance companies are generally 

very cautious about assuming too much longevity risk. 

 

There are a few approaches for financial institutions to manage longevity risk (Cairns et al. 

2008, Li and Haberman 2015). The first one is insurance and reinsurance, in which the risk is 

transferred to an insurer or reinsurer by paying a premium. For instance, an insurer can enter 

into a reinsurance contract with a reinsurer to hedge the risk, or a pension plan can buy 

annuities from a life office to transfer the risk away. The second is natural hedging, which 

makes use of the opposite changes in the values of annuities and life insurances. This 

diversification strategy may be feasible for certain large institutions which have the financial 

structure and resources to sell both kinds of policies. It may also be facilitated by using, say, a 

mortality swap to construct an external hedge between two independent parties, such as an 

annuity provider and another separate life insurer.  

 

The third approach, which has been in the limelight in recent years, is to adopt capital market 

solutions, including insurance securitisation, mortality- or longevity-linked securities, and 

derivatives. Insurance securitisation involves securitising a line of business as a complex 

bundle and selling the resulting highly structured securities to market investors. Some 

popular bespoke de-risking solutions currently like buy-ins, buy-outs, and longevity swaps 

(LCP 2012) are also tailored transactions for hedging particular portfolios. In contrast, 

standardised mortality- or longevity-linked securities and derivatives have their cash flows 

linked to a selected reference population (i.e. index-based), rather than the population 

underlying the portfolio to be hedged. Consequently, there would be a potential mismatch 

between the hedging instrument and the portfolio, in terms of demographic differences. There 

are also other concerns, e.g. a small portfolio would have high sampling variability, which 

makes it more likely to deviate from the experience of the reference population, and also the 

payoff structures (i.e. timing and amounts) would often be different between the hedging tool 

and the portfolio being hedged. These discrepancies lead to the concept of longevity basis 

risk, which is at the heart of this research project.   
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In 2010, the Life and Longevity Markets Association (LLMA) was established in the UK by 

several global insurers, reinsurers, and investment banks. Its mission is to promote the 

development of a liquid ‘life market’, which provides a platform for insurers, reinsurers, and 

market investors to trade various longevity- and mortality-linked assets and liabilities. 

Particularly, the capital market is huge and has much potential to absorb longevity risk from 

insurers and pension plans in exchange for appropriate risk-adjusted returns. Moreover, 

certain investors may want to diversify across a new market sector of longevity, which is 

arguably uncorrelated with traditional asset classes. Since then, there have been many 

interesting developments in the life market (Tan et al. 2015). For example, in 2011, the 

LifeMetrics indices, released by J.P. Morgan, the Pensions Institute, and Towers Watson 

back in 2007, were transferred to the LLMA for the purpose of building a global benchmark. 

J.P. Morgan issued a £70 million 10-year q-forward contract for the Pall (UK) pension fund, 

which was designed to hedge the value of the pension liabilities. In 2012, Deutsche Bank 

provided a €12 billion index-based longevity solution for Aegon in the Netherlands, in which 

the Dutch population was taken as the index. Then in 2013, Deutsche Bank released the 

Longevity Experience Option, which was a 10-year call option on 10-year forward survival 

rates, based on the England and Wales and Netherlands LLMA longevity indices. In 2014, 

the Mercer Global Pension Buy-out Index was introduced, showing the benchmark prices of 

eighteen independent third-party insurers in the UK, US, Canada, and Ireland. In the same 

year, Berkshire Hathaway made a £780 million quota-reinsurance transaction with Pension 

Insurance Corporation, which is one of the possible signs of an increasing demand for 

pension annuity books to offset in-house life insurance books. Some more recent longevity 

transactions are listed below (www.artemis.bm/library/longevity_swaps_risk_transfers.html).  

 

Table 1.1 Recent longevity swaps transactions 

 

Pension Fund / 

Sponsor 
Provider(s) Solution(s) Amount Date 

Delta Lloyd RGA Re Index-based 

longevity swap 
€12 billion Jun 2015 

Aegon Canada Life Re Longevity swap   

and reinsurance 
€6 billion Jul 2015 

Manweb 

(ScottishPower) 
Abbey Life Longevity swap £1 billion Aug 2016 

AXA France RGA Re Longevity swap   

and reinsurance 
€1.3 billion Nov 2016 

Pension Insurance 

Corporation 
SCOR Longevity swap   

and reinsurance 
£1 billion Jul 2017 

British Airways 

Pension Scheme 

Partner Re,    

Canada Life Re 

Longevity swap   

and reinsurance 
£1.6 billion Aug 2017 

 

While most longevity deals to date have been bespoke transactions, index-based solutions 

and standardised products could draw more interest from financial entities both within and 
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outside the insurance and pension world. They have considerable potential to provide 

effective risk management at lower costs and offer significant capital savings. The major 

types of index-based derivatives proposed in the literature include longevity bond (Blake and 

Burrows 2001), longevity swap (Dowd 2003), q-forward (Coughlan et al. 2007), S-forward 

(LLMA 2010), K-forward (Chan et al. 2014), mortality option (Cairns et al. 2008), and 

survivor option (Dowd 2003). Some of them have already been issued and tested in practice, 

with different levels of success. As noted in the third approach above, however, the potential 

mismatch between the longevity hedging instrument (reference population) and the pension 

or annuity portfolio (book population) being hedged gives rise to longevity basis risk, which 

comprises demographic basis risk (demographic or socioeconomic differences), sampling 

basis risk (random outcomes of individual lives), and structural basis risk (differences in 

payoff structures). In order to address this critical issue, Phase 1 of the research project have 

earlier developed a decision tree framework as a guide for selecting a suitable two-population 

mortality model for the reference and book populations. The major choices are the M7-M5 

model, the CAE+Cohorts model, and the characterisation approach, with a focus on 

demographic basis risk. Accordingly, the current Phase 2 aims to put the work conducted in 

Phase 1 into practice and assess longevity basis risk under practical circumstances. 

Specifically, it takes all the three risk components into account and examines more realistic 

hedging scenarios using various UK and Australian population and industry datasets.  

 

The structure of this Phase 2 report is as follows. Section 2 describes the historical mortality 

levels and improvements of different subgroups in three industry datasets. Section 3 explains 

the modelling procedure of longevity basis risk adopted in this project and the way to 

compute the level of longevity risk reduction from an index-based longevity hedge. Section 4 

examines hypothetical hedging scenarios of pension portfolios using standardised longevity 

swaps, and estimates the corresponding risk reduction levels. Section 5 conducts an extensive 

sensitivity analysis on the hedging results from Subsection 4.1 via making a series of changes 

to the initial model settings and assumptions, and performs backtesting and scenario testing 

on the hedging strategy. Section 6 carries out a sensitivity analysis on the choice of time 

series modelling, under the data constraint of the book population. Section 7 provides a brief 

summary of the hedging results in this report, proposes a qualitative assessment table and a 

‘rule-of-thumb’ formula as a rough guide for measuring hedge effectiveness, and discusses a 

number of practical issues in employing index-based hedging solutions. Finally, Appendix I 

sets forth the technical details of the models, and Appendix II lists the Excel VBA codes that 

have been used for the various computations in Phase 2.  
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2 Mortality Patterns of Different Groups 

 

In Phase 2, there are four sources of mortality data, in particular the Continuous Mortality 

Investigation (CMI), Office for National Statistics (ONS), Mercer Australia, and Human 

Mortality Database (HMD). The first three datasets are used to represent the underlying 

experience of the pension or annuity portfolio to be hedged, and the last is used as the 

reference population of the longevity hedging instrument. The following provides a 

description of the historical mortality levels and improvements of different groups in each 

dataset. As in Phase 1, the focus is on the age range of 60 to 89. In general, there has been a 

continual decline in mortality over time at all age groups, and the smaller the data size, the 

more volatile the experience.  

 

2.1 CMI dataset 

 

The dataset provided by the CMI comes from the self-administered pension scheme (SAPS) 

mortality investigation on UK pensioners. It includes the number of deaths and central 

exposed-to-risk, and covers ages 20 to 100+ and years 2000 to 2014. It is split by sex, 

industry class, pension amount, and retirement type.  

 

The plots of the logit mortality rates (i.e.   qq 1ln ; see Subsections 3.1 and 3.2) for 

different groups are given in Figure 2.1 below. For demonstration purposes in this section, 

some pension groups smaller in size are combined such that their mortality levels decrease 

generally over time with tractable variability and that there are distinct differences in 

mortality levels between the groups. For male pensioners under normal retirement, the solid 

line refers to the pension range of £1 to £8,500 p.a., the dashed line refers to £8,500+ p.a. (for 

technology, the split is by £4,500 p.a. instead), and the dotted lines represent their potential 

underlying linear trends. For female pensioners under normal retirement, because of the 

smaller data sizes, all the pension groups are aggregated (except that there is a split by £1,500 

p.a. for local authority). For ill-health retirement, some industries are further grouped together 

due to insufficient exposures. 

 

There are a few major observations for pensioners under normal retirement. First, the higher 

pension groups generally have lower mortality and usually have more volatile experience. 

But the differences in (logit) mortality levels between the two pension groups have a 

tendency to reduce over age. Second, while the plots are constructed for each industry based 

on the data given, rather small differences in mortality levels between different industries can 

be seen, especially at older ages. Moreover, the mortality levels of female pensioners in 

aggregate are fairly comparable to those of the higher pension male groups, whereas the 

overall differences in mortality levels between females and males usually become smaller at 

older ages. Similar patterns are observed for ill-health pensioners, and as expected, ill-health 

mortality is generally higher than normal mortality.  
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Figure 2.1 Logit mortality rates of UK pensioners from 2000 to 2014  

 

Basic materials (normal retirement; females (top row) and males (bottom row)) 

   

   

 

Industrials (normal retirement; females (top row) and males (bottom row)) 

   

   

 

Consumer goods (normal retirement; females (top row) and males (bottom row)) 
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Figure 2.1 Continued 

 

Consumer services (normal retirement; females (top row) and males (bottom row)) 

   

   

 

Utilities (normal retirement; females (top row) and males (bottom row)) 

   

   

 

Financials (normal retirement; females (top row) and males (bottom row)) 
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Figure 2.1 Continued 

 

Technology (normal retirement; females (top row) and males (bottom row)) 

   

   

 

Local authority (normal retirement; females (top row) and males (bottom row)) 

   

   

 

Basic materials and industrials (ill-health retirement; females (top row) and males (bottom row)) 
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Figure 2.1 Continued 

 

Consumer goods and consumer services (ill-health retirement; females (top row) and males (bottom row)) 

   

   

 

Utilities, financials, and technology (ill-health retirement; females (top row) and males (bottom row)) 

   

   

 

Local authority (ill-health retirement; females (top row) and males (bottom row)) 
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Table 2.1 provides the average mortality rate and the average annual rate of improvement in 

mortality rate for each group over the period. As above, some figures are given separately for 

the lower (left figure in a cell) and higher (right figure in a cell) pension groups. Again, for 

pensioners under normal retirement, the higher pension groups have lower mortality levels in 

general, and the differences in average mortality rates between different industries are small, 

though the pensioners in financials seem to experience slightly lower mortality levels 

compared to the others. The average mortality rates of female pensioners in aggregate are a 

little lower than those of the higher pension male groups. Regarding the improvement rates, 

there are a few things to note. First, the improvements, mostly ranging from about 1% to 5% 

p.a., tend to reduce over age, though the patterns are less clear for those groups smaller in 

size. Second, the lower pension groups, with higher mortality rates, look more likely to 

experience greater improvements in mortality, though not in all cases. In addition, the 

differences in improvement rates between different industries or between both sexes appear 

to be largely randomly scattered, though female pensioners in industrials and technology 

seem to experience smaller improvements relative to those in the other groups, while 

pensioners in local authority enjoy greater improvements. For ill-health pensioners, mortality 

levels are higher and some similar patterns as above can be seen.  

 

Table 2.1 Average mortality levels and improvements of UK pensioners from 2000 

to 2014 

 

 Females Males 

Group \ Age   Average Level Improvement (p.a.) Average Level Improvement (p.a.) 

Basic materials 

60-69 

70-79 

80-89 

(normal retirement) 

0.0072 

0.0231 

0.0801 

 

4.6% 

3.3% 

1.6% 

 

0.0129 / 0.0093 

0.0385 / 0.0275 

0.1136 / 0.0921 

 

3.3% / 1.3% 

3.5% / 1.8% 

2.5% / 2.0% 

Industrials 

60-69 

70-79 

80-89 

(normal retirement) 

0.0081 

0.0246 

0.0815 

 

1.8% 

2.6% 

1.1% 

 

0.0136 / 0.0080 

0.0380 / 0.0259 

0.1155 / 0.0905 

 

2.7% / 1.6% 

2.1% / 2.1% 

2.1% / 4.3% 

Consumer goods 

60-69 

70-79 

80-89 

(normal retirement) 

0.0078 

0.0254 

0.0809 

 

5.4% 

3.1% 

1.7% 

 

0.0133 / 0.0093 

0.0378 / 0.0278 

0.1076 / 0.0843 

 

3.2% / 2.2% 

2.8% / 1.4% 

2.2% / 1.3% 
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Table 2.1 Continued 

 

 Females Males 

Group \ Age   Average Level Improvement (p.a.) Average Level Improvement (p.a.) 

Consumer 

services 

60-69 

70-79 

80-89 

(normal retirement) 

 

0.0072 

0.0241 

0.0840 

 

4.5% 

5.0% 

2.7% 

 

0.0145 / 0.0096 

0.0422 / 0.0285 

0.1139 / 0.0929 

 

3.8% / 3.8% 

1.6% / 1.8% 

2.5% / 1.7% 

Utilities 

60-69 

70-79 

80-89 

(normal retirement) 

0.0072 

0.0211 

0.0712 

 

4.4% 

3.1% 

2.0% 

 

0.0124 / 0.0081 

0.0380 / 0.0273 

0.1096 / 0.0936 

 

3.7% / 1.4% 

3.3% / 3.3% 

3.3% / 1.7% 

Financials 

60-69 

70-79 

80-89 

(normal retirement) 

0.0059 

0.0202 

0.0728 

 

1.8% 

3.6% 

3.8% 

 

0.0102 / 0.0078 

0.0332 / 0.0283 

0.1010 / 0.0871 

 

3.6% / 3.1% 

3.6% / 4.6% 

1.7% / 0.8% 

Technology 

60-69 

70-79 

80-89 

(normal retirement) 

0.0074 

0.0248 

0.0813 

 

1.3% 

0.4% 

0.8% 

 

0.0100 / 0.0074 

0.0374 / 0.0267 

0.1185 / 0.0854 

 

2.8% / 1.3% 

3.4% / 2.5% 

4.1% / 1.2% 

Local authority 

60-69 

70-79 

80-89 

(normal retirement) 

0.0070 / 0.0059 

0.0227 / 0.0201 

0.0778 / 0.0738 

 

4.4% / 5.5% 

4.9% / 4.1% 

2.8% / 1.9% 

 

0.0135 / 0.0085 

0.0391 / 0.0280 

0.1117 / 0.0906 

 

4.6% / 6.4% 

4.8% / 4.0% 

2.7% / 4.3% 

Basic materials, 

industrials  

60-69 

70-79 

80-89 

(ill-health 

retirement) 

0.0167 

0.0336 

0.0977 

 

-3.1% 

0.1% 

2.6% 

 

0.0229 

0.0528 

0.1339 

 

2.0% 

3.4% 

3.4% 

Consumer goods, 

consumer 

services 

60-69 

70-79 

80-89 

(ill-health 

retirement) 

 

0.0157 

0.0386 

0.1085 

 
1.2% 

4.0% 

3.1% 

 
0.0254 

0.0604 

0.1344 

 
3.0% 

3.1% 

0.7% 
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Table 2.1 Continued 

 

 Females Males 

Group \ Age   Average Level Improvement (p.a.) Average Level Improvement (p.a.) 

Utilities, 

financials, 

technology 

60-69 

70-79 

80-89 

(ill-health 

retirement) 

 

0.0116 

0.0389 

0.0871 

 
3.4% 

7.1% 

0.0% 

 
0.0218 

0.0527 

0.1246 

 
1.1% 

2.9% 

1.6% 

Local authority 

 

60-69 

70-79 

80-89 

(ill-health 

retirement) 

0.0125 

0.0324 

0.0912 

 

2.6% 

3.2% 

0.5% 

 

0.0242 / 0.0179 

0.0576 / 0.0415 

0.1329 / 0.1168 

 

3.6% / 6.0% 

3.4% / 1.1% 

3.7% / 2.7% 

 

2.2 ONS dataset 

 

The dataset offered by the ONS contains the number of deaths and mid-year population size, 

sorted by age, calendar year, sex, and index of multiple deprivation (IMD). The data cover 

ages 0 to 115 and years 2001 to 2015. The IMD combines information from seven domains to 

produce an overall relative measure of deprivation, including income, employment, education, 

health, crime, barriers to housing and services, and living environment. 

 

The logit mortality rates of England IMD quintile groups are shown in Figure 2.2. The five 

different lines with progressively lighter shades in each graph, from top (black) to bottom 

(light grey), represent the most deprived areas to the least deprived areas consecutively. 

Clearly, for both sexes and all age groups, mortality increases with the level of deprivation. 

Furthermore, the differences in (logit) mortality levels between the quintile deprivation 

groups and between females and males tend to reduce over age. As the data exposures are 

large, the declining trends over time are quite steady at all age groups. Similar patterns can be 

observed when the data are further divided into decile groups instead, though the differences 

are then less clear-cut between the groups and so this level of division is not adopted here. 
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Figure 2.2 Logit mortality rates of England IMD quintile groups from 2001 to 2015 

 

Most deprived to least deprived (top to bottom) areas (females (top row) and males (bottom row)) 

   

   

 

The average mortality rate and the average annual rate of improvement in mortality rate for 

each group during the period are given in Table 2.2. It is very clear that less deprived areas 

have not only lower mortality but also higher improvement rates than more deprived areas. 

Male improvement rates, ranging from 1.3% to 3.6% p.a., are higher than female 

improvement rates, which range from 0.9% to 3.2% p.a., for all areas and age groups. It is 

notable that while ages 80 to 89 have the lowest improvement rates, those aged 70 to 79 have 

the highest, for both sexes and all areas. All these patterns are very consistent across different 

groups, in line with the steady trends observed above.  

 

One interesting contrast to the previous results is that while less deprived (wealthier) areas 

clearly have higher improvement rates as shown here, lower pension (less wealthy) groups 

for a number of industries seem more likely to have greater improvements as in Section 2.1. 

There may be a few causes behind this difference. First, the IMD in this section is based on a 

combination of seven domains compared to just using the pension amount in the previous 

section, so the two sets of results may refer to individuals with very different demographics. 

Second, the previous results are industry-specific, in which some cases have actually shown 

an opposite situation. Moreover, the data exposures of each industry are rather small and the 

corresponding results are unavoidably more volatile than those presented here. Another 

interesting difference is that male improvement rates are higher than female improvement 

rates based on the ONS data but no parallel results are produced using the previous CMI data. 

More investigation is possible only if more detailed individual information is made available 

by relevant organisations.  
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Table 2.2 Average mortality levels and improvements of England IMD quintile 

groups from 2001 to 2015 

 

 Females Males 

Group \ Age   Average Level Improvement (p.a.) Average Level Improvement (p.a.) 

Most deprived 

areas 

60-69 

70-79 

80-89 

 

0.0134 

0.0343 

0.0914 

 

1.4% 

1.7% 

0.9% 

 

0.0221 

0.0522 

0.1237 

 

2.1% 

2.4% 

1.3% 

Second most 

deprived areas 

60-69 

70-79 

80-89 

 

0.0101 

0.0282 

0.0839 

 

1.9% 

2.3% 

1.2% 

 

0.0162 

0.0428 

0.1139 

 

2.6% 

2.9% 

1.7% 

Third most 

deprived areas 

60-69 

70-79 

80-89 

 

0.0082 

0.0243 

0.0805 

 

2.1% 

2.6% 

1.6% 

 

0.0129 

0.0367 

0.1082 

 

2.8% 

3.3% 

1.9% 

Fourth most 

deprived areas 

60-69 

70-79 

80-89 

 

0.0072 

0.0219 

0.0773 

 

2.4% 

3.0% 

1.9% 

 

0.0111 

0.0331 

0.1032 

 

3.0% 

3.4% 

2.2% 

Least deprived 

areas 

60-69 

70-79 

80-89 

 

0.0061 

0.0190 

0.0719 

 

2.7% 

3.2% 

2.4% 

 

0.0093 

0.0291 

0.0963 

 

3.2% 

3.6% 

2.4% 
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2.3 Mercer dataset 

 

Mercer Australia maintains a database that collects information about pensioners from public 

sector occupational superannuation funds to facilitate research on post-retirement mortality 

experience of working Australians. Since almost all superannuation pensions provided in 

Australia arise in the public sector, this dataset is uniquely placed to study funded retirees’ 

mortality. The data have been collected from the major Australian public sector schemes 

covering the period from 2002 onwards. There are over three and a half million years of 

pensioners exposures to 2012. Comprehensive checks have been conducted on the data, 

including reconciliation with older data and correction for errors and omissions. In particular, 

late reported deaths and exits are allocated to the correct period, leading to an inherently 

reliable set of data, with a direct link between exposed-to-risk and recorded deaths. 

 

The logit mortality rates of different types of pensioners for a number of states or groups in 

Australia and New Zealand (including the two most populous states in Australia, New South 

Wales and Victoria, and those operating Australia-wide noted as Commonwealth) are plotted 

in Figure 2.3 for both sexes. The solid line represents the observed logit mortality rates and 

the dotted line refers to their potential underlying linear trend. For pensioners under 

retirement, the differences in (logit) mortality levels between different states in Australia are 

quite small, while New Zealand tends to have higher mortality than Australia, especially at 

ages 60 to 69. Moreover, the differences in mortality levels between females and males 

become smaller at older ages in New Zealand, but this pattern over age is less obvious in 

Australia. In general, female pensioners have more volatile experience than male pensioners, 

due at least in part to the smaller portfolio sizes. Compared with female pensioners under 

retirement, (female) spouse pensioners generally have higher mortality levels; and as 

expected, mortality levels are significantly higher for invalidity pensioners.  

 

Figure 2.3 Logit mortality rates of Australian and New Zealand pensioners from 

2002 to 2012 

 

New South Wales, Australia (retirement; females (top row) and males (bottom row)) 
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Figure 2.3 Continued 

 

Commonwealth, Australia (retirement; females (top row) and males (bottom row)) 

   

   

 

Victoria, Australia (retirement; females (top row) and males (bottom row)) 

   

   

 

Other states in Australia (retirement; females (top row) and males (bottom row)) 
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Figure 2.3 Continued 

 

New Zealand (retirement; females (top row) and males (bottom row)) 

   

   

 

Australia and New Zealand (invalidity; females (top row) and males (bottom row)) 

   

   

 

Australia and New Zealand (spouse; females) 

   

 

Table 2.3 records the average mortality rate and annual improvement rate for each group 

during the period. For pensioners under retirement, the differences in average mortality rates 

are quite small between different states in Australia, while New Zealand pensioners have 

higher average mortality rates for both sexes at all age groups. Spouse pensioners largely 

have higher mortality levels compared with female pensioners under retirement. Invalidity 

pensioners clearly have the highest mortality levels amongst all groups. Furthermore, the 
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improvement rates are mostly in the range of around 1% to 6% p.a. and have a tendency to 

decrease over age. Many groups show that those aged 70 to 79 have the highest improvement 

rates. The differences in improvement rates between different groups and between both sexes 

are not consistent and look quite random, though Victoria in Australia seems to experience 

greater improvements than the others.  

 

Table 2.3 Average mortality levels and improvements of Australian and New 

Zealand pensioners from 2002 to 2012 
 

 Females Males 

Group \ Age   Average Level Improvement (p.a.) Average Level Improvement (p.a.) 

New South 

Wales, Australia 

60-69 

70-79 

80-89 

(retirement) 

 

0.0039 

0.0139 

0.0644 

 

4.3% 

2.8% 

2.0% 

 

0.0055 

0.0208 

0.0899 

 

1.5% 

5.1% 

2.4% 

Commonwealth, 

Australia 

60-69 

70-79 

80-89 

(retirement) 

 

0.0043 

0.0156 

0.0650 

 

3.1% 

4.3% 

3.0% 

 

0.0068 

0.0243 

0.0878 

 

2.8% 

4.5% 

2.1% 

Victoria, 

Australia 

60-69 

70-79 

80-89 

(retirement) 

 

0.0035 

0.0129 

0.0487 

 

5.1% 

6.5% 

1.5% 

 

0.0061 

0.0235 

0.0795 

 

4.5% 

7.6% 

5.0% 

Other states in 

Australia 

60-69 

70-79 

80-89 

(retirement) 

 

0.0039 

0.0138 

0.0584 

 

-0.3% 

1.9% 

2.6% 

 

0.0063 

0.0257 

0.0879 

 

4.2% 

6.0% 

3.1% 

New Zealand 

60-69 

70-79 

80-89 

(retirement) 

0.0058 

0.0203 

0.0751 

 

3.9% 

-0.8% 

1.6% 

 

0.0104 

0.0324 

0.1024 

 

6.6% 

3.9% 

4.2% 
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Table 2.3 Continued 
 

 Females Males 

Group \ Age   Average Level Improvement (p.a.) Average Level Improvement (p.a.) 

Australia, New 

Zealand 

60-69 

70-79 

80-89 

(invalidity) 

 

0.0102 

0.0235 

0.0855 

 

2.7% 

4.5% 

3.6% 

 

0.0158 

0.0396 

0.1054 

 

4.3% 

4.3% 

1.1% 

Australia, New 

Zealand 

60-69 

70-79 

80-89 

(spouse) 

 

0.0062 

0.0179 

0.0675 

 

3.0% 

0.4% 

2.4% 

 

- 

- 

- 

 

- 

- 

- 

 

2.4 HMD dataset 

 

The HMD provides detailed mortality and population data for many countries. The data of 

England and Wales, Australia, and New Zealand are collected for the analysis in this report. 

These data cover ages 0 to 110+ and the period from 1980 onwards. While data for earlier 

periods are also available, the starting year of 1980 is chosen here because structural changes 

in mortality improvement have occurred in the past for these countries (e.g. Booth et al. 2002, 

Renshaw and Haberman 2003, Li 2010) and it would be more relevant and convenient to use 

recent data when projecting future mortality levels.  

 

Figure 2.4 plots the logit mortality rates of the three populations from 2000 for both sexes. 

The declining mortality trends over time are steady at all age groups and do not show much 

variability, as the population exposures are very large. The differences in (logit) mortality 

levels between females and males also tend to decrease over age. The corresponding average 

mortality rate and annual rate of mortality improvement are provided in Table 2.4. Male 

improvement rates have a range of 2.0% to 3.5% p.a., and are higher than female 

improvement rates, ranging from 1.3% to 2.9% p.a., for all the three populations and age 

groups. The improvement rates are lowest at ages 80 to 89 in all cases, and for England and 

Wales and Australia, those aged 70 to 79 experience the highest improvement rates.  

 

Compared to UK pensioners under normal retirement in Section 2.1, the English and Welsh 

female population appears to have slightly higher mortality levels and lower improvement 

rates than female pensioners in most cases. On the other hand, the male population has 

mortality levels and improvement rates roughly comparable to those of the lower pension 

male groups. When compared with Australian and New Zealand pensioners under retirement 

in Section 2.3, the Australian and New Zealand populations largely experience higher 

mortality levels and lower improvement rates for both sexes.  
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Figure 2.4 Logit mortality rates of England and Wales, Australia, and New Zealand 

from 2000 to 2014 

 

England and Wales (females (top row) and males (bottom row)) 

   

   
 

Australia (females (top row) and males (bottom row)) 

   

   

 

New Zealand (females (top row) and males (bottom row)) 
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Table 2.4 Average mortality levels and improvements of England and Wales, 

Australia, and New Zealand from 2000 to 2014 
 

 Females Males 

Group \ Age   Average Level Improvement (p.a.) Average Level Improvement (p.a.) 

England & Wales 

60-69 

70-79 

80-89 

 

0.0091 

0.0261 

0.0826 

 

2.4% 

2.9% 

1.9% 

 

0.0145 

0.0398 

0.1119 

 

3.1% 

3.5% 

2.3% 

Australia 

60-69 

70-79 

80-89 

 

0.0068 

0.0198 

0.0707 

 

2.2% 

2.2% 

1.6% 

 

0.0117 

0.0329 

0.1000 

 

2.6% 

3.0% 

2.0% 

New Zealand 

60-69 

70-79 

80-89 

 

0.0086 

0.0232 

0.0780 

 

2.7% 

2.1% 

1.3% 

 

0.0130 

0.0361 

0.1079 

 

3.3% 

3.1% 

2.1% 

 

2.5 Major patterns 

 

All the observations so far can be briefly summarised as follows: 

-  Mortality rates within different age groups decline over time in general, but the 

movements are much more volatile for the pensioners than for the whole populations, 

mainly due to the smaller sizes of the former.  

-  Pensioners under normal retirement tend to have lower mortality levels and higher 

improvement rates than the whole populations. 

-  In the UK, financially wealthier groups generally have lower mortality levels. People 

living in less deprived areas have higher improvement rates.   

-  Improvement rates mostly range from about 1% to 5% p.a. They are usually lowest at ages 

80 to 89. In the UK and Australia, for the population data and some pensioner data, those 

aged 70 to 79 have the highest improvement rates. 

-  Ill-health pensioners have higher mortality levels than normal pensioners and also the 

whole populations. 

 

Evidently there are distinct differences between specific group experience and population 

experience, in terms of the level, rate of change, and variability of mortality rates. These 

observations point to the need of using an approach as in Phase 1, which caters for population 

experience in the first component of the model structure and then takes into account the 

differences between the pensioners and the overall population in the second component. 
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3 Modelling Longevity Basis Risk 

 

Longevity basis risk arises from the potential mismatch between the longevity hedging 

instrument (based on a reference population) and the pension or annuity portfolio (with the 

underlying book population) being hedged. There are three main sources of longevity basis 

risk, including demographic basis risk (demographic or socioeconomic differences), sampling 

basis risk (random outcomes of individual lives), and structural basis risk (differences in 

payoff structures). Phase 1 has focused on measuring demographic basis risk, in which a 

decision tree framework (Figure 3.1) has been built for providing a practical guide on how to 

select an appropriate two-population mortality model for the reference and book populations. 

The major choices include the M7-M5 model, the CAE+Cohorts model, and the 

characterisation approach. The selection is based on the data size, portfolio compositions, 

inter-age relationships, and cohort effect.  

 

Figure 3.1 Decision tree framework for selecting a two-population mortality model 

(extracted from Phase 1 report) 
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3.1 M7-M5 model 

 

The M7-M5 model is a two-population extension of the CBD model (Cairns et al. 2006): 
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For every year t , the first equation can be seen as a mortality curve over age x  for the 

reference population. The notation R

txq ,  is the mortality rate, R

t 1, , R

t 2, , and R

t 3,  refer to the 

level, slope, and curvature of the mortality curve respectively, and R

xt  represents the cohort 

effect of those born in year xt  . Put simply, for each year, the logit mortality rates across 

age can be expressed in terms of the level, slope, curvature, and underlying cohorts. Then, in 

the second equation, the difference in the logit mortality rate between the book and reference 

populations ( R

tx

B

tx qq ,, logit logit  ) is modelled as a linear combination of B

t 1,  and B

t 2, , which 

are another two parameters for capturing the differences between the two populations. More 

technical details are provided in Appendix I. 

 

3.2 CAE+Cohorts model 

 

The CAE+Cohorts model is a two-population extension of the Lee and Carter (1992) model 

and the Kleinow (2015) model: 
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In the first equation for the reference population, 
R

txq ,  is the mortality rate, R

x  depicts the 

mortality schedule over age x , R

t  is called the mortality index which captures the overall 

mortality improvement over time t , with R

x  as the age-specific sensitivity measure, and R

xt  

represents the cohort effect of those born in year xt  . In the second equation, the difference 

in the logit mortality rate between the book and reference populations (
R

tx

B

tx qq ,, logit logit  ) is 

modelled as a linear combination of B

x  and B

t  (again with R

x  as the sensitivity measure), 

which are extra parameters catering for the differences between the two populations. 

Appendix I contains further technical details of this model. 

 

3.3 Characterisation approach 

 

When the past data size is too small or the period of reliable history is too short, the 

characterisation approach can be used to mimic the book population. Its rationale is that if the 

data size is too small, the resulting fitted model would induce higher variability in its 
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simulations, which may then exaggerate the level of uncertainty of the portfolio and so 

overestimate demographic basis risk. As shown in Figure 3.2, the major steps are to: (1) 

divide the book population into (say) three groups (B1, B2, B3) based on distinct 

characteristics such as pension amounts and postcodes; (2) find an alternative data source 

with similar characteristics but a larger size and a longer and more reliable history for each of 

these characterising groups (C1, C2, C3); (3) fit the M7-M5 model or CAE+Cohorts model to 

the alternative data and produce future simulations for each group; (4) use these simulations 

to generate ‘proxy’ future scenarios for each group of the actual book population; (5) 

combine the ‘proxy’ future scenarios of all groups to form a ‘proxy’ simulation of the entire 

book population. In effect, the book data are not modelled directly; instead, some alternative 

data, which mimic different segments of the book population, are modelled to generate future 

simulations as a proxy. Since the mapping is unlikely to be perfect and the characterising 

groups may not capture all the features of the book population, there would be residual basis 

risk being further introduced into the calculations.  

 

Figure 3.2 Characterisation approach (extracted from Phase 1 report) 

 

 

 

3.4 Future simulations 

 

As per Phase 1, for the M7-M5 model, the time series of 
R

t 1, , 
R

t 2, , and 
R

t 3,  are modelled as a 

multivariate random walk with drift (MRWD). The time series of R

c  is modelled as an 

autoregressive integrated moving average process, ARIMA(1,1,0). The time series of 
B

t 1,  and 

B

t 2,  are modelled as a vector autoregressive process of order one, VAR(1). For the 

CAE+Cohorts model, the time series of R

t  is modelled as a random walk with drift (RWD). 
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The time series of R

c  is modelled as an ARIMA(1,1,0). The time series of B

t  is modelled as 

an autoregressive process of order one, AR(1). More details and discussions of time series 

modelling are set forth in Section 6.  

 

According to the QIS5 Technical Specifications (CEIOPS 2010), assessing uncertainty of 

future outcomes includes process error (or process risk), parameter error (or parameter 

uncertainty), and model error (or model uncertainty). In order to incorporate both process 

error (variability in the time series) and parameter error (uncertainty in parameter estimation) 

in simulating future mortality rates, the method of residuals bootstrapping (Koissi et al. 2006; 

Li 2014) is adopted here (Figure 3.3). First, the residuals from fitting the M7-M5 model or 

CAE+Cohorts model to the actual data are resampled with replacement. Then an inverse 

formula is used to turn these resampled residuals into a pseudo sample of the number of 

deaths (i.e. pseudo data). The M7-M5 model or CAE+Cohorts model is fitted to this pseudo 

sample and the corresponding model parameters are computed. The time series processes are 

then applied to the temporal model parameters of the pseudo sample to simulate their future 

values. Finally, future mortality rates are generated using all the computed and simulated 

parameters of the pseudo sample. In effect, this pseudo sample gives rise to one future 

scenario. The whole process above is repeated to give (say) 5,000 scenarios. This 

bootstrapping procedure is further explained in Appendix I. Moreover, the extent of model 

error (uncertainty in the model choice) can be investigated by comparing the results from 

different models and assumptions.  

 

Figure 3.3 Residuals bootstrapping 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Sampling risk 

 

Sampling basis risk exists because of the finite sizes of the reference and book populations 

and the randomness of outcomes of individual lives. Roughly speaking, by the law of large 

numbers, if the number of lives is infinite, the future outcomes will converge to the true 

underlying expected values. However, in reality, the number of lives is limited. Even though 
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one may argue that the number of lives is very large for bigger countries, the size of a 

pension or annuity portfolio is usually much smaller. So the outcomes of the book population 

and also the reference population (particularly if its size is small) will deviate randomly from 

their true underlying expected values and also from each other. To allow for the impact of the 

portfolio size, the number of survivors in the portfolio over time is simulated as: 

 B

tx

B

tx

B

tx qll ,,1,1 1  ,  Binomial~    

The notation B

txl ,  is the future number of lives aged x  at time t  in the book population. The 

future mortality rate B

txq ,  at age x  in year t  (i.e. from time t  to 1t ) is simulated from 

residuals bootstrapping as noted in the previous subsection (Figure 3.3). Different starting 

values of B

txl ,  at the valuation date may also be used in turn to study the effect of having 

different initial portfolio sizes. Note that while in principle the future number of lives in the 

reference population can be simulated in the same way, in practice this step of using a 

binomial distribution can be omitted for computation convenience if the reference population 

has a sizable exposure, such as English and Welsh population. 

 

As discussed in Phase 1, for those portfolios with fewer than 25,000 lives in the past, 

however, the sampling variability in the observed data may flow through to the time series of 

the fitted model parameters. This effect may then lead to an overestimation of process error, 

parameter error, and so demographic basis risk. To alleviate this problem, one can use the 

characterisation approach in Subsection 3.3, instead of applying the M7-M5 and 

CAE+Cohorts models directly, in order to measure more accurately the true underlying level 

of process error and parameter error.  

 

3.6 Structural risk 

 

Structural basis risk arises from the differences in payoff structures between the hedging 

instrument and the portfolio being hedged. Both the timing and amounts of future cash flows 

of the hedging instrument will often be different to those of the portfolio. A potentially 

feasible approach to mitigate this problem is the use of numerical optimisation. In the process, 

specific objectives are first determined, and numerical algorithms are then adopted to find the 

most optimal strategy to achieve those objectives. In the context of hedging longevity risk, 

the objective can be set as minimising longevity risk and reducing this structural basis risk, 

and numerical optimisation can be used to find the optimal position of the hedging instrument, 

such that the objective is achieved under the simulated environment from above. Given the 

simulated future mortality rates and numbers of survivors, this calibration procedure is 

straightforward to apply with a spreadsheet or mathematical software (see Appendices I and 

II). Another calibration method called key q-duration (KQD) matching is also discussed in 

Section 5.  
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3.7 Hedge effectiveness 

 

The effectiveness of an index-based longevity hedge can be expressed in terms of how much 

longevity risk is transferred away. The hedging positions are structured to achieve a desired 

level of effectiveness or even the maximum possible level, and the remaining portion can 

then be regarded as longevity basis risk. Accordingly, in line with Coughlan et al. (2011), we 

define the level of longevity risk reduction for a particular longevity hedge on a pension or 

annuity portfolio as: 

 
 

%100 
unhedgedrisk 

hedgedrisk
1reductionrisk longevity 








  

The notation risk(unhedged) and risk(hedged) are the portfolio’s longevity risk before and 

after taking the hedge. That is, this metric gives the percentage of the portfolio’s initial 

longevity risk that is being hedged away. We consider the common risk measures in the 

literature (e.g. Dowd and Blake 2006) including the variance, standard deviation, 99.5% 

value-at-risk (VaR), and 99.5% expected shortfall (conditional VaR). The 99.5% VaR is of 

particular concern in practice, as Solvency II (Directive 2009/138/EC) stipulates that the 

Solvency Capital Requirement (SCR) should be determined as the economic capital to ensure 

that ‘ruin occurs no more often than once in every 200 cases’ or that there is ‘a probability of 

at least 99.5% to meet the obligations to policyholders and beneficiaries over the following 

12 months’. This economic capital must be based on the ‘true risk profile’, allowing for ‘the 

impact of possible risk-mitigation techniques as well as diversification effects’. Hence it 

would be of practical interest to measure the levels of risk reduction from different longevity 

hedges with a view to identify potential opportunities for capital savings.  

 

3.8  Overall framework 

 

Figure 3.4 summarises how all the three components of longevity basis risk can be modelled 

and addressed using the approaches outlined previously. Further technical details are given in 

Appendices I and II. Note that there are alternatives to certain parts of this modelling 

framework. For example, other two-population models discussed in Phase 1 may be used; 

Bayesian analysis and simulation can be adopted to allow for process error, parameter error, 

and even model error; more advanced financial hedging strategies may be adapted to the 

context of hedging longevity risk. However, many of these alternatives are much more 

technically and computationally demanding, and practitioners need to weigh the pros and 

cons when choosing a particular method. 
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Figure 3.4 Modelling longevity basis risk 
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4 Longevity Hedging Scenarios 

 

There are a number of mortality-linked and longevity-linked securities proposed in the 

literature. Some of these securities can serve as hedging instruments for a pension or annuity 

portfolio. The major types are listed briefly in Table 4.1, including longevity / survivor bond, 

longevity / survivor swap, q-forward, S-forward, K-forward, mortality option, and survivor 

option. The very first authors who suggested these ideas in the literature are also stated in the 

table. The focus here is on those that are standardised in nature, i.e. based on a particular 

reference population, such as English and Welsh males aged 65 in a certain calendar year.  
 

Table 4.1 Mortality-linked and longevity-linked securities 
 

Security Type Key Features 

Longevity bond  

(Blake and Burrows 

2001, Dowd 2003) 

Coupon sizes are linked to the percentage of the reference population who 

are still alive (i.e. survivor index) on the coupon payment dates, in which the 

survivor index at time t  is calculated as     1,1651,660,6565 1 ... 1 1  ttt qqqp  

and txq ,  is the mortality rate of the reference population observed in year t  

Longevity swap  

(Dowd 2003, Dowd et 

al. 2006) 

Two series of future cash flows are exchanged, one of which is linked to the 

percentage of the reference population who are still alive (i.e. survivor 

index) on the payment dates, and the other series is fixed at time 0  

q-forward  

(Coughlan et al. 2007) 

To a fixed rate receiver, a payoff of  TxTx qq ,

forward

,   is made after 1T  

years (maturity), in which 
forward

,Txq  is the forward mortality rate set at time 0 

and Txq ,  is the actual mortality rate of the reference population observed in 

year T ; for a floating rate receiver, the payoff is  forward

,, TxTx qq   instead 

S-forward 

(LLMA 2010) 

The payoffs are similar to those of the q-forward, with the mortality rate 

being replaced by the percentage of the reference population who are still 

alive (i.e. survivor index) on maturity 

K-forward  

(Chan et al. 2014, Tan 

et al. 2014) 

To a fixed rate receiver, a payoff of  iTiT ,

forward

,    is made after 1T  

years (maturity), in which ( it ,  is the ith CBD model parameter as the ith type 

of mortality index in year t ) 
forward

,iT  is the forward mortality index set at 

time 0 and iT ,  is the mortality index calculated from the actual 

observations of the reference population in year T ; for a floating rate 

receiver, the payoff is  forward

,, iTiT    instead 

Mortality option  

(Cairns et al. 2008) 

To a call holder, a payoff of  0 , max strike

,, TxTx qq   is made after 1T  years 

(maturity), in which 
strike

,Txq  is a fixed rate set at time 0 and Txq ,  is the actual 

mortality rate of the reference population observed in year T ; for a put 

holder, the payoff is  0 , max ,

strike

, TxTx qq   instead 
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Table 4.1 Continued 

 

Security Type Key Features 

Survivor option  

(Dowd 2003) 

The payoffs are similar to those of the mortality option, with the mortality 

rate being replaced by the percentage of the reference population who are 

still alive (i.e. survivor index) on maturity 

 

We now consider the use of standardised longevity swaps, in which two series of future cash 

flows are exchanged. One series is linked to the percentage of the reference population who 

are still alive (a random quantity) on the payment dates, and the other is fixed since the start 

of the contract. (Bespoke longevity swaps are by far the most commonly used hedging 

instruments in practice.) Note that S-forwards can be seen as the building blocks for both the 

longevity swap and longevity bond. Some other types of securities are also tested in Section 5. 

 

4.1 Preliminary analysis 

 

To start with, we construct a simple hypothetical scenario of a pension portfolio in the UK. 

The current date ( 0t ) is set as the beginning of year 2014. All the pensioners are currently 

aged 65 and each pension pays £1 per year on survival from ages 66 to 90. The pension plan 

is closed and there are no new entrants after the current date. The pensioners’ (book 

population) mortality experience is the same as that in the CMI data or the ONS data. The 

pension plan sponsor wants to minimise its own longevity risk exposure by implementing a 

longevity hedge using standardised longevity swaps. Assume that a longevity swap for the 

same birth cohort as the pensioners is available in the life market, in which the underlying 

reference population is English and Welsh population and the maturity is 25 years from now. 

The corresponding fixed series of payments (i.e. forward survivor index) is calculated from 

the best (central) estimates of future mortality rates for convenience. (This simple assumption 

indicates a zero risk premium and would affect only the price but not the effectiveness of the 

longevity hedge.) Suppose the interest rate is 1% p.a. flat during the period (considering UK 

Gilt 10-year and 30-year yields of 1.05% p.a. and 1.67% p.a. as at 24 April 2017). When the 

Mercer data are used for the book population instead, the reference population is taken as 

Australian or New Zealand population accordingly, and the interest rate is changed to 3% p.a. 

(considering Australian Government Bond 10-year and 15-year yields of 2.59% p.a. and 

2.98% p.a., and New Zealand Government Bond 10-year yield of 3.00% p.a., as at 24 April 

2017). The current dates are then reset as the beginning of years 2012 and 2010 respectively.  

 

The present value of all future cash outflows of the pension portfolio over the next 25 years is 

a random quantity and can be expressed as: 

   




 
25

1

 

,65 1  portfolio unhedged PV
t

tB

tt il   



32 

 

The future number of lives B

txl ,  aged x  at time t  is simulated as in Subsections 3.4 and 3.5 

(Figure 3.3) based on the book population. The interest rate for discounting is denoted as i . 

Moreover, assuming payments are made annually, the random present value of all future cash 

inflows of the longevity swap (as a floating rate receiver; based on the reference population) 

for the same birth cohort as the pensioners is equal to: 

    





25

1

 forward ;

65 65 1    instrument hedging PV
t

tR

t

R

t ipp  

The survivor index (or survivor rate)     R

tt

RRR

t qqqp 1,1651,660,6565 1 ... 1 1   is simulated as 

in Subsection 3.4 using the reference population, assuming the sampling variability in the 

future simulations is immaterial for such a large population. The corresponding forward 

survivor index forward ;

65

R

t p  is calculated similarly from the best (central) estimates of future 

mortality rates, i.e. setting all the time series error terms to zero in the projection.  

 

Then the random present value of the aggregate pension portfolio position after taking the 

longevity hedge is stated as: 

      








 
25

1

forward ;

65 65 

25

1

 

,65 1    1  portfolio hedged PV
t

tR

t

R

t

t

tB

tt ippwil  

and the random cash outflow of the net position at each time 25 , ... ,2 ,1t  is denoted as: 

   forward ;

65 65 ,65     portfolio hedged CF R

t

R

t

B

ttt ppwl    

The weight w  is the required notional amount of the longevity swap. It can be estimated by 

numerical optimisation with an objective to minimise the risk or uncertainty of the random 

present value of the aggregate position. In line with the Solvency Capital Requirement (SCR) 

in Solvency II, the 99.5% value-at-risk (VaR) is used as the risk measure in the optimisation 

process here. In practice, other risk measures or a mix of different objectives may also be 

adopted, depending on the particular circumstances and the purpose of the analysis. In 

contrast, if the hedge is customised perfectly to the pension portfolio (which is more common 

in current industry practice; see LCP 2012) rather than being constructed with standardised 

instruments, and so there is no longevity basis risk, the weight can simply be set to be equal 

to the initial portfolio size and then effectively all longevity risk is transferred away.  

 

In order to examine the actual effectiveness of this longevity hedge, we calculate the level of 

longevity risk reduction as defined in Subsection 3.7. For the terms risk(unhedged) and 

risk(hedged), the portfolio’s longevity risk before and after taking the hedge respectively, we 

consider the variance, standard deviation, 99.5% VaR minus the mean, and 99.5% expected 

shortfall (conditional VaR) minus the mean of the present value of the aggregate position. 

The first two risk measures are estimated as the sample variance and sample standard 

deviation. The 99.5% VaR is computed as the sample 99.5th percentile. The 99.5% expected 

shortfall is calculated as the sample mean of all those simulated outcomes above the sample 

99.5th percentile. The mean is taken as the best (central) estimate. Note that while the VaR is 
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the most common choice in financial practice and is the prescribed measure in Solvency II, 

the expected shortfall (conditional VaR) contains more information about the tail events and 

has better mathematical properties and more reasonable implications when compared to the 

VaR (Dowd and Blake 2006). There are also other decent alternatives such as spectral risk 

measures and distortion risk measures. 

 

Table 4.2 (Figure 4.1) shows the level of longevity risk reduction estimates using the ONS 

dataset (with England IMD quintile groups). The percentage estimate represents the 

proportion of the portfolio’s initial longevity risk that is being hedged away. In each cell of 

the table, the left figure is calculated from the M7-M5 model, and the right from the 

CAE+Cohorts model. In this dataset, the average annual number of lives is around one 

million for each quintile group and the data period covers more than 10 years, which suggest 

that either the M7-M5 model or CAE+Cohorts model (i.e. direct modelling) can be used 

(Figure 3.1). Four hypothetical cases are first considered, in which one has an infinitely large 

portfolio size (i.e. no sampling basis risk explicitly allowed for in the future simulations) and 

the others have an initial portfolio size of 100,000, 25,000, and 2,500 respectively. As noted 

in Phase 1, an exposure of 100,000 lives is the largest any scheme or insurer is likely to have 

in the UK.  

 

There are a number of main observations from the table. Firstly, the longevity risk reduction 

estimates regarding the standard deviation, 99.5% VaR, and 99.5% expected shortfall 

(conditional VaR) range mostly from around 60% to above 90% for the three larger portfolio 

sizes. The estimates for these three risk measures are fairly close to one another in most cases. 

(On the other hand, the estimates for the variance, which has a different scale to the other risk 

measures, are generally larger at 80% or above. The following analysis will focus on the 

three risk measures above.) Secondly, as the initial portfolio size decreases, sampling basis 

risk in the future simulations increases, and so the level of longevity risk reduction declines. 

This drop is somewhat uneven – the longevity risk reduction estimates do not change much 

until the portfolio size decreases to around 25,000, below which the decline gets more and 

more significant. For a small portfolio size of only 2,500, for example, the longevity risk 

reduction estimates largely drop to around 50% or less. These results imply that sampling 

basis risk is rather immaterial when the portfolio size is more than about 25,000, but it can 

have a significant effect when the portfolio has only, say, a few thousand lives.  

 

Moreover, for the larger portfolio sizes, the third most deprived areas have many estimates 

being close to or above 90% while the other areas have around 60% to 90% risk reduction. 

The former is the group with ‘medium’ or ‘average’ income, employment, health, education, 

crime rates, etc. and so it can potentially be matched more closely by the overall reference 

population, which would explain its higher risk reduction levels. Between both sexes, the 

differences in the hedging results are quite small and mostly less than 10% in magnitude, 
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except for the least deprived areas, in which the risk reduction estimates are clearly larger for 

males in all the cases shown.  
 

Table 4.2 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of England IMD quintile groups 

of a single cohort 
 

 Females Males 

Group \ Size   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 
Variance 

Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

Most deprived 

areas 
  

  
 

  
 

Infinite 82 / 92 58 / 72 65 / 76 66 / 76 87 / 90 64 / 68 71 / 68 70 / 69 

100,000 81 / 91 57 / 71 63 / 73 64 / 74 87 / 90 64 / 69 72 / 68 70 / 68 

25,000 80 / 89 56 / 68 62 / 67 63 / 68 85 / 87 62 / 64 67 / 63 67 / 63 

2,500 70 / 73 46 / 48 46 / 48 46 / 48 73 / 73 48 / 48 51 / 46 50 / 48 

Second most 

deprived areas 
  

  
 

  
 

Infinite 94 / 97 76 / 83 77 / 83 77 / 83 96 / 98 81 / 85 83 / 87 83 / 86 

100,000 94 / 96 75 / 81 75 / 78 76 / 79 96 / 97 79 / 83 81 / 83 80 / 83 

25,000 93 / 94 73 / 76 72 / 72 72 / 72 94 / 95 76 / 78 77 / 76 77 / 77 

2,500 80 / 75 55 / 50 52 / 47 52 / 45 80 / 77 55 / 52 54 / 52 53 / 52 

Third most 

deprived areas 
  

  
 

  
 

Infinite 100 / 100 94 / 95 93 / 95 93 / 95 100 / 100 94 / 95 94 / 94 94 / 94 

100,000 99 / 99 91 / 90 91 / 89 91 / 89 99 / 99 90 / 90 91 / 90 91 / 90 

25,000 98 / 97 85 / 82 84 / 80 84 / 79 98 / 97 84 / 82 84 / 81 84 / 81 

2,500 83 / 75 59 / 50 56 / 48 57 / 47 83 / 78 59 / 53 56 / 51 57 / 50 

Fourth most 

deprived areas 
  

  
 

  
 

Infinite 99 / 100 91 / 94 89 / 94 85 / 93 98 / 99 88 / 88 81 / 84 76 / 82 

100,000 99 / 99 89 / 89 88 / 89 85 / 89 98 / 99 86 / 88 81 / 87 75 / 85 

25,000 97 / 96 83 / 81 83 / 81 82 / 80 96 / 96 80 / 81 76 / 79 71 / 79 

2,500 83 / 75 59 / 50 58 / 47 58 / 46 82 / 77 57 / 52 57 / 50 55 / 50 

Least deprived 

areas 
  

  
 

  
 

Infinite 92 / 95 72 / 77 60 / 65 49 / 61 97 / 98 83 / 87 75 / 83 70 / 82 

100,000 92 / 93 71 / 73 59 / 64 49 / 61 96 / 98 80 / 85 76 / 81 71 / 79 

25,000 90 / 90 69 / 69 55 / 63 45 / 61 95 / 96 78 / 79 73 / 78 69 / 77 

2,500 78 / 67 53 / 42 50 / 38 44 / 34 80 / 75 55 / 50 54 / 49 52 / 48 
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Figure 4.1 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of England IMD quintile groups of 

a single cohort (males) 

 

   

  

 

Finally, it is worth noting that the two models do not give rise to too much difference in the 

hedging results, which is less than 10% in magnitude for most of the estimated figures. 

Interestingly, while the CAE+Cohorts model tends to produce larger risk reduction estimates 

compared to the M7-M5 model for a large portfolio, the situation seems to be reversed for a 

small portfolio. It means that the hedging results calculated under the CAE+Cohorts model 

tend to cover a wider range than those under the M7-M5 model for different portfolio sizes.  

 

Tables 4.3 and 4.4 (Figures 4.2 and 4.3) present the level of longevity risk reduction 

estimates for the CMI (with UK pensioners) and Mercer (with Australian and New Zealand 

pensioners) datasets. Again, in each cell of the tables, the left figure is computed using the 

M7-M5 model and the right from the CAE+Cohorts model. Regarding these two datasets, the 

groups chosen for demonstration here have around 20,000 lives or more per year on average 

and their data periods are at least 8 years, so the M7-M5 and CAE+Cohorts models would be 

suitable choices (Figure 3.1). For the hypothetical scenario, two initial portfolio sizes of 

100,000 and 1,000 are examined in this part of the analysis. 

 

Similar observations can be made on the two tables. First, the longevity risk reduction 

estimates with regard to the standard deviation, 99.5% VaR, and 99.5% expected shortfall 

(conditional VaR) range largely from around 50% to 80% for a portfolio size of 100,000. By 

contrast, for a small portfolio size of 1,000, the estimates decrease to only around 30% to 

40%. Combined with the earlier observations from Table 4.2, all these results suggest that for 

a portfolio which has at least a few thousand lives, roughly speaking, more than 50% of the 

portfolio’s longevity risk exposure can be hedged via the longevity swap. But for a small 

portfolio with only one or two thousand or even fewer lives, less than 50% of the risk can be 

transferred away. Note that sampling basis risk would unavoidably ‘destroy’ the relationship 

in future mortality movements between the book and reference populations, especially so for 
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a small portfolio. The implication is that index-based hedging looks more effective for 

reasonably large portfolios than for those that are too small. Second, for the larger portfolio 

sizes, the UK, Australian, and New Zealand pensioners generally have smaller risk reduction 

estimates compared to the England IMD quintile groups. The IMD groups represent 

significant segments of the entire reference population (i.e. smaller demographic basis risk), 

and so it is reasonable to expect that the risk reduction effect would be less obvious for the 

pensioners than for the IMD groups. For the smaller portfolio sizes, however, the differences 

in the hedging results between the pensioners and the IMD groups become less obvious, 

which again highlight the influence of sampling basis risk. For instance, both have only 

around 30% risk reduction in most of the cases simulated for a portfolio size of 1,000 (not 

shown in Table 4.2).  

 

Furthermore, it can be seen again that the hedging results computed under the CAE+Cohorts 

model have a tendency to cover a wider range. When compared to the M7-M5 model, the 

CAE+Cohorts model tends to produce larger risk reduction estimates for a large portfolio but 

smaller estimates for a small portfolio. However, the two models produce more variable 

results between them in these two tables. While most differences are still less than 15% in 

magnitude, a few cases show more significant discrepancies between the two models. The 

smaller data sizes of the CMI and Mercer datasets (compared with the ONS dataset) may be 

the underlying reason, in which the more noisy patterns may have been captured rather 

differently under the unique features of each model. In particular, for those few cases which 

demonstrate obvious inconsistency, the M7-M5 model is usually the one that gives much 

smaller risk reduction estimates.  

 

Apart from investigating the level of longevity risk reduction after hedging, it is also 

informative to examine the size of the portfolio’s initial longevity risk before hedging, as a 

percentage of the portfolio’s mean present value. For all the groups in Tables 4.3 and 4.4 with 

a portfolio size of 100,000, under the M7-M5 model, the standard deviation mostly ranges 

from 1.5% to 2.5%, the 99.5% VaR (minus the mean) from 3.5% to 5.5%, and the 99.5% 

expected shortfall (conditional VaR; minus the mean) from 4% to 6.5%. In contrast, under 

the CAE+Cohorts model, the ranges of the three risk measures are 1% to 1.5%, 2.5% to 4%, 

and 2.5% to 4.5% respectively. In general, the M7-M5 model induces higher variability in the 

simulated present values of the pension portfolio, probably because it involves modelling and 

simulating five kappa time series, compared to only two in the CAE+Cohorts model. When 

the portfolio size is only 1,000, the standard deviation (as a percentage of the mean) increases 

by less than 0.5% in magnitude while the tail measures increase by around 1%. Note that the 

expected shortfall (conditional VaR) contains more information about the extreme events, 

possesses better theoretical properties, and provides more conservative estimates than the 

VaR does for a given confidence level. In fact, banking regulations are gradually moving 

towards the use of this new risk measure in determining regulatory capital for market risk 

(Hull 2015). 
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Table 4.3 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of UK pensioners of a single 

cohort 

 

 Males 

Group \ Size   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

Basic materials 
(normal retirement; 

lower pension group) 

  

100,000 87 / 95 65 / 77 63 / 74 63 / 73 

1,000 60 / 57 37 / 34 36 / 37 38 / 36 

Industrials 
(normal retirement; 

lower pension group) 

  

100,000 77 / 81 52 / 56 51 / 50 39 / 49 

1,000 54 / 52 32 / 30 35 / 25 27 / 28 

Consumer goods 
(normal retirement; 

lower pension group) 

  

100,000 81 / 92 57 / 72 39 / 66 29 / 62 

1,000 57 / 55 35 / 33 31 / 27 25 / 31 

Commercial 

services 

(normal retirement; 

lower pension group) 

  

100,000 95 / 97 78 / 83 79 / 79 79 / 79 

1,000 66 / 55 41 / 33 41 / 30 41 / 28 

Utilities 
(normal retirement; 

lower pension group) 

  

100,000 65 / 93 41 / 73 58 / 70 56 / 69 

1,000 50 / 54 29 / 32 30 / 27 33 / 28 

Local authority 
(normal retirement; 

lower pension group) 

  

100,000 94 / 98 75 / 85 73 / 83 58 / 83 

1,000 59 / 54 36 / 32 33 / 30 25 / 27 

All industries  (ill-health retirement)   

100,000 90 / 96 68 / 79 78 / 78 75 / 77 
1,000 61 / 57 37 / 35 41 / 35 41 / 34 
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Table 4.4 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of Australian and New Zealand 

pensioners of a single cohort 

 

 Males 

Group \ Size   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

New South 

Wales, Australia 
(retirement) 

  

100,000 92 / 93 72 / 74 69 / 70 63 / 68 
1,000 73 / 60 48 / 37 42 / 33 38 / 33 

Commonwealth, 

Australia 
(retirement) 

  

100,000 94 / 96 76 / 80 65 / 77 52 / 76 
1,000 72 / 63 47 / 39 41 / 36 39 / 34 

Victoria, 

Australia 
(retirement) 

  

100,000 72 / 70 47 / 45 41 / 44 33 / 40 
1,000 60 / 52 37 / 31 30 / 30 25 / 27 

Other states in 

Australia 
(retirement) 

  

100,000 76 / 85 51 / 62 45 / 62 30 / 60 
1,000 62 / 60 38 / 37 37 / 37 26 / 34 

New Zealand (retirement)   

100,000 95 / 97 77 / 82 74 / 79 67 / 79 
1,000 81 / 74 57 / 49 55 / 44 53 / 44 

Australia, New 

Zealand 
(invalidity) 

  

100,000 81 / 92 56 / 72 40 / 72 28 / 72 
1,000 63 / 63 39 / 39 34 / 38 25 / 35 

 

In the CMI and Mercer datasets, there are a number of groups or states with much fewer than 

25,000 lives per year in their data, especially for females. As noted in Subsection 3.5, the 

sampling variability in such a small set of past data may flow through to the time series of the 

fitted model parameters, leading to an overestimation of process error, parameter error, and 

hence demographic basis risk. The characterisation approach described in Subsection 3.3 may 

then be adopted in this situation, with an attempt to provide a more reasonable account of the 

extent of process error and parameter error.  
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Figure 4.2 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of UK pensioners of a single 

cohort (males; normal retirement; lower pension group) 

 

   

   

 

Figure 4.3 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of Australian and New Zealand 

pensioners of a single cohort (males) 

 

   

   

 

Beside the option of using the characterisation approach, as a further checking and a very 

rough approximation here, we still apply the M7-M5 and CAE+Cohorts models directly to 

those small data samples, regardless of their sizes. In effect, we implicitly allow the extra 

sampling variability in the past data to transfer in some (unknown) way to the future 

simulations, but at the same time omit the last step of using the binomial distribution to avoid 

‘double counting’ the sampling variability, assuming the portfolio size remains more or less 

the same over time. Though this assessment is not precise at all, it turns out that many of the 

resulting longevity risk reduction estimates are well below 50% (not shown here), which are 

quite in line with the earlier discussion that less than half of the risk can be transferred away 

for a small portfolio. 
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As discussed in Subsection 3.6, structural basis risk exists because both the timing and 

amounts of future cash flows of the hedging instrument are often different to those of the 

portfolio being hedged. In this hypothetical scenario, the main problem is that the amounts of 

future cash flows of the longevity swap (based on the reference population) are obviously 

different to those of the pension portfolio (based on the book population). We use a simple 

numerical optimisation procedure (see Appendix I) to find the optimal position of the 

longevity swap to minimise longevity risk and reduce the effect of this structural basis risk. 

Accordingly, apart from studying the present value of all future cash flows as above, we also 

examine the individual cash flows (without discounting) and calculate their own risk 

reduction levels with respect to each future year. We observe that under the current model 

settings and assumptions, for those cases with a risk reduction well above 50% on the overall 

present value, the risk reduction estimates of the individual cash flows are indeed far below 

50% in the early years from the current date ( 0t ), but increase gradually every year to 

exceed 50% in the later years. From a modelling perspective, this effect appears to arise from 

the fact that the fitted time series processes for the reference population produce unbounded 

future variability while the fitted time series processes for the difference between the book 

and reference populations yield bounded future variability (see Section 6). As a result, the 

latter variability would reduce in significance relatively over time, which means that the 

simulated differences between the book and reference populations would become less and 

less important comparatively and so there is a decline in demographic basis risk being 

projected across time. From a practical perspective, it would also be rational to argue that the 

two related populations’ mortality improvements may deviate in the short term but would be 

more in line (and so there is less demographic basis risk) over the long term. 

 

4.2 Realistic scenarios 

 

We now consider a more realistic hypothetical scenario of a pension portfolio with multiple 

cohorts. Suppose the total number of pensioners is currently 30,000. Figure 4.4 shows the 

split between different ages (60 to 89) in the portfolio, which is based roughly on the average 

proportions observed in the three datasets. We examine both an open pension plan and a 

closed one. For the open pension plan, we assume that there is exactly the same number of 

new members (1,400) joining the plan at age 60 every year, and that a standardised longevity 

swap for the cohort currently aged 60 (with a maturity of 30 years) is used to construct the 

hedge. For the closed pension plan, we assume that there are no more new entrants after the 

current date ( 0t ), and that two standardised longevity swaps for the two cohorts now aged 

60 and 70 (with maturities of 30 and 20 years respectively) are available for building the 

hedge. Each pensioner receives £1 per annum on survival from ages 61 to 90. The time 

horizon of the hedging exercise is 30 years from the current date. All the other settings are the 

same as previously. 
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Figure 4.4 Initial demographic structure of a hypothetical pension plan with 

multiple cohorts 

 

 

 

Tables 4.5 to 4.7 (Figures 4.5 to 4.7) set forth the level of longevity risk reduction estimates 

using the three datasets. First of all, the longevity risk reduction estimates regarding the 

standard deviation and the extreme risk measures vary mostly from around 30% to 60% for 

the open pension plan, and from about 50% to 80% for the closed pension plan, except for a 

small number of cases (e.g. industrials of UK pensioners and Victoria of Australian 

pensioners). These estimates are often smaller than those calculated in the previous 

subsection which involves only one cohort, as the two portfolios considered here have 

multiple cohorts being hedged by only one or two longevity swaps, and so the extent of 

demographic basis risk (in terms of age or cohort difference) is greater. Secondly, the risk 

reduction estimates are smaller for the open pension plan than for the closed pension plan. It 

appears to be caused by the fact that the open pension plan uses only one longevity swap to 

construct the hedge but for a larger number of cohorts (i.e. existing pensioners plus new 

entrants). Note that when the life market is still in its infancy, those longevity swap 

transactions available may be limited to a small number of cohorts, such that market liquidity 

can be focused and enhanced. For the open pension plan, those currently aged 31 to 59 will 

join the plan gradually in the future, while the existing pensioners are aged 60 to 89 now. So 

a longevity swap for the cohort currently aged 60 (in the middle of the whole age range 

considered) is chosen here for convenience. In contrast, for the closed pension plan, there are 

no new entrants in the future. Accordingly, two longevity swaps for the two cohorts now 

aged 60 and 70 are selected – the first one is included for covering the entire time horizon 

while the second one of age 70 refers approximately to the weighted (by the initial numbers 

of lives) average age of the current pensioners. If longevity swaps for more cohorts and with 

different maturities are also available in the market and being included, one may use more 

sophisticated numerical optimisation techniques or adapt certain financial hedging strategies 

to further improve the overall hedge effectiveness by reducing the extent of demographic 

basis risk. Nevertheless, the number of pensioners at each single age in the example is 

actually quite small, and using longevity swaps of too many cohorts would induce more 

sampling basis risk. A fine balance must be struck between these two offsetting effects. A 

further potentially feasible solution in practice is for those smaller pension plans to join 

bigger foundations (LCP 2012), which can then be hedged by more standardised instruments 

with less concern on sampling basis risk. 
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Table 4.5 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of England IMD quintile groups 

of multiple cohorts 

 

 Females Males 

Group   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 
Variance 

Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

Most deprived 

areas 
  

      

Open 69 / 62 44 / 38 48 / 39 47 / 42 75 / 59 50 / 36 53 / 38 51 / 37 

Closed 79 / 87 54 / 64 58 / 63 59 / 63 81 / 81 56 / 57 61 / 55 59 / 55 

Second most 

deprived areas 
  

  
 

 
  

Open 81 / 66 56 / 42 54 / 38 55 / 40 82 / 67 57 / 42 53 / 42 52 / 38 

Closed 90 / 92 69 / 71 67 / 68 67 / 67 92 / 93 72 / 74 73 / 71 72 / 71 

Third most 

deprived areas 
  

  
 

 
  

Open 85 / 70 62 / 45 62 / 44 61 / 43 84 / 69 60 / 44 59 / 43 60 / 41 

Closed 96 / 95 80 / 78 79 / 77 80 / 77 96 / 96 80 / 79 79 / 78 79 / 78 

Fourth most 

deprived areas 
  

  
 

 
  

Open 85 / 71 61 / 46 63 / 45 61 / 44 84 / 70 60 / 45 59 / 48 58 / 46 

Closed 95 / 95 79 / 78 81 / 77 77 / 77 95 / 95 77 / 78 77 / 78 73 / 75 

Least deprived 

areas 
  

  
 

 
  

Open 80 / 67 55 / 43 50 / 43 44 / 44 81 / 71 57 / 46 55 / 46 55 / 44 

Closed 86 / 90 63 / 68 57 / 65 48 / 60 92 / 94 71 / 75 70 / 75 66 / 73 

 

Some similar patterns to the previous subsection can be observed here. For instance, the third 

most deprived areas tend to have the largest risk reduction estimates, probably because this 

group has around average living standards and so it can be hedged more closely by the 

reference population. Moreover, the England IMD quintile groups often demonstrate higher 

risk reduction levels when compared to the UK and Australian pensioners. The IMD groups 

represent major portions of the reference population, which may involve smaller 

demographic basis risk and explain their larger risk reduction estimates. Lastly, most 

differences in the hedging results between the two models are less than 20% in magnitude. A 

few cases show larger differences, in which the CAE+Cohorts model tends to generate 

smaller risk reduction estimates. It is also noted that the differences in the hedging results 

between the two pension plans under the CAE+Cohorts model are often greater than those 

under the M7-M5 model. While the overall patterns observed in the two sets of results are 
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broadly comparable, the extent of model error is not negligible, particularly for a smaller data 

size (as mentioned in the previous subsection) and for a less precise hedging scheme (like 

using only one longevity swap for multiple cohorts here). The impact of different model 

choices is further explored in Sections 5 and 6. 

 

Table 4.6 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of UK pensioners of multiple 

cohorts 

 

 Males 

Group   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

Basic materials 
(normal retirement; 

lower pension group) 

  

Open 76 / 66 51 / 42 50 / 43 49 / 44 

Closed 84 / 88 60 / 66 60 / 64 58 / 62 

Industrials 
(normal retirement; 

lower pension group) 

  

Open 67 / 58 43 / 35 46 / 32 29 / 30 

Closed 69 / 71 44 / 47 45 / 42 37 / 39 

Consumer goods 
(normal retirement; 

lower pension group) 

  

Open 70 / 64 45 / 40 38 / 35 29 / 36 

Closed 79 / 86 54 / 62 45 / 56 37 / 49 

Commercial 

services 

(normal retirement; 

lower pension group) 

  

Open 84 / 65 60 / 41 58 / 40 57 / 40 

Closed 93 / 93 73 / 74 74 / 70 72 / 70 

Utilities 
(normal retirement; 

lower pension group) 

  

Open 54 / 63 32 / 39 47 / 38 46 / 35 

Closed 71 / 89 47 / 66 56 / 63 51 / 60 

Local authority 
(normal retirement; 

lower pension group) 

  

Open 81 / 66 56 / 42 54 / 44 47 / 44 

Closed 91 / 94 69 / 75 67 / 73 55 / 72 

All industries  (ill-health retirement)   

Open 77 / 56 52 / 34 58 / 36 57 / 35 

Closed 85 / 92 61 / 71 73 / 69 73 / 69 
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Table 4.7 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of Australian and New Zealand 

pensioners of multiple cohorts 

 

 Males 

Group   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

New South 

Wales, Australia 
(retirement) 

  

Open 77 / 76 52 / 51 48 / 45 45 / 45 

Closed 89 / 90 68 / 69 64 / 64 60 / 63 

Commonwealth, 

Australia 
(retirement) 

  

Open 79 / 77 54 / 52 51 / 45 43 / 46 

Closed 90 / 92 68 / 72 64 / 66 52 / 65 

Victoria, 

Australia 
(retirement) 

  

Open 59 / 58 36 / 35 30 / 29 25 / 25 

Closed 61 / 59 37 / 36 34 / 32 26 / 26 

Other states in 

Australia 
(retirement) 

  

Open 67 / 68 42 / 43 38 / 40 26 / 39 

Closed 74 / 74 49 / 49 44 / 51 32 / 50 

New Zealand (retirement)   

Open 74 / 72 49 / 47 50 / 44 49 / 41 

Closed 88 / 92 66 / 71 62 / 68 61 / 68 

Australia, New 

Zealand 
(invalidity) 

  

Open 74 / 74 49 / 49 40 / 53 25 / 50 

Closed 83 / 91 58 / 69 51 / 70 45 / 69 

 

Figure 4.5 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of England IMD quintile groups of 

multiple cohorts (males) 
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Figure 4.5 Continued 

 

  

 

Figure 4.6 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of UK pensioners of multiple 

cohorts (males; normal retirement; lower pension group) 

 

   

   

 

Figure 4.7 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of Australian and New Zealand 

pensioners of multiple cohorts (males) 
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As discussed earlier, if more longevity swaps are included and calibrated separately for each 

cohort involved, there would be more sampling basis risk because the number of pensioners 

at each single cohort is quite small in the example. A possible alternative is to calibrate the 

swaps altogether as a group to the entire portfolio, rather than catering specifically for each 

cohort. In this way, the overall hedge effectiveness could further be improved, though there 

would be some implicit offsetting effects between different cohorts in the hedge. We now 

experiment with eleven standardised longevity swaps for the cohorts currently aged 35, 40, 

45, … , 85 (with a (delayed) maturity of 5, 10, 15, 20, 25 years for those who have not 

entered the plan yet and maturities of 30, 25, 20, 15, 10 , 5 years for existing pensioners) for 

the open pension plan. We also try using six standardised longevity swaps for the cohorts 

now aged 60, 65, 70, … , 85 (with maturities 30, 25, 20, … , 5 years respectively) for the 

closed pension plan. As shown in Tables 4.8 to 4.10 (Figures 4.8 to 4.10), this new strategy 

of adopting 5-year age buckets and aggregate calibration clearly increases the risk reduction 

estimates in many of the cases. The effect is much more apparent for the open pension plan, 

which contains a larger number of cohorts (current pensioners plus new entrants) and has 

employed only one swap in the original setting. Although there would be complex 

subsidising effects operating between different cohorts in this revised hedge, the aggregate 

extent of demographic basis risk does appear to be reduced by the use of more swaps, and the 

overall hedge effectiveness is obviously enhanced further. On the other hand, the effect of 

incorporating more swaps is marginal for the closed pension plan, implying that the two 

swaps in the original setting (over 10-year age buckets) would probably be adequate to 

deliver a similar level of hedging performance and adding more swaps would not bring about 

much improvement.    

 

Figure 4.8 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of England IMD quintile groups of 

multiple cohorts (males; with swaps over 5-year age buckets) 
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Table 4.8 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of England IMD quintile groups 

of multiple cohorts (with swaps over 5-year age buckets) 

 

 Females Males 

Group   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 
Variance 

Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

Most deprived 

areas 
  

      

Open 79 / 92 55 / 72 62 / 74 62 / 75 85 / 93 62 / 73 68 / 72 67 / 72 

Closed 80 / 87 55 / 64 60 / 63 61 / 63 84 / 87 60 / 64 67 / 63 66 / 62 

Second most 

deprived areas 
  

  
 

 
  

Open 92 / 96 72 / 79 71 / 75 71 / 76 95 / 96 77 / 81 78 / 81 78 / 80 

Closed 90 / 93 69 / 74 67 / 71 68 / 70 93 / 93 73 / 74 67 / 74 74 / 73 

Third most 

deprived areas 
  

  
 

 
  

Open 98 / 97 85 / 83 85 / 83 85 / 82 97 / 97 84 / 84 84 / 84 84 / 83 

Closed 97 / 96 83 / 81 83 / 81 83 / 79 97 / 96 82 / 81 83 / 79 83 / 79 

Fourth most 

deprived areas 
  

  
 

 
  

Open 96 / 97 79 / 83 81 / 82 78 / 81 96 / 97 79 / 83 77 / 83 70 / 83 

Closed 96 / 96 81 / 80 82 / 79 79 / 78 96 / 96 79 / 79 77 / 78 74 / 75 

Least deprived 

areas 
  

  
 

 
  

Open 86 / 92 63 / 72 54 / 67 45 / 65 95 / 96 77 / 79 75 / 80 69 / 78 

Closed 88 / 89 65 / 67 59 / 65 49 / 61 92 / 94 72 / 76 71 / 75 66 / 74 

 

In all the hedging scenarios analysed above, it has been assumed that each pension pays only 

up to age 90, and so the hedging scheme does not need to cover beyond that age. In reality, 

however, insurers and pension plans do have exposures to those lives aged over 90. As 

discussed in Section 2 and Subsection 6.3, the disparities between different subgroups tend to 

reduce at older ages. This merge in mortality experience over age means that if lives at 

advanced ages are also included in the portfolio and covered by the index-based hedging 

scheme, and if the portfolio size is large, the overall risk reduction level, in principle, would 

actually increase, because of lesser mismatching and so smaller longevity basis risk at the 

very old ages. Subsection 5.6 later also shows that the hedging results are fairly robust to an 

inclusion of advanced ages in the modelling process and the portfolio setting.  
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Table 4.9 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of UK pensioners of multiple 

cohorts (with swaps over 5-year age buckets) 

 

 Males 

Group   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

Basic materials 
(normal retirement; 

lower pension group) 

  

Open 88 / 94 65 / 75 65 / 74 63 / 74 

Closed 85 / 90 62 / 69 62 / 69 59 / 67 

Industrials 
(normal retirement; 

lower pension group) 

  

Open 76 / 83 51 / 58 56 / 55 37 / 55 

Closed 72 / 71 47 / 46 48 / 41 40 / 40 

Consumer goods 
(normal retirement; 

lower pension group) 

  

Open 79 / 91 54 / 70 46 / 66 30 / 64 

Closed 79 / 85 54 / 61 45 / 55 38 / 49 

Commercial 

services 

(normal retirement; 

lower pension group) 

  

Open 95 / 96 77 / 80 79 / 76 78 / 76 

Closed 93 / 94 74 / 75 76 / 72 75 / 71 

Utilities 
(normal retirement; 

lower pension group) 

  

Open 62 / 92 38 / 72 63 / 72 62 / 71 

Closed 71 / 87 46 / 64 57 / 61 50 / 61 

Local authority 
(normal retirement; 

lower pension group) 

  

Open 91 / 96 70 / 80 68 / 80 54 / 78 

Closed 91 / 94 70 / 76 68 / 75 57 / 74 

All industries  (ill-health retirement)   

Open 88 / 95 66 / 78 77 / 77 75 / 77 

Closed 86 / 92 62 / 72 75 / 71 75 / 70 
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Table 4.10 Level of longevity risk reduction (in % of initial longevity risk; M7-M5 vs 

CAE+Cohorts) in a hypothetical scenario of Australian and New Zealand 

pensioners of multiple cohorts (with swaps over 5-year age buckets) 

 

 Males 

Group   Variance 
Standard 

Deviation 
99.5% 

VaR 

99.5%  

ES 

New South 

Wales, Australia 
(retirement) 

  

Open 89 / 90 67 / 69 64 / 65 60 / 64 

Closed 91 / 91 70 / 70 65 / 65 60 / 64 

Commonwealth, 

Australia 
(retirement) 

  

Open 88 / 95 65 / 77 55 / 73 44 / 72 

Closed 90 / 94 68 / 75 65 / 72 52 / 70 

Victoria, 

Australia 
(retirement) 

  

Open 67 / 68 42 / 44 37 / 41 27 / 34 

Closed 59 / 64 36 / 40 34 / 34 25 / 28 

Other states in 

Australia 
(retirement) 

  

Open 75 / 80 50 / 56 44 / 56 26 / 55 

Closed 74 / 76 49 / 51 46 / 53 32 / 52 

New Zealand (retirement)   

Open 92 / 95 72 / 78 69 / 77 67 / 76 

Closed 92 / 93 71 / 73 67 / 71 65 / 70 

Australia, New 

Zealand 
(invalidity) 

  

Open 83 / 93 59 / 74 40 / 75 27 / 71 

Closed 84 / 92 60 / 71 53 / 71 45 / 70 
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Figure 4.9 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of UK pensioners of multiple 

cohorts (males; normal retirement; lower pension group; with swaps over 

5-year age buckets) 

 

   

   

 

Figure 4.10 Level of longevity risk reduction (in % of initial longevity risk, in terms of 

99.5% VaR) in a hypothetical scenario of Australian and New Zealand 

pensioners of multiple cohorts (males; with swaps over 5-year age buckets) 
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5 Sensitivity Analysis and Scenario Testing 

 

In this section, we conduct an extensive sensitivity analysis on the hedging results from 

Subsection 4.1 via making a variety of changes to the initial model settings and assumptions. 

The items in the sensitivity testings include the portfolio size, interest rate, pension feature, 

type of hedging instrument, hedging strategy, age range for modelling, data fitting period, 

simulation method, model choice, and other additional features like mortality structural 

changes and mortality jumps. Whenever a change is made to an original setting, other things 

are kept equal unless otherwise specified. Through these testings, we can obtain a better 

picture of how robust (or volatile) the hedging results are under different circumstances. 

Lastly, we also perform some backtesting and scenario testing on the longevity hedging 

strategy. A sensitivity analysis on time series processes is given in Section 6. 
 

5.1 Portfolio size 
 

As noted earlier, in general, for a smaller initial portfolio size, sampling basis risk in the 

future simulations is higher and so the calculated level of longevity risk reduction is lower. 

Indeed, as shown in Table 5.1 (Figure 5.1), the longevity risk reduction estimates remain 

more or less the same (all above 60%) until the portfolio size drops to about 25,000, only 

under which the decline in the risk reduction estimates becomes more obvious. For a 

portfolio size of 2,500, the risk reduction estimates are around 50%. When there are just 

1,000 lives in the portfolio, the extent of risk reduction is only about 30% to 40%. Based on 

all our simulated results so far, sampling basis risk can pose a significant, negative effect on 

longevity hedging when there are merely, say, a few thousand pensioners in the plan. These 

results suggest that index-based longevity hedging would likely be more feasible for sizable 

pension portfolios, or for larger foundations joined by small pension plans (LCP 2012). 
 

Table 5.1 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) for different initial portfolio sizes  
 

Males UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Portfolio 

Size   

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Infinite 66 / 79 63 / 75 63 / 74 64 / 68 71 / 68 70 / 69 73 / 75 68 / 71 63 / 69 

100,000 65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

50,000 64 / 76 61 / 72 61 / 72 63 / 68 70 / 67 69 / 68 72 / 74 68 / 70 63 / 69 

25,000 63 / 73 62 / 68 61 / 67 62 / 64 67 / 63 67 / 63 71 / 72 67 / 68 62 / 67 

10,000 61 / 67 61 / 65 59 / 63 59 / 62 64 / 59 62 / 59 68 / 67 63 / 63 58 / 61 

5,000 56 / 60 53 / 56 53 / 54 55 / 56 59 / 52 57 / 52 64 / 63 59 / 55 57 / 55 

2,500 50 / 49 49 / 47 48 / 46 48 / 48 51 / 46 50 / 48 59 / 54 56 / 48 52 / 47 

1,000 37 / 34 36 / 37 38 / 36 37 / 34 38 / 33 40 / 34 48 / 37 42 / 33 38 / 33 
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Figure 5.1 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) for different initial portfolio sizes (males) 

 

 

 

5.2 Interest rate 

 

Table 5.2 (Figure 5.2) illustrates that generally, the higher the interest rate, the smaller the 

risk reduction estimates regarding the present value of the aggregate position. As the interest 

rate increases, the later individual cash flows, having greater risk reduction effect, are 

discounted more than the earlier individual cash flows, which have less risk reduction effect. 

Hence the extent of risk reduction for the overall present value decreases. Moreover, under 

the M7-M5 model, the differences in the risk reduction effect between the earlier and later 

cash flows are usually larger, which may explain the faster drop in the overall risk reduction 

as the interest rate rises. From an interest rate of 1% p.a. to 5% p.a., the changes in the risk 

reduction estimates given in the table are no more than 9% in magnitude and are not too 

significant. 

 

In addition, the hedging results under a variable interest rate environment simulated from the 

discretised Cox-Ingersoll-Ross (CIR) model are also provided in the table. This interest rate 

model has the advantages of allowing for mean reversion and also avoiding negative interest 

rates (Cairns 2004). The most recent few years of historically low interest rates are used to 

calibrate the CIR model. Under variable interest rates, the risk reduction estimates drop 

further, especially under the CAE+Cohorts model, reflecting the presence of interest rate risk. 

While it is difficult to predict how long the current low interest rate levels would continue, it 

can be envisaged that higher interest rates with more fluctuations would reduce the hedge 

effectiveness to even a greater extent. Accordingly, interest rate swaps and government bonds 

may be added to the hedging scheme to mitigate the impact of interest rate risk (Tsai et al. 

2011). For an insurer operating under Solvency II, however, the discount rate is prescribed 

and is based on the market swap rate, and this way of hedging interest rate would not produce 

the desired outcome in evaluating risk reduction. 
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Table 5.2 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) under different interest rate assumptions  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Interest 

Rate (p.a.) 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

1% 65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 74 / 76 70 / 71 65 / 69 

2% 63 / 77 61 / 73 60 / 73 63 / 69 69 / 67 68 / 67 73 / 75 69 / 71 64 / 69 

3% 62 / 76 59 / 71 58 / 71 62 / 68 69 / 67 69 / 68 72 / 74 69 / 70 63 / 68 

4% 60 / 75 58 / 72 57 / 71 62 / 68 68 / 67 67 / 68 71 / 74 67 / 69 62 / 68 

5% 58 / 74 55 / 71 54 / 71 61 / 68 67 / 66 66 / 67 70 / 73 65 / 68 61 / 67 

CIR 53 / 52 55 / 55 53 / 55 57 / 57 62 / 58 61 / 59 66 / 61 64 / 59 61 / 57 

 

Figure 5.2 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) under different interest rate assumptions (100,000 males) 

 

 

 

5.3 Pension feature 

 

Table 5.3 (Figure 5.3) presents the hedging results for three different pensions. The first one 

pays £1 per year on survival from ages 66 to 90, the second one from ages 71 to 90, and the 

third one from ages 76 to 90. The pensioners are currently aged 65, 70, and 75 respectively. 

Assume that longevity swaps for the same birth cohorts as the pensioners are available, in 

which the maturities are 25 years, 20 years, and 15 years in these three cases. It can be seen 

that the risk reduction estimates are progressively smaller for those cases with shorter 

durations. This effect can be explained by the fact that under the current model settings and 

assumptions, the later the individual cash flows, the greater the risk reduction effect, and so 

those pensions with longer durations can achieve greater hedge effectiveness.  
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Table 5.3 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) for different age ranges of payments  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Pay Age 

Range 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

66-90 65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

71-90 64 / 75 63 / 71 61 / 70 62 / 66 69 / 65 68 / 65 72 / 73 67 / 69 62 / 67 

76-90 62 / 69 61 / 62 59 / 60 60 / 61 65 / 59 64 / 59 70 / 68 64 / 65 61 / 61 

 

Figure 5.3 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) for different age ranges of payments (100,000 males) 

 

 

 

5.4 Hedging instrument 

 

All the analysis above focuses on the use of standardised longevity swaps. There are other 

types of securities which can be tested (Table 4.1). One kind is the so-called q-forward, in 

which a payoff based on the difference between the forward mortality rate and the actual 

mortality rate of the reference population is made on maturity. On the other hand, for a S-

forward, the payoff is fairly similar to that of the q-forward, but with the mortality rate being 

replaced by the survivor index, i.e. the percentage of the reference population who are alive. 

Note that S-forwards can be regarded as the fundamental building blocks for both the 

longevity swap and longevity bond. Again, numerical optimisation (Appendix I) can be 

adopted to determine the optimal positions of the hedging instruments. It is assumed that q-

forwards and S-forwards with different maturities of 1 year to 25 years are available in the 

life market for the same birth cohort as the pensioners.  

 

Table 5.4 (Figure 5.4) shows that although q-forwards with specific weights at different 

maturities are used in constructing the hedge, the resulting risk reduction is clearly less 
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effective (about 10% to 20% smaller) than that by using a longevity swap over the entire 

period. (The swap can simply be seen as a combination of a series of S-forwards with equal 

weights.) The more direct and natural relationship (in terms of survival probabilities) between 

the number of surviving pensioners and the survivor index (rather than the mortality rate) 

may explain the difference. In contrast, the risk reduction effect is slightly larger when the 

hedge is built on individual S-forwards with different weights at specific maturities, which 

allow more flexibility in dealing with the individual cash flows. When the life market is still 

immature, however, the availability of q-forwards and S-forwards may be limited to only 

certain ‘key’ ages and maturities, and the hedge would then be less effective than otherwise. 

 

Table 5.4 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) using different hedging instruments  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Hedging 

Instrument 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Swap 65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

q-forwards 56 / 62 54 / 58 52 / 59 47 / 56 47 / 52 48 / 54 60 / 62 56 / 56 53 / 54 

S-forwards 65 / 77 63 / 74 63 / 73 64 / 69 71 / 68 70 / 69 74 / 76 70 / 71 66 / 69 

 

Figure 5.4 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) using different hedging instruments (100,000 males) 

 

 

 

5.5 Hedging strategy 

 

Thus far, the calculation of the optimal positions and hedging results has been based on 

simulated environments from either the fitted M7-M5 model or CAE+Cohorts model and 

numerical optimisation with respect to the 99.5% value-at-risk (VaR). It would be 

informative to examine some additional scenarios, for instance, the standard deviation or the 
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99.5% expected shortfall (conditional VaR) is taken as the risk measure instead in the 

optimisation process. Another one is that the swap size is simply equated to the initial 

portfolio size (i.e. a one-to-one hedge ratio), or that the swap weight is calculated from a 

‘wrong’ model which is different to the model being used to generate the simulations.  

 

As shown in Table 5.5 (Figure 5.5 – left graph), the differences are minimal between using 

different risk measures in the optimisation process. This observation may be a result of the 

distribution of the portfolio present value, which is fairly symmetric and does not 

demonstrate much skewness (Figure 5.6). Moreover, using a hedge ratio of one, the resulting 

differences in risk reduction are very small for the UK pensioners and the IMD quintile group, 

but are more obvious for those Australian pensioners. This result can be explained by the fact 

that the numerically optimised hedge ratio is close to one for the two UK groups but it is not 

the case for the Australian group. Overall, it seems that using simply a hedge ratio of one, or 

even the weight from a ‘wrong’ model, can still provide some ‘basic’ level of longevity risk 

hedging, while more precise modelling and hedging strategy could lead to better calculated 

hedge effectiveness, depending on the underlying data being modelled. 

 

Besides numerically optimising the use of a swap, another calibration method called key q-

duration (KQD) matching, proposed by Li and Luo (2012), may also be used when q-

forwards are employed to build the hedge. An important and widely applied concept, bond 

duration, can be borrowed from the finance literature. Broadly speaking, the bond duration 

has two general meanings: first, it is the weighted average time of all future cash flows; at the 

same time, it also measures how the present value of future cash flows varies when the 

interest rate changes. In the context of hedging longevity risk, the KQD is defined as: 

ratemortality  future particular a of estimatebest in  change small

luepresent va of estimatebest in  change resulting
KQD   

The hedging positions can be determined by equating the KQDs of the hedging instruments 

and the corresponding KQD of the portfolio being hedged. This calibration procedure is 

similar to that in hedging a bond portfolio from interest rate fluctuations. The KQD has the 

advantages of being easy to understand and straightforward to apply. More technical details 

are provided in Appendix I.  

 

The figures in Table 5.5 (Figure 5.5 – right graph) suggest that the KQD strategy can yield 

comparable results to those from numerically optimising the use of a longevity swap. Assume 

that q-forwards with maturities of 1 year to 25 years are available for the same birth cohort as 

the pensioners. Using these q-forwards, the risk reduction estimates regarding the present 

value of the aggregate position from applying the KQD are in fact mostly more than 10% 

larger in magnitude than those from optimising the individual cash flows, as the KQD is 

specifically designed for the present value. If q-forwards are then made available only at key 

ages of 70, 75, 80, and 85 (i.e. maturities of 6, 11, 16, and 21 years), the risk reduction 

estimates decrease only by less than 10%. However, we discover that although the KQD 
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strategy on q-forwards can produce decent hedge effectiveness with regard to the present 

value of the aggregate position, it does not necessarily lead to proper risk reduction effect on 

the individual cash flows, in which there are often very mixed results and offsetting effects 

between the cash flows in different years. Further research is required to examine the 

practical limitations of this method.   

 

Table 5.5 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) using different hedging strategies  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Longevity 

Swap 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Optimisation 
(99.5% VaR) 

65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

Optimisation 
(99.5% ES) 

63 / 77 63 / 74 63 / 73 64 / 68 71 / 67 70 / 69 72 / 75 67 / 70 63 / 68 

Optimisation 
(standard dev) 

65 / 77 63 / 74 63 / 72 64 / 69 71 / 67 70 / 68  72 / 75 69 / 70 63 / 68 

One-to-one 65 / 77 62 / 74 62 / 74 63 / 66 70 / 65 69 / 66 67 / 64 62 / 52 57 / 52 

Wrong model 65 / 77 62 / 72 61 / 71 63 / 67 70 / 67 69 / 68 70 / 74 66 / 68 62 / 66 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

q-forwards 
Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Optimising CFs 56 / 62 54 / 58 52 / 59 47 / 56 47 / 52 48 / 54 60 / 62 56 / 56 53 / 54 

KQD all ages 65 / 77 61 / 73  61 / 72 64 / 69 70 / 68 69 / 67 74 / 77 68 / 71 63 / 70 

KQD key ages 62 / 72 60 / 67 58 / 65 59 / 64 63 / 59 62 / 59 70 / 72 62 / 63 58 / 62 

 

Figure 5.5 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) using different hedging strategies (100,000 males) 
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Figure 5.6 Simulated density of pension portfolio present value under M7-M5 model 

and original settings (males) 

 

   

 

5.6 Age range 

 

Both Phase 1 and Phase 2 focus on the age range of 60 to 89. The major problem of 

modelling older ages is that the data are scarce and the experience is volatile. For comparison 

purposes, we still extend the analysis to cover a wider age range of 60 to 99. The ONS 

population data are not split by single age for ages 90 and beyond and so the corresponding 

HMD proportions of those aged 90+ are used as an approximation here. First, the two models 

need to be re-fitted to this new age range. Then suppose that a few different pensions pay £1 

per year on survival from ages 66 to 90 for those pensioners currently aged 65 (like 

previously), from ages 66 to 100 for those now aged 65, from ages 76 to 100 for those now 

aged 75, and also from ages 86 to 100 for those aged 85 at present. Assume that longevity 

swaps for the same birth cohorts as the pensioners are available with maturities of 25, 35, 25, 

and 15 years respectively. The results in the first two rows in Table 5.6 suggest that the 

models are fairly robust to an inclusion of advanced ages in the modelling process, except for 

some figures of the IMD quintile group, which may be due to the use of approximate data for 

ages 90+. Moreover, it can be seen again (Figure 5.7) that the risk reduction levels tend to be 

lower for those pensions with shorter durations. As discussed earlier, the later individual cash 

flows have greater risk reduction effect under the current model settings and assumptions. 

 

Table 5.6 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) using older ages in modelling  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Pay Age 

Range 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

66-90 (old) 65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

66-90 (new) 64 / 78 62 / 76 59 / 74 52 / 59 60 / 62  58 / 63 73 / 75 63 / 73 62 / 72 

66-100 76 / 86 76 / 85 74 / 84 56 / 61 69 / 65 69 / 66 81 / 84 76 / 82 74 / 81 

76-100 74 / 80 73 / 78 72 / 76 56 / 58 65 / 62 64 / 63 80 / 81 75 / 78 74 / 78 

86-100 65 / 64 63 / 63 63 / 59 55 / 53 60 / 55 61 / 57 74 / 71 69 / 70 69 / 70 
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Figure 5.7 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) using older ages in modelling (100,000 males) 

 

 

 

5.7 Data period 

 

In order to test further the robustness of the modelling results, we re-fit the two models to a 

shorter data period for the reference population. It may have the advantage of allowing for 

more recent and relevant patterns, more in line with the book data which only start from year 

2000 or later. But it also reduces the sample size and there may be more sampling variability. 

Table 5.7 (Figure 5.8) demonstrates that the risk reduction estimates do not differ much 

between the two fitting periods starting from years 1980 and 1990 (mostly within 5%). This 

observation may reflect that the reference population experience is relatively stable, the 

potential benefit and drawback of using a shorter data period largely offset each other, or the 

models are robust themselves. We also re-fit the models to a slightly shorter data period for 

the book population. The resulting risk reduction levels are again not very different (all by 

6% or less). It would be insightful to consider more different data periods for the book 

population, but since its length is only a little over 10 years, more data need to be collected in 

order to conduct a more thorough testing.  

 

Table 5.7 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) using different data fitting periods  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Data 

Period 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

From 1980 

(reference) 
65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

From 1990 

(reference) 
63 / 76 62 / 70 58 / 68 62 / 66 74 / 65 71 / 65 64 / 71 60 / 67 58 / 65 
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Table 5.7 Continued  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Data 

Period 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

From 1 year 

later (book) 
64 / 77 64 / 76 65 / 75 64 / 70 72 / 70 73 / 70 71 / 72 68 / 70 66 / 65 

From 2 years 

later (book) 
63 / 76 63 / 73 61 / 72 69 / 73 77 / 74 76 / 74 66 / 73 68 / 71 61 / 68 

 

Figure 5.8 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) using different data fitting periods (100,000 males) 

 

 

 

5.8 Simulation method 

 

As noted in Subsection 3.4, residuals bootstrapping (Figure 3.3) can be adopted to include 

both process error (variability in the time series) and parameter error (uncertainty in 

parameter estimation). A simpler, parametric method is to perform Monte Carlo simulation 

on the error terms in the fitted time series processes to generate random future mortality rates. 

This way, however, considers only process error but not parameter error, and may 

underestimate longevity basis risk. The risk reduction estimates in Table 5.8 (Figure 5.9) 

suggest that the parametric method does understate longevity basis risk and so overestimates 

the extent of risk reduction by around 8% to 20% in magnitude. Note that with Excel VBA, 

the computation time of residuals bootstrapping for each single case of simulation can be up 

to a day or so, while the parametric method generally takes only a few hours. An alternative 

is to use the software R, but the computation time is usually about threefold in our 

simulations. Some potentially faster computation algorithms based on approximation 

methods are also provided in Appendix I. 
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Table 5.8 Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 

vs CAE+Cohorts) using different simulation methods  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Simulation 

Method 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Bootstrapping 65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

Parametric 73 / 87 73 / 86 72 / 84 84 / 83 84 / 82 84 / 81 84 / 88 84 / 86 83 / 86 

 

Figure 5.9 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) using different simulation methods (100,000 males) 

 

 

 

5.9 Model choice 

 

Phase 1 has proposed a decision tree framework (Figure 3.1) on how to choose a two-

population model for the reference and book populations, which includes the M7-M5 model, 

the CAE+Cohorts model, and the characterisation approach. These models are selected from 

a long list of potential candidates after an extensive investigation using several UK datasets. 

Besides process error and parameter error, the Solvency II Delegated Regulations (CEIOPS 

2010) also requires an incorporation of model error (uncertainty in the model choice) in 

assessing uncertainty of future outcomes. The extent of model error can be inspected by 

comparing the hedging results under different models and assumptions. It can be noted from 

all the simulations above that while the M7-M5 and CAE+Cohorts models do not generate 

too different risk reduction estimates for larger data sizes and under more precise hedging, 

the extent of model error is not negligible otherwise. Accordingly, it would be helpful to test 

some other models for further comparison. 
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Three additional models are thus being considered here. The first one is modified from the 

first approach stated in Carter and Lee (1992), which fits the Lee and Carter (1992) model to 

each population and then captures the relationship between the two mortality indices: 
R

xt

R
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R

x

R

x

R

txq    logit ,     (reference population) 

R
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B

t

B

x

B

x

B

txq    logit ,     (book population) 

ttt  1      (bivariate random walk with drift, BRWD)  

It is assumed that  '  , B

t

R

tt  ,   is the vector drift term, t  is the bivariate normal error 

term, and the other parameters are defined similarly as in Subsection 3.2. The second one is 

extended from the third approach in Carter and Lee (1992), which models the two mortality 

indices as a co-integrated process (Li and Hardy 2011): 
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txq    logit ,     (reference population) 
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t   1      (random walk with drift, RWD)  

t
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t aa    10      (co-integrated process)   

The parameters  , 0a , and 1a  govern the co-integrated process, and t  and t  are 

independent normal error terms. The final model is an extension of the idea proposed by 

Zhou, Li, and Tan (2013), which assumes a common age-specific sensitivity measure for the 

reference and book populations and then a weakly stationary autoregressive AR(1) process 

for the difference between the two resulting mortality indices:  
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  t
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t
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t bb    1110    (AR(1) process)     

The notation  , 0b , and 1b  are the parameters of the time series processes, and t  and t  are 

independent normal error terms.  

 

It is important to recognise that the first two models are ‘non-coherent’ but the last model is 

‘coherent’ (Li and Lee 2005). That is, the projected (best or central estimate) ratio of future 

mortality rates between the book and reference populations at each age converges to a 

constant in the long term under the last model but not for the first two. As noted previously, 

one could argue that the two assumingly related populations’ mortality levels may diverge 

between their trends in the short run but would then move more closely in line over the long 

run. Failure to allow for this long-term coherence may overestimate longevity basis risk. 

Besides the coherence of the best estimates, it is also important to consider carefully the 

simulated future variability. For the first two models, both kappas of the reference and book 

populations have unbounded future variability. But for the last model, while the kappa of the 

reference population also has unbounded future variability, the difference between the kappas 
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of the reference and book populations has bounded future variability. The implication is that 

the two populations’ future mortality movements could deviate more significantly under the 

first two models (particularly in the long term), but in contrast they would be more consistent 

under the last model.  

 

Table 5.9 (Figure 5.10) below sets forth the risk reduction estimates calculated from the M7-

M5 and CAE+Cohorts models and also the three additional models described above. It 

appears that the non-coherence feature and unbounded future variability of the first two 

additional models lead to very different hedging results, in which there is a significant 

overestimation of longevity basis risk and so the risk reduction estimates are much smaller. 

Comparatively, the M7-M5 model, the CAE+Cohorts model, and the last additional model 

are all coherent and have bounded future variability between the book and reference 

populations, and their risk reduction estimates reflect a more proper assessment of longevity 

basis risk. In particular, the differences between the results from these three models look 

quite small (within around 10%). These observations suggest that despite the obvious 

differences in the structures between the various types of models, the coherence property and 

the behaviour of simulated future variability are the major factors underlying the calculation 

of longevity risk reduction. Further analysis on time series modelling and simulated future 

variability are provided in Section 6. 

 

Table 5.9 Levels of longevity risk reduction (in % of initial longevity risk) under 

different two-population models  

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Model 
Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

M7M5  65 63 63 64 72 70 72 69 63 

CAE 77 74 73 69 68 68 74 70 68 

Extra model 1 7 8 4 28 22 22 3 5 5 

Extra model 2 45 52 51 53 57 55 0 7 4 

Extra model 3 77 74 74 67 64 64 75 70 69 

 

5.10 Additional feature 

 

All the analysis so far is based on the data fitting period starting from 1980 or later. There are 

more than 30 years of reference data and over 10 years of book data, and the projection 

period is 25 years. However, Phase 1 has stated that their research has focused on only up to a 

15-year forecasting horizon and evaluating hedge effectiveness over longer horizons requires 

further analysis and more caution. In fact, mortality levels have not always been progressing 

so smoothly over time. There could be one-off incidents such as wars, catastrophes, and 
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epidemics, causing temporary drastic changes in mortality levels (i.e. mortality jumps). There 

could also be long-term effects like radical medical advances and climate changes, leading to 

permanent changes in mortality improvement rates (i.e. structural changes). For instance, 

Figure 5.11 plots the mortality indices (Subsection 3.2) of the English and Welsh and 

Australian male populations. It can clearly be seen that there are a few ‘mortality spikes’ (in 

red) before 1950, and that there is a major shift in the improvement trend (in blue) during 

around 1960 to 1970. 

 

Figure 5.10 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) under different two-population models (100,000 males) 

 

 

 

Figure 5.11 Mortality indices of England and Wales and Australia (males) 

 

  

 

These events are either rare or hard to identify precisely, in which mortality data are usually 

available only annually for a limited period of time. So it is difficult to allow for them in the 

modelling process without taking references from other relevant data and related fields of 

studies, applying sound biological reasoning, and exercising appropriate judgement. Based on 

the data used in Figure 5.11 and also several other developed countries’ population data, we 

consider three extra scenarios here and make some arbitrary assumptions – the first one with 

possible structural changes, the second one with possible mortality jumps, and the final one 

with both. We modify the last additional model in the previous subsection to allow for these 
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effects, which are implicitly assumed to have the same impact on both the reference and book 

populations: 
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 210 , 03~ tY    (severity of a mortality jump) 

The probabilities and possible sizes of these events are roughly determined by inspecting the 

frequencies and severities of relevant historical incidents such as the World Wars, Spanish 

Flu, and past structural changes in mortality improvement. Users can seek other resources 

and experts’ opinions in setting these assumptions. In addition, one may further assume that 

such events can have different extents of impact on the reference and book populations. 

 

Table 5.10 shows that the incorporation of structural changes increases the risk reduction 

estimates regarding the tail risk measures by about 10% or more in magnitude, while the 

inclusion of mortality jumps does not lead to any obvious changes in risk reduction. As 

structural changes are assumed to have a long-lasting impact on the reference and book 

populations simultaneously in the model, the two populations’ mortality levels would then 

move more consistently with each other over a long period of time, resulting in some further 

reduction in longevity basis risk (Figure 5.12). On the other hand, the effects of mortality 

jumps are assumed to be temporary and one-off, and accordingly the influence on the risk 

reduction levels is minimal.  

   

Table 5.10 Levels of longevity risk reduction (in % of initial longevity risk) using 

models with additional features deduced from historical incidents 

 

100,000 

Males 
UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Additional 

Feature 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

M7M5 / CAE 65 / 77 63 / 74 63 / 73 64 / 69 72 / 68 70 / 68 72 / 74 69 / 70 63 / 68 

Extra model 3 77 74 74 67 64 64 75 70 69 

Structural 83 85 84 74 80 79 78 81 80 

Jump 80 72 71 70 64 65 71 68 66 

Both 91 91 91 77 78 78 74 74 73 
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Figure 5.12 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) using models with additional features deduced from 

historical incidents (100,000 males) 

 

 

 

Based on all the results thus far, the most significant modelling assumptions and settings 

include the coherence property and behaviour of simulated future variability, portfolio size, 

data size and characteristics, type of hedging instrument, simulation method, and certain 

additional model features. Comparatively, the other conditions tested seem to have rather 

limited influence on the calculated hedging results. In constructing an index-based longevity 

hedge for a pension or annuity portfolio, it is very important to consider these factors 

carefully and conduct sufficient testing on their potential impact upon the hedge effectiveness 

that can be achieved. 

 

5.11 Scenario testing 

 

Besides the various sensitivity testings above, backtesting can also be performed on the 

longevity hedging strategy using relevant historical data to examine how well the strategy 

would have worked in the past. While the HMD dataset is dated back to a long time ago, the 

other three datasets cover a period of only around 10 years. In order to conduct a more 

meaningful backtesting exercise under this data constraint, a proxy is adopted here, in which 

the book population is assumed to follow the aggregate CMI mortality experience from 1983 

to 2006. Though this aggregate CMI dataset is not sorted by the industry and pension amount 

and does not cover the most recent period, there are 24 years of data in total, which allows 

certain backtesting on some simple cases. (Note that the data have been used earlier by the 

first author in a few published journal articles.) The data are divided into two periods, in 

which the first period is used for fitting and the second for testing. The interest rate is 

assumed to be 5% p.a. in this analysis, more in line with the historical interest rate levels. It is 

also assumed that the portfolio size is very large and so sampling basis risk is minimal. 
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The difference between the actual present value and the expected (best estimate) present 

value (at the start of the testing period; as a percentage of the expected present value) for each 

case is given in Table 5.11. A positive figure (under the column ‘unhedged’) means that the 

overall mortality improvement is greater than anticipated and so the actual present value of 

the pension portfolio turns out to be larger than the expected value, i.e. there is an unexpected 

portfolio loss. It is observed (from the rows noted as ‘actual’) that the losses, if the portfolio 

is unhedged, are mostly around 1% to 3% only. This result reflects that the mortality 

experience is rather stable during these few decades and the main mortality trends are quite 

reasonably captured by the two models, despite a small degree of underestimation. 

Consequently, the longevity hedge would not impose much effect on the pension portfolio. 

 

Further scenario testing can be conducted to illustrate the potential effect of the longevity 

hedge by considering more extreme situations. As per the Solvency II Standard Formula 

(CEIOPS 2010), the capital requirement for longevity risk is defined as the change in the net 

asset value under a longevity scenario in which there is a permanent 20% decrease in 

mortality rates (i.e. a longevity shock) for each age and each policy. Accordingly, nine 

different pairs of ‘longevity shocks’ are applied to the actual data in the testing period, 

ranging from a permanent 10% decrease to a 30% decrease for the reference and book 

populations. Table 5.11 shows that there is a wide range of hedging outcomes, from around 

1% to 14% reduction in the portfolio loss in magnitude after taking the hedge. A few major 

patterns can be identified here. Firstly, as expected, the greater the extent of the shocks, the 

larger the portfolio loss, and the more obvious the corresponding hedging effect. The 

longevity hedge clearly comes into effect when there are substantial unexpected mortality 

improvements. Secondly, the portfolio loss and the hedging effect are greater for the older 

age range. This observation may be due to the fact that the mortality levels at ages 60 to 69 

have already declined substantially over the years, while those aged 80 and above have more 

room for further improvement, which has a larger impact on the present value of a pension. 

So the hedging outcome is more noticeable for older ages. Finally, when the shock levels are 

different between the reference and book populations, which is a reflection of longevity basis 

risk, the longevity hedge still appears to provide a decent protection for the pension portfolio, 

cutting down at least one third of the portfolio loss in most of the cases shown. 

 

In summary, the analysis above suggests that the longevity hedging strategy works 

reasonably well when there are considerable unanticipated mortality improvements. On the 

other hand, if the major mortality trends are well captured in the modelling process and these 

trends continue to exist, the longevity hedge would not bring much impact to the pension 

portfolio. In addition, when the longevity shock is greater for the book population than for the 

reference population, due to the presence of longevity basis risk, the reduction in the portfolio 

loss from the hedge would still be sizable, as long as the shocks on the two populations are in 

the same direction. 
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Table 5.11 Backtesting and scenario testing on longevity hedging strategy – 

difference (in %) between actual and expected present values when the 

pension portfolio is unhedged or hedged (M7-M5 vs CAE+Cohorts) 

 

Males Difference (in %) between Actual and 

Expected Present Values 

Reference 

Scenario 

Book 

Scenario 
Unhedged Hedged 

E&W (fitting 1970-1992 / testing 1993-2006) 

CMI (fitting 1983-1992 / testing 1993-2006) 

Pay age range 66-79 

actual actual 3.2 / 1.7 2.5 / 2.2 

10% ↓ 10% ↓ 4.7 / 3.1 2.2 / 1.9 

10% ↓ 20% ↓ 6.1 / 4.5 3.7 / 3.4 

10% ↓ 30% ↓ 7.6 / 6.0 5.1 / 4.8 

20% ↓ 10% ↓ 4.7 / 3.1 0.5 / 0.2 

20% ↓ 20% ↓ 6.1 / 4.5 1.9 / 1.7 

20% ↓ 30% ↓ 7.6 / 6.0 3.4 / 3.1 

30% ↓ 10% ↓ 4.7 / 3.1 -1.3 / -1.5 

30% ↓ 20% ↓ 6.1 / 4.5 0.1 / -0.1 

30% ↓ 30% ↓ 7.6 / 6.0 1.6 / 1.4 

E&W (fitting 1970-1996 / testing 1997-2006) 

CMI (fitting 1983-1996 / testing 1997-2006) 

Pay age range 66-75 

actual actual 1.5 / 1.0 0.8 / 1.0 

10% ↓ 10% ↓ 2.4 / 1.8 0.5 / 1.1 

10% ↓ 20% ↓ 3.2 / 2.7 1.3 / 1.9 

10% ↓ 30% ↓ 4.1 / 3.5 2.2 / 2.8 

20% ↓ 10% ↓ 2.4 / 1.8 -0.8 / 0.3 

20% ↓ 20% ↓ 3.2 / 2.7 0.1 / 1.1 

20% ↓ 30% ↓ 4.1 / 3.5 1.0 / 2.0 

30% ↓ 10% ↓ 2.4 / 1.8 -2.0 / -0.6 

30% ↓ 20% ↓ 3.2 / 2.7 -1.1 / 0.3 

30% ↓ 30% ↓ 4.1 / 3.5 -0.3 / 1.1 
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Table 5.11 Continued 

 

Males Difference (in %) between Actual and 

Expected Present Values 

Reference 

Scenario 

Book 

Scenario 
Unhedged Hedged 

E&W (fitting 1970-1992 / testing 1993-2006) 

CMI (fitting 1983-1992 / testing 1993-2006) 

Pay age range 76-89 

actual actual 0.6 / -1.5 -0.2 / 0.0 

10% ↓ 10% ↓ 4.6 / 2.5 -0.4 / -0.1 

10% ↓ 20% ↓ 8.9 / 6.7 3.9 / 4.1 

10% ↓ 30% ↓ 13.5 / 11.1 8.5 / 8.5 

20% ↓ 10% ↓ 4.6 / 2.5 -4.9 / -4.5 

20% ↓ 20% ↓ 8.9 / 6.7 -0.6 / -0.3 

20% ↓ 30% ↓ 13.5 / 11.1 4.0 / 4.1 

30% ↓ 10% ↓ 4.6 / 2.5 -9.7 / -9.2 

30% ↓ 20% ↓ 8.9 / 6.7 -5.4 / -5.0 

30% ↓ 30% ↓ 13.5 / 11.1 -0.9 / -0.6 

E&W (fitting 1970-1996 / testing 1997-2006) 

CMI (fitting 1983-1996 / testing 1997-2006) 

Pay age range 76-85 

actual actual 2.6 / 1.9 0.9 / 2.0 

10% ↓ 10% ↓ 5.3 / 4.6 0.4 / 2.0 

10% ↓ 20% ↓ 8.1 / 7.3 3.2 / 4.7 

10% ↓ 30% ↓ 10.9 / 10.2 6.0 / 7.6 

20% ↓ 10% ↓ 5.3 / 4.6 -2.9 / -0.8 

20% ↓ 20% ↓ 8.1 / 7.3 -0.2 / 1.9 

20% ↓ 30% ↓ 10.9 / 10.2 2.7 / 4.8 

30% ↓ 10% ↓ 5.3 / 4.6 -6.4 / -3.7 

30% ↓ 20% ↓ 8.1 / 7.3 -3.6 / -1.0 

30% ↓ 30% ↓ 10.9 / 10.2 -0.8 / 1.8 
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6 Choice of Time Series Processes 

 

A careful selection in time series modelling is very important as it determines how future 

outcomes are simulated from the modelling process. Table 6.1 summarises the time series 

processes chosen in Phase 1 (Subsection 3.4) and the key implications of these models. Some 

basic descriptions are also given below. More technical details can be found in standard 

econometrics references such as Tsay (2002) and also in Appendix I. 

 

Table 6.1 Selected time series processes in Phase 1 

 

Parameter(s) Time Series Process Condition(s) Best Estimate(s) Variability 

M7-M5     

R

t 1, , 
R

t 2, , 
R

t 3,  MRWD - linear trends unbounded 

R

c  ARIMA(1,1,0) 1  1   long-term linear trend unbounded 

B

t 1, , 
B

t 2,  VAR(1) 

 eigenvalues of 










2,21,2

2,11,1




 < 1 

in magnitude 

convergence bounded 

CAE+Cohorts     

R

t  RWD - linear trend unbounded 

R

c  ARIMA(1,1,0) 1  1   long-term linear trend unbounded 

B

t  AR(1) 1  1   convergence bounded 

 

6.1 M7-M5 model 

 

For the M7-M5 model (Subsection 3.1) regarding the reference population, the time series of 
R

t 1, , 
R

t 2, , and 
R

t 3,  are modelled as a multivariate random walk with drift (MRWD):  
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The parameters 1d , 2d , and 3d  are the drift terms (linear trends’ slopes), and 1,t , 2,t , and 

3,t  are the multivariate normal error terms with mean zero and covariance matrix  . Under 

the MRWD, the future variability of 
R

t 1, , 
R

t 2, , and 
R

t 3,  increase over time. Moreover, the 
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time series of R

c  is modelled as an autoregressive integrated moving average process, 

ARIMA(1,1,0):  

  c

R

c

R

c

R

c

R

c    21101
    2,0~  c

 

The slope of the long-term linear trend is given by  10 1    if 1  1  , the extent of 

autocorrelations is determined by the size of 1 , and c  is the normal error term with mean 

zero and variance 2

 . Under the ARIMA(1,1,0), if 1  1  , the future variability of R

c  is 

finite and increases over time. It is assumed that  3,2,1,  , , ttt   and c  are independent.  

 

For the M7-M5 model regarding the difference between the book and reference populations, 

the time series of B

t 1,  and B

t 2,  are modelled as a vector autoregressive process of order one, 

VAR(1):  
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The extent of autocorrelations depends on the values of 1,1 , 2,1 , 1,2 , and 2,2 , and 1,t  and 

2,t  are the bivariate normal error terms with mean zero and covariance matrix  . If there is 

a further requirement that the projected (best estimate) book-to-reference ratio of mortality 

rates at each age should not diverge over the long term, all the eigenvalues of the matrix 










2,21,2

2,11,1




 have to be smaller than one in absolute value and so both 

B

t 1,  and 
B

t 2,  converge 

to a constant over time. Under such conditions, the future variability of 
B

t 1,  and 
B

t 2,  are 

bounded across time, in contrast to using the MRWD. It is also assumed that the time series 

error terms of the reference population and those of the difference between the book and 

reference populations are independent. 

 

Figure 6.1 plots the various time series computed (solid lines), their best estimate projections 

(dashed lines), and their simulated 95% prediction intervals (dotted lines) for a particular UK 

pension group. As shown, 
R

t 1, , 
R

t 2, , 
R

t 3, , and R

c  have linear trends with unbounded 

prediction intervals, while 
B

t 1,  and 
B

t 2,  converge to a constant with bounded variability. 

 

Note that under the characterisation approach (Subsection 3.3), the time series of 
B

t 1,  and 

B

t 2,  of different characterising groups are also co-modelled as a VAR(1). 
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Figure 6.1 Time series projections and 95% prediction intervals for a UK pension 

group (basic materials; normal retirement; lower pension group) under 

M7-M5 model 

 

   

   
 

6.2 CAE+Cohorts model 

 

For the CAE+Cohorts model (Subsection 3.2) regarding the reference population, the time 

series of R

t  is modelled as a random walk with drift (RWD): 

t

R

t

R

t d   1    2,0~  t  

The parameter d  is the drift term (linear trend’s slope) and t  is the normal error term with 

mean zero and variance 2

 . Under the RWD, the future variability of R

t  increases over time. 

Furthermore, the time series of R

c  is modelled as an ARIMA(1,1,0), like in the M7-M5 

model. It is assumed that t  and c  are independent. 

 

For the CAE+Cohorts model regarding the difference between the book and reference 

populations, the time series of B

t  is modelled as an autoregressive process of order one, 

AR(1):  

t

B

t

B

t   110     2,0~  t  

The long-term mean of B

t  is given by  10 1    if 1  1  , the extent of autocorrelations 

depends on the size of 1 , and t  is the normal error term with mean zero and variance 
2

 . 

If it is required that the projected (best estimate) book-to-reference ratio of mortality rates at 

each age should not diverge in the long run,   1  has to be smaller than one and so B

t  

converges to  10 1    over time. Under this condition, the future variability of B

t  is 

bounded across time. It is further assumed that the time series error terms of the reference 

population and that of the difference between the book and reference populations are 

independent. 
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Figure 6.2 shows the different time series computed (solid lines), the best estimate 

projections (dashed lines), and their simulated 95% prediction intervals (dotted lines) for the 

same UK pension group as above. It can be seen that R

t  and R

c  have linear trends over time 

with unbounded prediction intervals, whereas B

t  tends to a constant value with bounded 

intervals. 

 

Figure 6.2 Time series projections and 95% prediction intervals for a UK pension 

group (basic materials; normal retirement; lower pension group) under 

CAE+Cohorts model 

 

   

 

If the characterisation approach (Subsection 3.3) is adopted, the time series of B

t  of different 

characterising groups are modelled jointly as a VAR(1) process.  

 

6.3 Mortality convergence 

 

Figure 6.3 plots the book-to-reference ratios of mortality rates at each age range over time for 

the three datasets. There are a number of general patterns that can be observed. First, 

considering the UK and Australian pensioners, the ratios of females tend to be more volatile 

across time than those of males, probably due to the smaller data sizes of the former. For the 

IMD quintile groups, the data sizes are more comparable and there is no such difference 

between the two sexes. Second, the differences between the industries or groups or states 

become smaller at older ages. In particular, the ratios are quite close to one at ages 80 to 89. 

Moreover, for the UK and Australian pensioners, the ratios are usually below one and 

fluctuate fairly randomly over time, with no distinct level differences between the industries 

or states. In contrast, for the IMD quintile groups, the ratios clearly decrease from above one 

to below one for the most deprived areas to the least deprived areas, and since these groups 

represent significant segments of the reference population, their ratios are much more stable 

across time. Overall, despite the fluctuations, there do not seem to be any particular temporal 

trends in the ratios for the UK and Australian pensioners. Comparatively, there are some 

slowly increasing trends in the ratios for the most deprived areas, i.e. the mortality 

improvement of the most deprived group is not as fast as that of the general population. Since 

the data length is only a little more than 10 years, it is difficult to deduce whether these trends 

will continue in the long term. One may make an arbitrary adjustment (e.g. adding a term 

which changes linearly with time; see Subsection 6.4) to the time series modelling of the 
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difference between the book and reference populations to allow for this effect. Another 

possible alternative is the use of a new concept called semicoherence (Li et al. 2015), in 

which the projected mortality trajectories of two related populations are permitted to diverge 

over certain time periods, only within a specific tolerance corridor. But as these past trends 

are rather mild, and if the corresponding adjustment needed is small, the resulting impact on 

the calculated hedging results is unlikely to be material.    

 

Note that both the M7-M5 and CAE+Cohorts models are ‘coherent’ (Li and Lee 2005). This 

feature means that the projected (best estimate) ratio of future mortality rates between the 

book and reference populations at each age tends towards a constant over the long term. This 

assumption appears to be roughly in line with the observations in Figure 6.3 and also follows 

the usual expectation that the two related populations’ mortality trends would not diverge 

indefinitely. A lack of this long-term coherence in the modelling process may lead to an 

overestimation of longevity basis risk. In the short term, however, the two projected trends 

could diverge under the two models, the extent to which depends on how fast the fitted 

(weakly stationary) time series processes of the book component converge in the projections. 

For example, under the CAE+Cohorts model, the projected values of B

t  would approach the 

constant  10 1    faster if 1  is smaller in magnitude and closer to zero.  

 

Apart from the best estimates’ coherence, it is also important to take full account of the 

simulated future variability. How the possible extent of co-movements (away from the 

projected trends) between the book and reference populations is being modelled is one major 

factor determining the calculated amount of longevity basis risk. Under the two models, the 

fitted time series processes for the reference population generate unbounded future variability. 

In contrast, those for the difference between the book and reference populations produce 

bounded future variability. The former variability would then dominate in the long run while 

the latter would diminish in its impact relatively. The consequence is that the extent of co-

movements between the two populations (as a portion of the total variability or uncertainty 

which increases over time) would grow with time in the future simulations. This modelling 

effect is in agreement with the common view that it would be unlikely for the two related 

populations to continue to deviate significantly in their long-term future mortality 

improvements. 
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Figure 6.3 Book-to-reference ratios of past mortality rates 

 

Basic materials, industrials, consumer goods, consumer services, and utilities (black to light 

grey) industries (normal retirement; females and males) 

   

   

 

Most deprived to least deprived (black to light grey) areas (females and males) 

   

   

 

New South Wales, Commonwealth, Victoria, and other Australian states, and New Zealand 

(black to light grey) (retirement; females and males) 
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6.4 Sensitivity analysis 

 

In fact, there exist a great variety of time series processes with different degrees of 

sophistication in the literature. Unlike econometric and financial data which usually have at 

least, say, hundreds of data points, however, the length of annual mortality data is generally 

much shorter and so limits the use of more advanced models. Despite this limitation, it would 

still be of practical interest to investigate how sensitive the calculated hedging results are to 

the use of different time series processes. To examine the potential significance of varying 

times series modelling assumptions, the following alternatives are considered: (a) choosing a 

higher order for the autoregressive processes in the book component; (b) using univariate 

(rather than multivariate) time series processes in the reference component under the M7-M5 

model; (c) relaxing the independence assumption between the time series error terms of the 

reference and book components; and (d) applying some other combinations of time series 

processes given the data constraint. For the autoregressive processes, the selected order for 

further testing cannot be too high, as the data length of the book population is short. 

Moreover, the order should be chosen and the parameters estimated in such a way that the 

autoregressive processes are still weakly stationary. Accordingly, an order of two is tested in 

this analysis.   

 

Table 6.2 (Figure 6.4) presents the level of longevity risk reduction for each combination of 

time series processes, and Table 6.3 provides the key characteristics of each case. When a 

higher order is used for the autoregressive processes in the book component (see (a)), the risk 

reduction levels tend to be lower. Although the VAR(2) and AR(2) processes are still weakly 

stationary, their pace of convergence would often be slower than that of the VAR(1) and 

AR(1) processes, because of the autoregressive parameters for the longer lag and so greater 

autoregressive effects. Hence the projected trends of the book and reference populations 

could diverge for a longer time before convergence, resulting in a smaller risk reduction. 

When independent RWD processes are used instead of the MRWD in the reference 

component under the M7-M5 model (see (b)), the risk reduction estimates are slightly smaller. 

The univariate RWD processes could produce a different level of total variability to that 

generated by the MRWD, which may explain the differences in risk reduction, though these 

differences seem to be immaterial. When the time series error terms of the book and reference 

components are treated as correlated rather than independent (see (c)), the changes in the risk 

reduction estimates are minimal. It seems that this independence or correlation assumption 

does not have a significant influence on the calculated hedging results. 

 

If the MRWD in the reference component under the M7-M5 model is replaced by the 

VARIMA(1,1,0) process (see (d1)), the risk reduction estimates drop by about 10% in 

magnitude. If the RWD in the reference component under the CAE+Cohorts model is 

changed with the ARIMA(1,1,0) process, the risk reduction levels decline by around 5%. 

Though both the VARIMA(1,1,0) and ARIMA(1,1,0) processes, like the MRWD and RWD, 
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generate unbounded future variability, the actual levels of variability over time under these 

integrated autoregressive processes would be different to those under the random walk 

processes, which may lead to different risk reduction levels. Another important feature of the 

integrated autoregressive processes is that their projected paths converge to some linear 

trends and the pace of convergence depends on the autoregressive parameters estimated.  

 

When the autoregressive processes in the book component are replaced by the random walk 

processes without drift (see (d2)), although the models are still coherent because of the flat 

trends (i.e. zero drift), the risk reduction estimates decrease significantly to very low values. 

The random walk processes produce unbounded future variability, which means that the two 

populations’ future mortality movements could deviate significantly in the simulations, 

especially over the long term. One may argue that this implication is not biologically and 

socially reasonable, as the two populations are associated demographically, and the 

corresponding assumption should thus be avoided. Once again, it can be seen that the 

behaviour of simulated future variability of the difference between the book and reference 

populations is a decisive factor in determining the calculated level of longevity risk reduction. 

Extra caution must be exercised in choosing the time series process for the book component.   

 

As noted in Subsections 2.5 and 6.3, the two populations may experience different mortality 

improvements in the short term. They then may or may not move more consistently in the 

long run, though the usual view in the literature is that it is unlikely for the two related 

populations to continue to diverge in their mortality movements for an extensive period. 

Despite this common view, even if an arbitrarily determined extra term, which changes 

linearly with time, is added within the autoregressive processes in the book component (see 

(d3)) to allow for an expected long-term discrepancy, the risk reduction estimates are actually 

more or less the same, though with some rather small differences for the IMG quintile group. 

This observation indicates that non-coherence alone (without unbounded future variability) 

would not have a significant impact on the calculated hedging results. The implication is that 

as long as the major mortality trends, diverging or not, are well incorporated in the model and 

calibration and do not deviate much from the model expectation in the future, there would 

still be a decent level of hedge effectiveness. It is mainly the potential random deviations 

(future variability) from the expect trends that would affect the hedging performance. 

 

In brief, given the short data length of the book population, the practical, feasible choices of 

time series processes are rather limited. The analyses above and also in Subsection 5.9 

suggest that the importance of the various time series modelling assumptions follows the 

order of the behaviour of simulated future variability of the book component, the pace of 

reaching coherence between the two populations, and then the other correlation assumptions. 

Appropriate judgement, reference materials, experts’ opinions, and thorough testing are 

required in setting these modelling assumptions properly in practice. Further research is also 

needed when more data of longer periods and for different kinds of book populations are 

collected in the future.  
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Table 6.2 Levels of longevity risk reduction (in % of initial longevity risk) using 

different combinations of time series processes 

 

100,000 Males UK Pensioners (basic materials; 

normal retirement; lower pension) 

IMD Groups  

(most deprived areas) 

Australian Pensioners  

(New South Wales; retirement) 

Reference Component 

/ Book Component 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

Standard 

Deviation 

99.5% 

VaR 
99.5% ES 

(Original)  

M7M5 

MRWD / VAR(1) 

 

65 

 

63 

 

63 

 

64 

 

72 

 

70 

 

72 

 

69 

 

63 

CAE+Cohorts  

RWD / AR(1) 
77 74 73 69 68 68 74 70 68 

(a)  

M7M5 

MRWD / VAR(2) 

 

45 

 

55 

 

47 

 

35 

 

58 

 

35 

 

58 

 

54 

 

39 

CAE+Cohorts  

RWD / AR(2) 
75 73 72 69 72 71 36 65 57 

(b)  

M7M5 

RWD / VAR(1) 

 

62 

 

60 

 

60 

 

60 

 

67 

 

69 

 

68 

 

65 

 

61 

(c)  

M7M5  

Correlated 

MRWD & VAR(1) 

 

66 

 

63 

 

61 

 

60 

 

66 

 

64 

 

71 

 

67 

 

65 

CAE+Cohorts  

Correlated 

RWD & AR(1) 

79 76 75 66 65 66 75 72 68 

(d1)  

M7M5 

VARIMA(1,1,0) / VAR(1) 

 

56 

 

53 

 

52 

 

52 

 

62 

 

64 

 

61 

 

57 

 

53 

CAE+Cohorts  

ARIMA(1,1,0) / AR(1) 
72 69 68 62 63 63 67 62 60 

(d2)  

M7M5 

MRWD / BRW 

 

56 

 

36 

 

37 

 

44 

 

41 

 

37 

 

3 

 

5 

 

2 

CAE+Cohorts  

RWD / RW 
13 6 7 20 19 15 19 11 8 

(d3)  

M7M5 

MRWD / Modified VAR(1) 

64 60 59 78 77 77 73 72 71 

CAE+Cohorts  

RWD / Modified AR(1) 
75 73 72 88 87 87 75 70 69 

 

Note: The terms VAR(2), AR(2), VARIMA(1,1,0), ARIMA(1,1,0), BRW, and RW stand for the 

vector autoregressive process of order two, autoregressive process of order two, vector autoregressive 

integrated moving average process of order (1,1,0), autoregressive integrated moving average process 

of order (1,1,0), bivariate random walk without drift, and random walk without drift respectively. 

More details can be found in Appendix I. For (c), the error terms of the two time series processes are 

treated as correlated. For (d3), the modified VAR(1) and AR(1) have a (vector) term of t  , which 
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changes linearly with time t , in addition to the constant term(s) and autoregressive parameter(s), like 

how mortality jumps are added in a separate equation as in Subsection 5.10.  

 

Table 6.3 Major characteristics of different combinations of time series processes 

 

Model 
Reference / Book 

Component 

Time Series 

Process 
Best estimate(s) Variability 

(Original)     

M7-M5 Reference MRWD linear trends unbounded 

M7-M5 Book VAR(1) convergence bounded 

CAE+Cohorts Reference RWD linear trend unbounded 

CAE+Cohorts Book AR(1) convergence bounded 

(a)     

M7-M5 Reference MRWD linear trends unbounded 

M7-M5 Book VAR(2) convergence bounded 

CAE+Cohorts Reference RWD linear trend unbounded 

CAE+Cohorts Book AR(2) convergence bounded 

(b)     

M7-M5 Reference RWD linear trends unbounded 

M7-M5 Book VAR(1) convergence bounded 

(c)     

M7-M5 Reference Correlated MRWD linear trends unbounded 

M7-M5 Book & VAR(1) convergence bounded 

CAE+Cohorts Reference Correlated RWD linear trend unbounded 

CAE+Cohorts Book & AR(1) convergence bounded 

(d1)     

M7-M5 Reference VARIMA(1,1,0) long-term linear trends unbounded 

M7-M5 Book VAR(1) convergence bounded 

CAE+Cohorts Reference ARIMA(1,1,0) long-term linear trend unbounded 

CAE+Cohorts Book AR(1) convergence bounded 

(d2)     

M7-M5 Reference MRWD linear trends unbounded 

M7-M5 Book BRW flat trends unbounded 

CAE+Cohorts Reference RWD linear trend unbounded 

CAE+Cohorts Book RW flat trend unbounded 

(d3)     

M7-M5 Reference MRWD linear trends unbounded 

M7-M5 Book Modified VAR(1) non-convergence bounded 

CAE+Cohorts Reference RWD linear trend unbounded 

CAE+Cohorts Book Modified AR(1) non-convergence bounded 
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Figure 6.4 Levels of longevity risk reduction (in % of initial longevity risk, in terms 

of 99.5% VaR) using different combinations of time series processes 

(100,000 males) 
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7 Practical Guidelines 

 

An extensive investigation on modelling longevity basis risk and assessing longevity risk 

reduction has been conducted in the previous sections. Section 2 depicts the historical 

mortality levels and improvements of different subgroups in the three datasets. Section 3 

summarises the modelling procedure of longevity basis risk and the means to calculate the 

level of longevity risk reduction. Section 4 considers hedging pension portfolios of a single 

cohort and multiple cohorts with standardised longevity swaps and estimates the resulting 

risk reduction levels. Section 5 carries out a detailed sensitivity analysis on the hedging 

results from Subsection 4.1 through making a range of changes to the initial model settings 

and assumptions, and performs backtesting and scenario testing on the hedging strategy. 

Section 6 conducts a sensitivity analysis on the choice of time series modelling, given the 

data constraint of the book population. In this final section, we set forth a brief summary of 

the hedging results so far, both qualitatively and quantitatively. Particularly, we present the 

results in a way that can possibly be used as a quick guide for practitioners and regulators, 

and also discuss a number of practical issues in adopting index-based hedging solutions.  

 

7.1 Overall summary 

 

Based on the hedging results in Sections 4 to 6, the level of longevity risk reduction in a 

particular hedging scenario may be determined very approximately in a qualitative way. 

Suppose that the book population under consideration has mortality experience similar to 

those of the three datasets, the mortality patterns are reasonably captured by the modelling 

procedure in this report, and the time series assumptions properly reflect the extent of future 

mortality co-movements between the book and reference populations. Further assume that the 

hedging strategy uses standardised longevity swaps of multiple cohorts which are calibrated 

closely to the demographic structure of the pension plan, and that interest rate risk is minimal 

due to a consistently low interest rate environment or an interest rate hedging scheme being 

in place. If the size of the pension plan is large, the risk reduction level would be in the range 

of about 50% to 80%. The more precise value would depend on a number of factors, 

including how related the book and reference populations are, the pace of reaching coherence 

between the two populations in the future, and whether additional features such as mortality 

structural changes are taken into account. Some extent of subjective judgement may be 

exercised in examining these factors, somewhat like how the level of correlation between two 

lines of general insurance business was determined qualitatively (as high, medium, or low) by 

senior actuaries as stated in Collings and White (2001).  

 

For demonstration purposes, a qualitative assessment may be structured as in Table 7.1 below, 

in which a score of 0 to 10 (from mild to significant) is given to each question. For instance, 

consider the following hypothetical case study of a pension plan of 30,000 male lives with 

multiple cohorts. It is estimated that the plan’s longevity risk (99.5% VaR minus the mean of 
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the present value of all future cash outflows) is around £250 million. After examining the 

underlying factors and conditions, the pension actuary has given a rank of 6 to the 

relationship between the book and reference populations, a rank of 5 to how fast the two 

populations’ mortality trends would move back in line, and a rank of 4 to the possible 

occurrence of mortality structural changes and their potential impact on the two populations. 

As a result, the overall risk reduction level is estimated as 65% (= 50 + 6 + 5 + 4). Then the 

plan’s remaining longevity risk after hedging, due to the existence of longevity basis risk, is 

about £87.5 million (= 250 × 35%).  

 

Table 7.1 Qualitative assessment of longevity risk reduction (in % of initial 

longevity risk, in terms of 99.5% VaR) 

 

Assessment Question Longevity Risk Reduction 

The pension plan has around 25,000 lives or more? Yes (50) or No (20) 

The book and reference populations are related demographically, e.g. the former 

is a general subset of the latter?  
+ a rank of 0 to 10 

The pace of reaching coherence between the book and reference populations is 

fast in the future? 
+ a rank of 0 to 10 

Mortality structural changes can affect the two populations’ future mortality 

significantly in the same direction? 
+ a rank of 0 to 10 

 

Besides a qualitative assessment as above, the level of longevity risk reduction may also be 

measured approximately in a simple, quantitative way. The idea is similar to the ‘rule-of-

thumb’ formula for calculating the diversification benefit for general insurance liabilities in 

Bateup and Reed (2001). Using the hedging results for males in Sections 4 to 6, we apply a 

simple linear regression to the risk reduction estimates (regarding the 99.5.% VaR) with the 

ten explanatory variables in Table 7.2. The first five variables refer to the pension plan and 

the hedging environment, and the others describe the model settings and assumptions. This 

approach provides a brief summary of the previous numerical results and takes all major 

factors into account simultaneously in a single equation. It is easy to understand and may 

serve as a quick guide for assessing the amount of risk reduction in an index-based longevity 

hedge. It can also be used as a rough check for those who want to perform detailed 

calculations with the technical information provided in Appendices I and II. There are, 

however, a number of limitations behind this approach. First, the computed coefficients of the 

regression depend mainly on the data and the models adopted, and they may not be applicable 

when other data and models are used. Second, although there are already 329 data points 

(cases) with ten explanatory variables, the cases simulated and the variables selected may not 

fully reflect all the underlying factors. In particular, the spread of the simulated cases between 

different variables is not even, which may result in certain biases in the results. Moreover, the 

use of linear relationships, without considering much about data transformations and potential 

interactions between variables, is admittedly an over-simplification of the real situation. 
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Users must be aware of all these limitations when taking this simple approach. The regression 

equation, based solely on the numerical results in Sections 4 to 6, is computed as (with 

explanatory variables 1x  to 10x ):  

54321  1662.0 8120.0 0784.0 0553.0 0644.00303.0  reduction risk   longevity xxxxx   

109876  0762.0 1217.0 1204.0 0.0219 0.0006 xxxxx   

subject to a minimum level of 0% and a maximum level of 100%. 

 

Table 7.2 Explanatory variables for measuring longevity risk reduction 

 

Explanatory Variable Interpretation 

(1) log portfolio size The larger the portfolio size, the smaller the sampling basis risk 

level, the larger the risk reduction estimate 

(2) 1: pensioners / 2: IMD groups 1 & 5 / 

3: IMD groups 2 & 4 / 4: IMD group 3 

As the data size of the book population and its demographic 

relationship to the reference population increases, the risk 

reduction estimate increases 

(3) 1: tailored hedging / 2: less tailored 

hedging / 3: approximate hedging 

The less precise the hedging scheme, the smaller the risk reduction 

estimate 

(4) interest rate Assuming the interest rate is constant, the higher the interest rate, 

the smaller the risk reduction estimate 

(5) 1: swaps / 2: q-forwards Optimising both the present value and individual cash flows, using 

q-forwards leads to a smaller risk reduction estimate 

(6) 0: another model / 1: M7-M5  The risk reduction estimate depends on the model adopted 

(7) 0: another model / 1: CAE+Cohorts The risk reduction estimate depends on the model adopted 

(8) 1: residuals bootstrapping /                  

2: parametric simulation 

Using parametric simulation, instead of residuals bootstrapping, 

ignores parameter error and understates longevity basis risk, 

resulting in a larger risk reduction estimate 

(9) 1: original / 2: structural changes 

Further incorporating mortality structural changes that affect the 

two populations’ future mortality significantly in the same 

direction leads to a larger risk reduction estimate 

(10) 1: low AR order / 2: higher AR 

order 

Assuming the book component has bounded future variability, the 

higher the autoregressive order, the slower the convergence of the 

time series process, the smaller the risk reduction estimate 

 

Now consider another hypothetical case study below of a pension plan of 30,000 male lives 

with multiple cohorts. The plan’s longevity risk (99.5% VaR minus the mean of the present 

value of all future cash outflows) is estimated to be about £250 million. The book population 

is a small, unique subset of the reference population. Standardised longevity swaps are 

calibrated closely to the demographic structure of the pension plan. The interest rate is 

assumed to be 2% p.a. flat. The CAE+Cohorts modelling assumption and residuals 

bootstrapping are selected, in which the coherence property holds and the book component’s 

time series process has a high autoregressive order, as it is expected that the two populations’ 



84 

 

mortality trends would deviate for a short while but move more closely with each other in the 

long term. It is further assumed that possible structural changes because of medical advances 

could impact on the two populations’ future mortality significantly in the same direction. 

Consequently, the overall risk reduction level is estimated to be 66%, and the plan’s residual 

longevity risk after hedging, due to the presence of longevity basis risk, is around £85 million 

(= 250 × 34%): 

        02.0 8120.01 0784.01 0553.030000ln 0644.00303.0  reduction risk   longevity   

            66.02 0762.02 1217.01 1204.01 0.02190 0.00061 1662.0   

 

The qualitative and quantitative assessment methods above are straightforward to understand 

and apply in practice. But it is very important to note that these quick guides are 

fundamentally a short summary of the numerical results in this report, which is model-

dependent and is specific to the datasets being modelled. Given suitable resources and 

required expertise, practitioners are encouraged to follow the precise technical details to build 

up their own models (M7-M5, CAE+Cohorts, or others) and perform more accurate 

calculations. It may also be practically feasible that a thorough longevity hedging valuation is 

conducted only once per every few years, during which a qualitative assessment table or a 

simple linear regression ‘rule-of-thumb’ formula can be developed from the previous 

valuation for temporary use. Similarly, regulators may collect data from a wide range of 

pension plans and annuity portfolios and form these assessment guidelines as a general 

reference for index-based hedging exercises in the industry.  

 

7.2 Practical issues 

 

Ever since the very first pension buy-in was transacted in 2007, there has been much 

development in the UK life market regarding de-risking solutions. Figure 7.1 shows that the 

market has grown in size significantly over the period. From 2011 to 2015, the average 

annual volume of pension buy-ins, buy-outs, and longevity swaps has reached more than £18 

billion (LCP 2016). This size, however, is only about 1.5% of the total private sector defined 

benefit pension assets, which is estimated to be around £1.2 trillion. Despite the recent strong 

growth, it is clear that there is still plenty of room for the market to develop in the coming 

years. Besides the UK, a few other countries like Ireland, the Netherlands, Switzerland, 

Canada, and the US have also seen some growth in their de-risking markets. Although 

regulations and market practices vary from country to country, there exist many opportunities 

for companies in different countries to de-risk their pension plans.  

 

As pension plans mature over time and manage to reduce investment, interest rate, and 

inflation risks, longevity risk becomes the key risk for pension plan sponsors. From 2006 to 

2015, the asset proportion in equities has reduced by about half, while the proportion in gilts, 

bonds, and other matching assets has nearly doubled (PIC 2015). A shift from these fixed 

interest investments to buy-ins, buy-outs, and longevity swaps can reasonably be regarded as 
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a sensible next stage for many pension plans. Moreover, apart from reducing longevity risk, 

de-risking can also lead to stronger corporate governance and reduced operational costs. 

These additional benefits would particularly be appreciated by those sponsors of smaller 

pension plans who want to avoid spending the time and resources required in managing their 

plans.  

 

Figure 7.1 Buy-ins, buy-outs, and longevity swaps volumes from 2007 to 2015 

 

 

 

Currently, under a falling interest rate environment, most pension plans have substantial 

deficits on their books. Only around 10% of the FTSE 100 companies’ pension plans are over 

80% funded compared to their buy-out costs (LCP 2016). For those smaller pension plans 

that belong to large institutions with significant cash balances, a full buy-out would be a 

feasible option, leading to savings in operational costs and higher business flexibility. On the 

other hand, for larger pension plans, a buy-out would usually be too expensive; instead, a 

phased approach involving a series of well-timed buy-ins could be more flexible and cost-

effective. Furthermore, for large pension plans which have the resources to maintain an 

internal investment strategy and manage their own investment, interest rate, and inflation 

risks, longevity swaps represent a decent alternative, in which only longevity risk is hedged. 

As noted above, there is a huge potential for the de-risking market to continue to grow. 

Looking forward, when the general funding levels improve, and also when de-risking tools 

become more widely affordable and more innovative solutions appear in the market, the buy-

in, buy-out, and longevity swap market will have a great chance to flourish.  

 

On the supply side, insurers and reinsurers had been quite conservative in accepting longevity 

risk. Recently, a number of events appear to have changed their appetite for this risk. First, 

there has been a sudden drop in the sale of individual annuities since the 2014 Budget was 

released. Consequently, insurers attempt to alleviate the problem by shifting the attention and 

capacity to pension plans. Second, reinsurers show stronger interest in recent years, in which 

those in the de-risking market generally have more mortality risk than longevity risk and so 

assuming longevity risk from pension plans can offer them diversification benefits. Moreover, 
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as Solvency II has finally settled down in 2016, after considerable effort in lobbying and 

creating innovative approaches in pricing and capital modelling, many insurers can now 

renew their focus and risk appetite and find access to new capital. Note that under Solvency 

II, insurers are required to match their asset and liability cash flows closely, and they are 

encouraged to implement more longevity risk hedging than previously. As a result, 

reinsurers’ involvement in the transfer of longevity risk has enhanced prominently.    

 

In spite of the increased insurer and reinsurer capacity, the demand for longevity risk transfer 

from pension plans is expected to continue to grow, and may exceed the supply and drive up 

the prices at some point. More capital is then needed in order to maintain a sufficient level of 

supply, and index-based solutions and standardised products could be the key to open up the 

gate to the wider capital market. Compared to most longevity transactions to date which have 

mainly been bespoke in nature, index-based longevity- or mortality-linked securities and 

derivatives are more transparent and standardised, and could draw more interest from both 

inside and outside the insurance industry. Market investors may take on longevity risk from 

insurers and pension plans in exchange for appropriate risk-adjusted returns. Some may use 

external longevity exposures to offset their own mortality exposures. Others may also 

diversify their investment portfolios over a new longevity asset class, which is arguably 

uncorrelated with traditional asset classes. Then with access to extra capital, index-based 

products can be priced competitively amongst insurers, resulting in lower costs for pension 

plans in using these products. A notable recent example (though there have been only a few 

indexed-based transactions so far) is the €12 billion longevity swap provided by Deutsche 

Bank to Dutch insurer Aegon, announced in 2012, in which the reference population was set 

as the Dutch population and the trade was targeted at capital market investors specifically.  

 

Nevertheless, there are a number of concerns in adopting index-based hedging solutions. 

Firstly, longevity risk has a very long-term nature, and market investors would find it highly 

uncertain, especially when they are unfamiliar with the assessment of this risk. For instance, 

the Dutch population-based longevity swap transaction in 2012 was limited to 20 years, 

reflecting the market’s perception on the potential open-ended losses. It would take some 

time for the market to build up a better understanding of longevity risk. Secondly, from the 

hedger’s perspective, the presence of longevity basis risk means that an index-based hedge 

will be imperfect and there will be residual longevity risk. The main purpose of this report is 

to address this concern – according to the previous numerical results, using a range of model 

settings and industry datasets, the risk reduction level is computed to be around 50% to 80% 

for a large portfolio. This risk reduction effect has the potential to enable a reduction in 

capital for insurers, either through greater confidence in their own pricing or possibly 

favourable treatment from the regulator. But it is of critical importance to further test the 

index-based solutions extensively on more data and scenarios to identify how exactly they 

can help in capital assessment and pricing exercise, and also communicate the results 

properly with different stakeholders. Insurers may then be interested in working with 
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consultants to discuss with the regulator on what relief may be given, how to assess the 

impact on capital requirements, and what further steps are needed to gain the relief. If 

improvements in capital requirements turn out to be possible, insurers and consultants can 

work together to explain to the clients about the hedging mechanism and obtain the best 

pricing for the clients. Investment banks may also use the findings to assist in pricing hedging 

products or structured investment products and help them market the products to potential 

market investors.  

 

Finally, it would be practically useful to have some standardisation on the key factors that 

determine how much longevity basis risk is present in an index-based hedge, and also some 

sensitivity analysis and scenario testing conducted to examine the impact of potential 

variations in the future. Sections 5 and 6 (sensitivity testing) and Subsection 7.1 (simple 

qualitative and quantitative assessments) have already made an initial attempt to propose 

some solutions for these problems. Further research is called for to test other models, data, 

and scenarios and to identify a more thorough, standardised list of major factors driving 

longevity basis risk. 
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Appendix I Computation Algorithms 

 

M7-M5 Model 

 

The M7-M5 model has two major components: 

     R

tx

R

xt

R

tx

R

t

R

t

R

tx xxxxq ,3,

22

2,1,,   logit    ,    (A1) 

  B

tx

B

t

B

t

R

tx

B

tx xxqq ,2,1,,,  logit logit   ,      (A2) 

in which for the first component, R

txq ,  is the mortality rate of the reference population at age 

x  in year t , R

t 1, , R

t 2, , and R

t 3,  refer to the level, slope, and curvature respectively of the 

mortality curve across age in year t , and R

xt  represents the cohort effect of those lives born 

in year xt  . For the second component, the difference in the logit mortality rate between the 

book and reference populations, R

tx

B

tx qq ,, logit logit  , is modelled as a linear combination of 

B

t 1,  and B

t 2, , which are another two parameters for capturing the differences between the two 

populations in year t . The two model components are further denoted as R

tx,  and B

tx, . Note 

that 
x

xx
ages of no.

1
 and   

x

xx
22

ages of no.

1
 , and that there are three 

identifiability constraints 0
c

R

c , 0
c

R

cc , and 02 
c

R

cc  . These constraints are set 

to ensure that the cohort parameters have valid solutions. The mortality rates can then be 

deduced as: 
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
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R
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B

tx

R

tx

B

tx

R

tx

B

txB

txq



.     (A4) 

 

Assume that the force of mortality is constant within each age-time cell and so is equal to the 

central death rate. The random numbers of deaths at age x  in year t  of the reference and 

book populations are modelled as: 

 R

tx

R

tx

R

tx meD ,,,   Poisson ~ ,         (A5) 

 B

tx

B

tx

B

tx meD ,,,   Poisson ~ ,        (A6) 

where 
R

txe ,  and 
B

txe ,  are the corresponding central exposed to risk measures, and 
R

txm ,  and 
B

txm ,  

are the central death rates, which can be expressed as: 

     exp1 ln1 ln ,,,

R

tx

R

tx

R

tx qm  ,      (A7) 

     exp1 ln1 ln ,,,,

R

tx

B

tx

B

tx

B

tx qm   .      (A8) 
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Their log likelihood functions are: 

   
tx

R

tx

R

tx

R

tx

R

tx

R

tx

R

tx

R

tx

R dmemdedl
,

,,,,,,,  !ln lnln ,     (A9) 

   
tx

B

tx

B

tx

B

tx

B

tx

B

tx

B

tx

B

tx

B dmemdedl
,

,,,,,,,  !ln lnln ,     (A10) 

in which R

txd ,  and B

txd ,  are the observed numbers of deaths.  

 

Each parameter in equation (A1) is estimated using the updating equation 2

2






  ll  

(Brouhns et al. 2002). The iterative updating scheme for estimating the parameters is 

summarised as follows: 

(1)  Set all the initial parameter values ( R

t 1, , R

t 2, , R

t 3, , and R

c ) as zero and calculate R

tx,̂  

and R

txm ,
ˆ  for all x  and t , which are the fitted values computed by putting the 

parameter values into equations (A1) and (A7). 

(2) Update 
R

t 1,  for all t .  

(3) Recalculate 
R

tx,̂  and 
R

txm ,
ˆ  for all x  and t  and then update 

R

t 2,  for all t .  

(4) Recalculate 
R

tx,̂  and 
R

txm ,
ˆ  for all x  and t  and then update 

R

t 3,  for all t .  

(5) Recalculate R

tx,̂  and R

txm ,
ˆ  for all x  and t  and then update R

c  for all c .  

(6) Adjust R

t 1, , R

t 2, , R

t 3, , and R

c  for all t  and c  to incorporate the three identifiability 

constraints. 

(7)  Recalculate 
R

tx,̂  and 
R

txm ,
ˆ  for all x  and t  and then calculate 

Rl . 

(8) Repeat steps (2) to (7) until the improvement in 
Rl  is less than 

1110
. 

 

Taking the estimated parameters R

t 1,̂ , R

t 2,̂ , R

t 3,̂ , and R

c̂  from above as given, the parameters 

in equation (A2) are estimated via the updating equation 2

2






  ll  again and the 

iterative updating scheme below: 

(1)  Set all the initial parameter values (
B

t 1,  and 
B

t 2, ) as zero and calculate 
B

tx,̂  and 
B

txm ,
ˆ  

for all x  and t , which are the fitted values computed by putting the parameter values 

into equations (A2) and (A8). 

(2)  Update 
B

t 1,  for all t . 

(3) Recalculate 
B

tx,̂  and 
B

txm ,
ˆ  for all x  and t  and then update 

B

t 2,  for all t .  

(4) Recalculate 
B

tx,̂  and 
B

txm ,
ˆ  for all x  and t  and then calculate 

Bl . 

(5) Repeat steps (2) to (4) until the improvement in 
Bl  is less than 

1110
. 
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The various components in using the updating equations are derived as below (for 3 ,2 ,1i ): 
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The three constraints are imposed by finding the values of 1 , 2 , and 3  and then using 

them to adjust the parameters 
R

t 1, , 
R

t 2, , 
R

t 3, , and R

c  with the following equations: 
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t
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 xtR

t

R

t  322,2, 2 adjusted  ,       (A13) 

33,3, adjusted   R

t

R

t ,        (A14) 

   2321 adjusted xtxtR

xt

R

xt    .     (A15) 

 

Similar computation algorithms can readily be derived if the binomial distribution is used 

rather than the Poisson distribution. For instance, it may be assumed approximately that 

 R

tx

R

tx

R

tx qeD ,,,  ,   Binomial~  and  B

tx

B

tx

B

tx qeD ,,,  ,   Binomial~ , where R

txe ,  and B

txe ,  represent the 

initial exposed to risk measures instead, although these exposures are usually non-integers. 

 

CAE+Cohorts Model 

 

The CAE+Cohorts model also has two main components: 
R

tx

R

xt

R

t

R

x
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x

R

txq ,,  logit           (A16) 
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B
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tx qq ,,,  logit logit         (A17) 

in which for the first component, R

txq ,  is the mortality rate of the reference population at age 

x  in year t , R

x  describes the mortality schedule over age x , R

t  is called the mortality 

index which reflects the overall mortality improvement over time t , with R

x  as the age-

specific sensitivity measure, and R

xt  refers to the cohort effect of those lives born in year 

xt  . For the second component, the difference in the logit mortality rate between the book 

and reference populations, R

tx

B

tx qq ,, logit logit  , is modelled as another Lee-Carter structure 

with the parameters B

x , R

x , and B

t . The two model components are then denoted as R

tx,  

and 
B

tx, . Note that there are five identifiability constraints 1
x

R

x , 0
t

R

t , 0
c

R

c , 

  0 
c

R

ccc  , and 0
t

B

t , in which 
c

cc
cohorts of no.

1
. These constraints are set 

to make sure that the parameters have unique solutions. The mortality rates, numbers of 

deaths, central death rates, and (Poisson) log likelihood functions are treated in the same way 

as in equations (A3) to (A10). Similar computation algorithms can readily be derived if the 

binomial distribution is assumed instead of the Poisson distribution. 

 

Each parameter in equation (A16) is computed by the updating equation as above. The 

iterative updating scheme for parameter estimation is given below: 

(1)  Set the initial parameter values of all R

x  as the average (over time) logit mortality 

rate observed at age x , R

x  as 
ages of no.

1 , R

t  as zero, and R

c  as zero. Then calculate 

the fitted values 
R

tx,̂  and 
R

txm ,
ˆ  for all x  and t  by incorporating the parameter values 

into equations (A16) and (A7). 
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(2) Update R

x  for all x .  

(3) Recalculate R

tx,̂  and R

txm ,
ˆ  for all x  and t  and then update R

t  for all t .  

(4) Recalculate R

tx,̂  and R

txm ,
ˆ  for all x  and t  and then update R

x  for all x .  

(5) Recalculate R

tx,̂  and R

txm ,
ˆ  for all x  and t  and then update R

c  for all c .  

(6) Adjust R

x , R

x , R

t , and R

c  for all x , t , and c  to incorporate the first four 

identifiability constraints. 

(7)  Recalculate R

tx,̂  and R

txm ,
ˆ  for all x  and t  and then calculate 

Rl . 

(8) Repeat steps (2) to (7) until the improvement in Rl  is less than 1110 . 

 

Treating the computed parameters R

x̂ , R

x̂ , R

t̂ , and R

c̂  from above as given, the parameters 

in equation (A17) are computed via the same updating equation, with the iterative updating 

scheme as stated in the following: 

(1)  Set the initial parameter values of all B

x  as the average (over time) logit mortality 

rate observed at age x  minus R

x̂  and B

t  as zero. Then calculate the fitted values 
B

tx,̂  

and B

txm ,
ˆ  for all x  and t  by incorporating the parameter values into equations (A17) 

and (A8). 

(2)  Update B

x  for all x . 

(3) Recalculate 
B

tx,̂  and 
B

txm ,
ˆ  for all x  and t  and then update B

t  for all t .  

(4) Adjust B

x  and B

t  for all x  and t  to incorporate the last identifiability constraint. 

(5) Recalculate 
B

tx,̂  and 
B

txm ,
ˆ  for all x  and t  and then calculate 

Bl . 

(6) Repeat steps (2) to (5) until the improvement in 
Bl  is less than 

1110
. 

 

The different components of the updating equations are derived as follows: 
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The first four constraints are imposed by using the following equations: 

 
c
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x 
reffor  cohorts of no.

1

reffor  years of no.

1~ ,  (A18) 
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The last constraint is imposed with the equations below: 
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Residuals Bootstrapping 

 

To include both process error (variability in the time series) and parameter error (uncertainty 

in parameter estimation) in simulating future mortality rates, the residuals bootstrapping 

method (Koissi et al. 2006; Li 2014) is applied here. The bootstrapping procedure is detailed 

as follows: 

(1)  The residuals from fitting the M7-M5 model or CAE+Cohorts model to the actual 

data are resampled with replacement. The residuals are resampled for each age-time 

cell within all x  and t . Note that the standardised deviance residuals are calculated 

by the formulae      R

tx
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 for the 

reference and book populations respectively. The dispersion parameters are estimated 
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by the two formulae     
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dn  ( B

dn ) and R

pn  ( B

pn ) 

are the number of data points and the number of effective parameters of the reference 

(book) population. 

(2) The inverse functions of the residuals formulae above are used to turn the resampled 

residuals into a pseudo sample of the number of deaths,  iR

txd   

,  and  iB

txd   

, , for all x  and 

t , where  i  denotes the ith iteration or scenario. 

(3) The M7-M5 model or CAE+Cohorts model is fitted to the pseudo data sample from 

step (2) and the corresponding model parameters (  iR
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xt

  

 ,  iB

x

   ,  iB

t

   ) are computed using the iterative 

updating schemes noted earlier.  

(4) The time series processes are fitted to the temporal model parameters based on the 

pseudo data sample (  iR

t
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t

  

2, ,  iR

t

  

3, ,  iR

xt

  

 ,  iB

t

  

1, ,  iB

t

  

2, , or  iR

t

   ,  iR

xt
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from step (3) to simulate their future values over time.  

(5) Samples of future mortality rates,  iR

txq   

,  and  iB

txq   

, , for all x  and future t , are 

generated from incorporating the computed parameters and simulated values based on 

the pseudo data sample from steps (3) and (4) into equations (A1) and (A2) or (A16) 

and (A17). This set of future mortality rates represents one random future scenario.  

(6) Steps (1) to (5) are repeated to produce 5,000 random future scenarios.  

(7) For each random scenario, the future number of survivors in the pension portfolio 

over time is simulated as 
      iB

tx

iB

tx

iB

tx qll   

,

  

,

  

1,1 1  ,  Binomial~  .   

 

Approximation Methods 

 

Using Excel VBA, the computation time of residuals bootstrapping in generating 5,000 

random future scenarios can be up to a day or two. If the software R is used instead, the 

computation time is even longer, being about threefold in general. One possible way to speed 

up the process is by replacing some codes of the iterative updating schemes in Appendix II 

with certain matrix operations using in-built matrix functions in R. An alternative is to apply 

some approximate parameter estimation methods to replace the more precise iterative 

updating schemes. For instance, the M7-M5 model can be fitted first via a simple linear 

regression for each year t , like      R

tx

R

t

R

t

R

tx xxxxq 3,

22

2,1,,   logit    without the 

cohort parameter. Then taking the computed 
R

t 1,̂ , 
R

t 2,̂ , and 
R

t 3,̂  as given, the residuals for all 

x  and t  are fitted with another simple linear regression as   R

t

R

t

R

tx xxq 2,1,,
ˆ ˆlogit    

   R

txxx 3,

22
ˆ   c

R

ccI  , where cI  is an indicator variable which is one if xtc   

and zero otherwise. Afterwards, the book component’s parameters for each t  are estimated 
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via the equation   B

t

B

t

R

tx

B

tx xxq 2,1,,,  ˆlogit   , which is again a simple linear regression. 

Note that the central exposed to risk measures can be used as weights in the regression (i.e. 

weighted least squares) to improve the estimation. Furthermore, the semi-parametric 

bootstrapping method (Brouhns et al. 2005) can be adopted to simulate a pseudo sample of 

the number of deaths from the Poisson distribution with the observed number of deaths as the 

mean. Consequently, steps (1) to (3) of the previous residuals bootstrapping method are much 

simplified, and it is observed that the computation time can be shortened by more than half. It 

is also noted that this approximation method often gives rise to similar parameter values and 

risk reduction estimates to those produced by the more detailed original procedure. In the 

same way, for the CAE+Cohorts model, one may apply the singular value decomposition 

(SVD) (Lee and Carter 1992) or the principal component analysis (PCA) (Bell 1997) rather 

than the maximum likelihood to shorten the time in calculating the model parameters.  

 

Tail Risk Measures 

 

The value-at-risk (VaR) of a pension portfolio at confidence level   can be defined as: 

   
1VaR  XFX ,         (A29) 

in which X  is either the present value of future cash outflows or the individual cash outflow 

in a particular future year, and  •1

XF  is the inverse cumulative distribution function of X . 

For instance, the 99.5% VaR can be estimated as the sample 99.5th percentile in the 

simulation. The expected shortfall (conditional VaR) of a pension portfolio at confidence 

level   can then be stated as: 

   


1 

 
 VaR

1

1
ES





dpXX p .       (A30) 

Accordingly, the 99.5% expected shortfall is estimated as the sample mean of all the 

simulated values which exceed the sample 99.5th percentile. 

 

As noted in Dowd and Blake (2006), there are a number of reasons behind the wide 

acceptance of the VaR. Firstly, it can serve as a common risk measure for different types of 

risk positions, unlike traditional methods such as the duration, Greek letters, and portfolio 

theory. The VaR also allows one to aggregate the risk positions and focus on the whole 

portfolio. Moreover, it is probabilistic and provides a simple concept which can easily be 

understood. However, the VaR provides no information about the worst possible losses, and 

it can potentially cause moral hazard problems when traders try to ‘game’ around the VaR 

requirement. Furthermore, theoretically it is not subadditive (and so not coherent), which 

means that it does not take into account diversification benefits properly. In fact, the VaR is 

not associated with any set of risk measure axioms, and it implies risk-loving under the 

expected utility downside risk framework. 
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In contrast, the expected shortfall (conditional VaR) has more information about the extreme 

events, better theoretical properties, and more reasonable implications. First, it is coherent 

and subadditive, and so it allows for diversification benefits. It is also in line with some 

common applications in insurance such as the excess-of-loss reinsurance, which is a familiar 

concept to actuaries. From a practical perspective, it can easily be estimated from a large 

number of simulated scenarios, and at the same confidence level, it generally provides a more 

conservative estimate than the VaR does. Recently, banking regulations are gradually moving 

towards the use of the expected shortfall in calculating regulatory capital for market risk 

(Hull 2015). Finally, besides the expected shortfall, there are also other decent alternatives 

like spectral risk measures and distortion risk measures (Dowd and Blake 2006). 

 

Numerical Optimisation 

 

A simple numerical optimisation procedure can be adopted to minimise longevity risk (and 

also reduce structural basis risk) and so maximise hedge effectiveness under the simulated 

environment. The numerical algorithms used by different software may vary and lead to 

slightly different hedging results, and the choice depends on the user’s own preference. For 

the longevity swap in Subsection 4.1, the required notional amount of the swap is estimated 

from numerical optimisation with an objective to minimise the 99.5% VaR (minus the mean) 

of the present value of the aggregate pension portfolio position. As shown in the graph below, 

it is interesting to note that although the objective is based on the overall present value, it 

turns out that the risk reduction effect is still positive for the cash outflow of the aggregate 

position in each year, which is often not the case when using key q-duration (KQD) matching. 

In practice, other risk measures (e.g. the standard deviation and 99.5% expected shortfall as 

in Subsection 5.5) or a mix of different objectives (e.g. risk minimisation with a desired 

profitability level) may also be implemented, depending on the purpose of the analysis. 

 

Level of longevity risk reduction (in % of initial longevity risk) of individual cash flows 

100,000 UK male pensioners (basic materials; normal retirement; lower pension; M7-M5) 

 

 

 

For the two longevity swaps in Subsection 4.2, the required notional amounts of the two 

swaps are estimated in the same way. In this optimisation exercise, there are then two 

unknown quantities to determine in order to achieve a single objective. If longevity swaps for 

more cohorts and with different maturities are also available in the life market and being 
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included in the hedge, the numerical optimisation procedure can readily be extended to find 

the required notional amounts of using multiple swaps simultaneously. However, when the 

number of unknown quantities to be estimated increases, there may be a higher chance of 

getting a local optimum rather than the true global optimum. Some simple methods in 

practice to alleviate this problem include using other sensible starting values, applying 

alternative numerical algorithms, simplifying the model settings where possible, and 

rerunning the optimisation procedure with the previous solutions as the new starting values.  

 

The q-forwards and S-forwards in Subsection 5.4 have all maturities from 1 year to 25 years. 

In contrast to above, the forward contract of each maturity is calibrated separately by 

numerical optimisation with an objective to minimise the 99.5% VaR (minus the mean) of the 

cash outflow of the aggregate position in that particular year. Effectively, there are a total of 

25 notional amounts to be computed for the different maturities of the forward contracts. In 

addition, these forwards may further be combined with certain longevity swaps in the hedge, 

such that the forwards positions are catered more for the individual cash flows while the 

swaps positions are structured mainly for the overall present value. This mix of different 

derivatives and objectives has the potential to yield better hedge effectiveness.  

 

Analytical Formulae for Optimisation 

 

We derive some analytical formulae below to find the required notional amounts for the S-

forwards, q-forwards, and longevity swap when the objective is to minimise the variance but 

not the VaR of the aggregate position. Referring to the case study in Subsection 4.1, 

considering an infinitely large portfolio size, and using S-forwards instead, the cash outflow 

of the net position at each time 25 , ... ,2 ,1t  per pensioner at 0t  can be expressed as: 

   forward ;

65 65 65        position hedged CF R

t

R

tt

B

tt ppwp  . 

The term     B

tt

BBB

t qqqp 1,1651,660,6565 1 ... 1 1   is simulated as in Subsection 3.4 for the 

book population, under the assumption that the sampling variability in the future simulations 

is insignificant for a very large portfolio. So the variance of that cash outflow before hedging 

is  B

t p65 Var , and after hedging it becomes: 

       R

tt

R

t

B

tt

B

t

R

tt

B

t pwppwppwp 65 

2

65 65 65 65 65 Var  , Cov 2Var  Var  . 

The weight tw  of the S-forward that minimises the variance is found by differentiating the 

equation above and then setting it to zero, which gives    R

t

R

t

B

tt pppw 65 65 65 Var , Cov  and a 

longevity risk (variance) reduction of   2 

65 65  , Cor R

t

B

t pp . This analytical result has two 

important implications. First, the larger the correlation (in magnitude) between B

t p65  and R

t p65 , 

the higher the level of longevity risk (variance) reduction. Second, this value of tw  can be 

used as a starting value for numerical optimisation when the objective is based on other risk 

measures and a similar solution cannot be derived analytically.  
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Alternatively, for a q-forward, the weight is    R

tt

R

tt

B

tt qqpw 1,1651,16565 Var , Cov   and 

the risk reduction is   2 

1,16565  , Cor R

tt

B

t qp  . If a longevity swap is used as in Subsection 4.1, 

the present value of the aggregate position per pensioner at 0t  is equal to: 

      









25

1

forward ;

65 65 

25

1

 

65 1    1  portfolio hedged PV
t

tR

t

R

t

t

tB

t ippwip . 

Similarly, the weight w  of the swap that minimises the variance is derived as 

        












25

1 65 

25

1 65 

25

1 65 1  Var  1  , 1  Cov
t

tR

tt

tR

tt

tB

t ipipipw , which results in a 

longevity risk (variance) reduction of      2 25

1 65 

25

1 65  1  , 1  Cor  








t

tR

tt

tB

t ipip . Note that 

all the variance and covariance terms can be estimated directly from the simulated samples. 

 

Key q-Duration Matching 

 

The key q-duration (KQD) is defined as (Li and Luo 2012): 

ratemortality  future particular a of estimatebest in  

luepresent va of estimatebest in  
KQD




 .   (A31) 

Considering the case study in Subsection 4.1, the random present value of future cash 

outflows of the pension portfolio for the next 25 years is expressed as: 

   




 
25

1

 

,65 1  portfolio unhedged PV
t

tB

tt il .  

Suppose q-forwards are available at key ages of 70, 75, 80, and 85 (i.e. maturities of 6, 11, 16, 

and 21 years). The random present value of future payoff (as a fixed rate receiver; based on 

the reference population) of a q-forward linked to key age 70 for the same birth cohort as the 

pensioners is stated as: 

     6 

5,70

forward ;

5,70 1  instrument hedging PV


 iqq RR
. 

The random present values of the q-forwards for the other key ages are defined similarly. 

Note that for demonstration purposes the forward mortality rates 
forward ;

,

R

txq  are calculated from 

the best (central) estimates of future mortality rates, i.e. setting all the time series error terms 

to zero in the central projection. 

 

Then the random present value of the aggregate position after taking the longevity hedge is:  

      










 
20,15,10,5

1

,65

forward ;

,65

25

1

 

,65 1  1  portfolio hedged PV
t

tR

tt

R

ttt

t

tB

tt iqqwil . 

The weights tw  are the notional amounts of the four q-forwards and are calculated by 

equating the KQD of each q-forward position and the KQD of the portfolio to be hedged at 

each key age in turn: 

B

ttq
t

,65 of estimatebest in   

portfolio of luepresent va of estimatebest in   
56 agekey at   portfolio of KQD




 , 
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B

ttq

q-
tq-

,65 of estimatebest in   

forward of luepresent va of estimatebest in   
 56 agekey   tolinked forward of KQD




 , 

 
56 agekey   tolinked forward of KQD

56 agekey at   portfolio of KQD

tq-

t
wt




 . 

Note that the q-forward KQD with respect to B

ttq ,65  above can be estimated by the q-forward 

KQD with respect to R

ttq ,65  (i.e.   1
1




t
i ) multiplied with an adjustment factor. The 

adjustment factor can be approximately calculated as the slope of plotting the simulated 
R

ttq ,65  values against the simulated B

ttq ,65  values. Using these weights, the aggregate position 

after taking the longevity hedge has an overall KQD of zero at each key age. That is, roughly 

speaking, a small deviation in a future mortality rate from expected would have little or no 

impact on the hedged portfolio. Even when the deviation is large, the longevity hedge would 

still reduce the resulting impact to some extent, though the precise effects would vary with 

the underlying conditions. 

 

However, we find that while this KQD matching strategy can lead to reasonable hedge 

effectiveness regarding the present value of the aggregate position, it does not necessarily 

result in proper risk reduction for the individual cash flows. Based on our simulations, there 

are often very mixed results and rather offsetting effects between the cash flows in different 

years. More research is needed to inspect further on the practical limitations of this method. 

 

Time Series Processes 

 

Consider a multivariate time series of 1,tk , 2,tk , 3,tk , … , ntk ,  over time t . A multivariate 

random walk with drift (MRWD) for the n-dimensional time series is defined as:  
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The parameters jd  for nj  , ... ,3 ,2 ,1  are the drift terms, and jt ,  are the multivariate normal 

error terms with mean zero and covariance matrix   (with variances 
2

, j  and covariances 

ji,,  for nji  , ... ,3 ,2 ,1,  ). The drift term jd  and variance 
2

, j  are estimated as the sample 

mean and sample variance of the first differences jtjtjt kkk ,1,,  . The covariance ji,,  is 

estimated as the sample covariance between itk ,  and jtk , . (Alternatively, to avoid the drift 

term being solely determined by the starting and ending observed values, a multivariate linear 
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regression may be applied to 
1,tk , 2,tk , 3,tk , … , ntk ,  against time and the slopes are taken as 

the drift parameters.) When 1n , the MRWD reduces to a univariate random walk with drift 

(RWD), and if further 01 d , it becomes a random walk without drift (RW). When all 

0,, ji , the MRWD reduces to a set of independent univariate RWD processes.  

 

Furthermore, a vector autoregressive integrated moving average process, VARIMA(1,1,0), is 

defined as:  
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The parameters 0,i  for ni  , ... ,3 ,2 ,1  are the constant terms, ji ,  for nji  , ... ,3 ,2 ,1,   are 

the autoregressive parameters, and it ,  are the multivariate normal error terms with mean zero 

and covariance matrix   (with variances 
2

,i  and covariances ji,,  for nji  , ... ,3 ,2 ,1,  ). 

The model parameters can be computed by maximising the conditional likelihood function 

(Tsay 2002). In practice, for convenience, the parameters can also be estimated from 

performing a simple linear regression of itk ,  on the vector  ... , , 2,11,1   tt kk  for each 

ni  , ... ,3 ,2 ,1  in turn. The parameters 0,i  and 1,i , 2,i , … are then taken as the calculated 

intercept and coefficients of the regression line, and 
2

,i  is estimated as the variance of the 

regression error term. Then the covariance ji,,  can simply be estimated as the sample 

covariance between the residuals from the regressions of itk ,  and jtk , .  

 

When 1n , the VARIMA(1,1,0) reduces to a univariate autoregressive integrated moving 

average process, ARIMA(1,1,0). If the first differencing is not adopted, i.e. itk ,  is used 

instead of itk ,  in the model structure, the process becomes a vector autoregressive process 

of order one, VAR(1), and if further 1n , it reduces to an autoregressive process of order 

one, AR(1). In addition, an autoregressive process of order p , AR(p), is a generalisation of 

the AR(1), in which the univariate tk  is expressed as a linear function of 1tk , 2tk , … , ptk  . 

In theory, the order p  can be determined by inspecting the Akaike information criterion 

(AIC), Bayesian information criterion (BIC), partial autocorrelation function (PACF), and 

residuals’ randomness. But since the data length of the book population is short and there is a 

need to ensure weak stationarity and so the coherence (Subsection 6.3), some arbitrary 

judgement would be required to choose the order p  when the AR(p) is used for the book. 
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Appendix II Excel VBA Coding 

 

The following is a demonstration of how the key computation algorithms in Appendix I can 

be programmed with Excel VBA. Suppose the age range is 60 to 89, the data period of the 

reference population is 1980 to 2013, and the data period of the book population is 2000 to 

2013.  

 

M7-M5 Model 

 

Let dref(x,t), eref(x,t), mref(x,t), qref(x,t), etaref(x,t), resref(x,t), k1ref(t), k2ref(t), k3ref(t), 

and gref(c) denote R

txd , , R

txe , , R

txm , , R

txq , , R

tx, , R

txr , , R

t 1, , R

t 2, , R

t 3, , and R

c  respectively for the 

reference component, and let dbook(x,t), ebook(x,t), mbook(x,t), qbook(x,t), etabook(x,t), 

resbook(x,t), k1book(t), and k2book(t) refer to 
B

txd , , 
B

txe , , 
B

txm , , 
B

txq , , 
B

tx, , 
B

txr , , 
B

t 1, , and 
B

t 2,  

for the book component. The Excel VBA codes for fitting the M7-M5 model are given below. 

 

' set initial values of reference kappa1, kappa2, kappa3, gamma 

 

For t = 1980 To 2013 

k1ref(t) = 0 

k2ref(t) = 0 

k3ref(t) = 0 

Next t 

 

For c = 1891 To 1953 

gref(c) = 0 

Next c 

 

' iteratively update values of reference kappa1, kappa2, kappa3, gamma 

 

lnLref = -10000000 

lnLpreref = -11000000 

Do Until lnLref - lnLpreref < 0.00000000001 

 

' update reference kappa1 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = qref(x, t) 

d2m(x, t) = Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 
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For t = 1980 To 2013 

dl = 0 

d2l = 0 

For x = 60 To 89 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

Next x 

k1ref(t) = k1ref(t) - dl / d2l 

Next t 

 

' update reference kappa2 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = (x - 74.5) * qref(x, t) 

d2m(x, t) = (x - 74.5) ^ 2 * Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 

 

For t = 1980 To 2013 

dl = 0 

d2l = 0 

For x = 60 To 89 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

Next x 

k2ref(t) = k2ref(t) - dl / d2l 

Next t 

 

' update reference kappa3 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = ((x - 74.5) ^ 2 - 2247.5 / 30) * qref(x, t) 

d2m(x, t) = ((x - 74.5) ^ 2 - 2247.5 / 30) ^ 2 * Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 

 

For t = 1980 To 2013 

dl = 0 

d2l = 0 

For x = 60 To 89 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

Next x 
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k3ref(t) = k3ref(t) - dl / d2l 

Next t 

 

' update reference gamma 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = qref(x, t) 

d2m(x, t) = Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 

 

For c = 1891 To 1953 

dl = 0 

d2l = 0 

For x = 60 To 89 

For t = 1980 To 2013 

If c = t - x Then 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

End If 

Next t 

Next x 

gref(c) = gref(c) - dl / d2l 

Next c 

 

' incorporate reference cohort constraints 

 

sumc = 0 

sumc1 = 0 

sumc2 = 0 

sumc3 = 0 

sumc4 = 0 

sumg = 0 

sumcg = 0 

sumc2g = 0 

For c = 1891 To 1953 

sumc = sumc + 1 

sumc1 = sumc1 + c 

sumc2 = sumc2 + c ^ 2 

sumc3 = sumc3 + c ^ 3 

sumc4 = sumc4 + c ^ 4 

sumg = sumg + gref(c) 

sumcg = sumcg + c * gref(c) 

sumc2g = sumc2g + c ^ 2 * gref(c) 

Next c 
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cmatrix(1, 1) = sumc 

cmatrix(1, 2) = sumc1 

cmatrix(1, 3) = sumc2 

cmatrix(2, 1) = sumc1 

cmatrix(2, 2) = sumc2 

cmatrix(2, 3) = sumc3 

cmatrix(3, 1) = sumc2 

cmatrix(3, 2) = sumc3 

cmatrix(3, 3) = sumc4 

 

gvector(1, 1) = sumg 

gvector(2, 1) = sumcg 

gvector(3, 1) = sumc2g 

 

lambda = WorksheetFunction.MMult(WorksheetFunction.MInverse(cmatrix), gvector) 

 

For t = 1980 To 2013 

k1ref(t) = k1ref(t) + lambda(1, 1) + lambda(2, 1) * (t - 74.5) + lambda(3, 1) * ((t - 74.5) ^ 2 + 2247.5 / 30) 

k2ref(t) = k2ref(t) - lambda(2, 1) - 2 * lambda(3, 1) * (t - 74.5) 

k3ref(t) = k3ref(t) + lambda(3, 1) 

Next t 

 

For c = 1891 To 1953 

gref(c) = gref(c) - lambda(1, 1) - lambda(2, 1) * c - lambda(3, 1) * c ^ 2 

Next c 

 

' calculate reference log likelihood 

 

lnLpreref = lnLref 

lnLref = 0 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

lnLref = lnLref + dref(x, t) * WorksheetFunction.Ln(eref(x, t)) + dref(x, t) * WorksheetFunction.Ln(mref(x, t)) - 

eref(x, t) * mref(x, t) - WorksheetFunction.GammaLn(dref(x, t) + 1) 

Next t 

Next x 

 

Loop 

 

' set initial values of book kappa1, kappa2 

 

For t = 2000 To 2013 

k1book(t) = 0 

k2book(t) = 0 

Next t 
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' iteratively update values of book kappa1, kappa2 

 

lnLbook = -10000000 

lnLprebook = -11000000 

Do Until lnLbook - lnLprebook < 0.00000000001 

 

' update book kappa1 

 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

etabook(x, t) = k1book(t) + (x - 74.5) * k2book(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 

dm(x, t) = qbook(x, t) 

d2m(x, t) = Exp(-etabook(x, t) - etaref(x, t)) * qbook(x, t) ^ 2 

Next t 

Next x 

 

For t = 2000 To 2013 

dl = 0 

d2l = 0 

For x = 60 To 89 

dl = dl + (dbook(x, t) / mbook(x, t) - ebook(x, t)) * dm(x, t) 

d2l = d2l + dbook(x, t) * (mbook(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mbook(x, t) ^ 2 - ebook(x, t) * d2m(x, t) 

Next x 

k1book(t) = k1book(t) - dl / d2l 

Next t 

 

' update book kappa2 

 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

etabook(x, t) = k1book(t) + (x - 74.5) * k2book(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 

dm(x, t) = (x - 74.5) * qbook(x, t) 

d2m(x, t) = (x - 74.5) ^ 2 * Exp(-etabook(x, t) - etaref(x, t)) * qbook(x, t) ^ 2 

Next t 

Next x 

 

For t = 2000 To 2013 

dl = 0 

d2l = 0 

For x = 60 To 89 

dl = dl + (dbook(x, t) / mbook(x, t) - ebook(x, t)) * dm(x, t) 

d2l = d2l + dbook(x, t) * (mbook(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mbook(x, t) ^ 2 - ebook(x, t) * d2m(x, t) 

Next x 

k2book(t) = k2book(t) - dl / d2l 

Next t 
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' calculate book log likelihood 

 

lnLprebook = lnLbook 

lnLbook = 0 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

etabook(x, t) = k1book(t) + (x - 74.5) * k2book(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 

lnLbook = lnLbook + dbook(x, t) * WorksheetFunction.Ln(ebook(x, t)) + dbook(x, t) * 

WorksheetFunction.Ln(mbook(x, t)) - ebook(x, t) * mbook(x, t) - WorksheetFunction.GammaLn(dbook(x, t) + 1) 

Next t 

Next x 

 

Loop 

 

' calculate reference standardised residuals 

 

devref = 0 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

resref(x, t) = Sgn(dref(x, t) - eref(x, t) * mref(x, t)) * (2 * (dref(x, t) * WorksheetFunction.Ln(dref(x, t) / eref(x, t) 

/ mref(x, t)) - dref(x, t) + eref(x, t) * mref(x, t))) ^ 0.5 

devref = devref + resref(x, t) ^ 2 

Next t 

Next x 

disref = devref / (34 * 30 - (34 * 3 + 63 - 3)) 

 

For x = 60 To 89 

For t = 1980 To 2013 

resref(x, t) = resref(x, t) / disref ^ 0.5 

Next t 

Next x 

 

' calculate book standardised residuals 

 

devbook = 0 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

etabook(x, t) = k1book(t) + (x - 74.5) * k2book(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 

resbook(x, t) = Sgn(dbook(x, t) - ebook(x, t) * mbook(x, t)) * (2 * (dbook(x, t) * WorksheetFunction.Ln(dbook(x, 

t) / ebook(x, t) / mbook(x, t)) - dbook(x, t) + ebook(x, t) * mbook(x, t))) ^ 0.5 

devbook = devbook + resbook(x, t) ^ 2 

Next t 
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Next x 

disbook = devbook / (14 * 30 - 14 * 2) 

 

For x = 60 To 89 

For t = 2000 To 2013 

resbook(x, t) = resbook(x, t) / disbook ^ 0.5 

Next t 

Next x 

 

CAE+Cohorts Model 

 

Let dref(x,t), eref(x,t), mref(x,t), qref(x,t), etaref(x,t), resref(x,t), aref(x), bref(x), kref(t), and 

gref(c) refer to 
R

txd , , 
R

txe , , 
R

txm , , 
R

txq , , 
R

tx, , 
R

txr , , R

x , R

x , R

t , and R

c  for the reference 

component, and let dbook(x,t), ebook(x,t), mbook(x,t), qbook(x,t), etabook(x,t), resbook(x,t), 

abook(x), and kbook(t) denote B

txd , , B

txe , , B

txm , , B

txq , , B

tx, , B

txr , , B

x , and B

t  for the book 

component. The Excel VBA codes for fitting the CAE+Cohorts model are stated as follows. 

 

' set initial values of reference alpha, beta, kappa, gamma 

 

For x = 60 To 89 

aref(x) = 0 

bref(x) = 1 / 30 

For t = 1980 To 2013 

aref(x) = aref(x) + WorksheetFunction.Ln(dref(x, t) / (eref(x, t) + 0.5 * dref(x, t)) / (1 - dref(x, t) / (eref(x, t) + 0.5 

* dref(x, t)))) 

Next t 

aref(x) = aref(x) / 34 

Next x 

 

For t = 1980 To 2013 

kref(t) = 0 

Next t 

 

For c = 1891 To 1953 

gref(c) = 0 

Next c 

 

' iteratively update values of reference alpha, beta, kappa, gamma 

 

lnLref = -10000000 

lnLpreref = -11000000 

Do Until lnLref - lnLpreref < 0.00000000001 

 

' update reference alpha 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 
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qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = qref(x, t) 

d2m(x, t) = Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 

 

For x = 60 To 89 

dl = 0 

d2l = 0 

For t = 1980 To 2013 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

Next t 

aref(x) = aref(x) - dl / d2l 

Next x 

 

' update reference kappa 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = bref(x) * qref(x, t) 

d2m(x, t) = bref(x) ^ 2 * Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 

 

For t = 1980 To 2013 

dl = 0 

d2l = 0 

For x = 60 To 89 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

Next x 

kref(t) = kref(t) - dl / d2l 

Next t 

 

' update reference beta 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = kref(t) * qref(x, t) 

d2m(x, t) = kref(t) ^ 2 * Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 
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For x = 60 To 89 

dl = 0 

d2l = 0 

For t = 1980 To 2013 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

Next t 

bref(x) = bref(x) - dl / d2l 

Next x 

 

' update reference gamma 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

dm(x, t) = qref(x, t) 

d2m(x, t) = Exp(-etaref(x, t)) * qref(x, t) ^ 2 

Next t 

Next x 

 

For c = 1891 To 1953 

dl = 0 

d2l = 0 

For x = 60 To 89 

For t = 1980 To 2013 

If c = t - x Then 

dl = dl + (dref(x, t) / mref(x, t) - eref(x, t)) * dm(x, t) 

d2l = d2l + dref(x, t) * (mref(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mref(x, t) ^ 2 - eref(x, t) * d2m(x, t) 

End If 

Next t 

Next x 

gref(c) = gref(c) - dl / d2l 

Next c 

 

' incorporate reference constraints 

 

sumbref = 0 

For x = 60 To 89 

sumbref = sumbref + bref(x) 

Next x 

 

sumkref = 0 

For t = 1980 To 2013 

sumkref = sumkref + kref(t) 

Next t 

 

sumgref = 0 

For c = 1891 To 1953 

sumgref = sumgref + gref(c) 
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Next c 

 

For x = 60 To 89 

aref(x) = aref(x) + bref(x) * sumkref / 34 + sumgref / 63 

bref(x) = bref(x) / sumbref 

Next x 

 

For t = 1980 To 2013 

kref(t) = sumbref * (kref(t) - sumkref / 34) 

Next t 

 

For c = 1891 To 1953 

gref(c) = gref(c) - sumgref / 63 

Next c 

 

sum1 = 0 

sum2 = 0 

For t = 1980 To 2013 

sum1 = sum1 + (t - 1996.5) * kref(t) 

sum2 = sum2 + (t - 1996.5) ^ 2 

Next t 

g = sum1 / sum2 

 

sum1 = 0 

sum2 = 0 

For c = 1891 To 1953 

sum1 = sum1 + (c - 1922) * gref(c) 

sum2 = sum2 + (c - 1922) ^ 2 

Next c 

h = -30 * sum1 / sum2 

 

For x = 60 To 89 

aref(x) = aref(x) + h / 30 * (x - 74.5) 

bref(x) = g / (g - h) * bref(x) - h / 30 / (g - h) 

Next x 

 

For t = 1980 To 2013 

kref(t) = (g - h) / g * kref(t) 

Next t 

 

For c = 1891 To 1953 

gref(c) = gref(c) + h / 30 * (c - 1922) 

Next c 

 

' calculate reference log likelihood 

 

lnLpreref = lnLref 

lnLref = 0 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 
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qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

lnLref = lnLref + dref(x, t) * WorksheetFunction.Ln(eref(x, t)) + dref(x, t) * WorksheetFunction.Ln(mref(x, t)) - 

eref(x, t) * mref(x, t) - WorksheetFunction.GammaLn(dref(x, t) + 1) 

Next t 

Next x 

 

Loop 

 

' set initial values of book alpha, kappa 

 

For x = 60 To 89 

abook(x) = 0 

For t = 2000 To 2013 

abook(x) = abook(x) + WorksheetFunction.Ln(dbook(x, t) / (ebook(x, t) + 0.5 * dbook(x, t)) / (1 - dbook(x, t) / 

(ebook(x, t) + 0.5 * dbook(x, t)))) 

Next t 

abook(x) = abook(x) / 14 - aref(x) 

Next x 

 

For t = 2000 To 2013 

kbook(t) = 0 

Next t 

 

' iteratively update values of book alpha, kappa 

 

lnLbook = -10000000 

lnLprebook = -11000000 

Do Until lnLbook - lnLprebook < 0.00000000001 

 

' update book alpha 

 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

etabook(x, t) = abook(x) + bref(x) * kbook(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 

dm(x, t) = qbook(x, t) 

d2m(x, t) = Exp(-etabook(x, t) - etaref(x, t)) * qbook(x, t) ^ 2 

Next t 

Next x 

 

For x = 60 To 89 

dl = 0 

d2l = 0 

For t = 2000 To 2013 

dl = dl + (dbook(x, t) / mbook(x, t) - ebook(x, t)) * dm(x, t) 

d2l = d2l + dbook(x, t) * (mbook(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mbook(x, t) ^ 2 - ebook(x, t) * d2m(x, t) 

Next t 

abook(x) = abook(x) - dl / d2l 
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Next x 

 

' update book kappa 

 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

etabook(x, t) = abook(x) + bref(x) * kbook(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 

dm(x, t) = bref(x) * qbook(x, t) 

d2m(x, t) = bref(x) ^ 2 * Exp(-etabook(x, t) - etaref(x, t)) * qbook(x, t) ^ 2 

Next t 

Next x 

 

For t = 2000 To 2013 

dl = 0 

d2l = 0 

For x = 60 To 89 

dl = dl + (dbook(x, t) / mbook(x, t) - ebook(x, t)) * dm(x, t) 

d2l = d2l + dbook(x, t) * (mbook(x, t) * d2m(x, t) - dm(x, t) ^ 2) / mbook(x, t) ^ 2 - ebook(x, t) * d2m(x, t) 

Next x 

kbook(t) = kbook(t) - dl / d2l 

Next t 

 

' incorporate book constraint 

 

sumkbook = 0 

For t = 2000 To 2013 

sumkbook = sumkbook + kbook(t) 

Next t 

 

For x = 60 To 89 

abook(x) = abook(x) + bref(x) * sumkbook / 14 

Next x 

 

For t = 2000 To 2013 

kbook(t) = kbook(t) – sumkbook / 14 

Next t 

 

' calculate book log likelihood 

 

lnLprebook = lnLbook 

lnLbook = 0 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

etabook(x, t) = abook(x) + bref(x) * kbook(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 
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lnLbook = lnLbook + dbook(x, t) * WorksheetFunction.Ln(ebook(x, t)) + dbook(x, t) * 

WorksheetFunction.Ln(mbook(x, t)) - ebook(x, t) * mbook(x, t) - WorksheetFunction.GammaLn(dbook(x, t) + 1) 

Next t 

Next x 

 

Loop 

 

' calculate reference standardised residuals 

 

devref = 0 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mref(x, t) = -WorksheetFunction.Ln(1 - qref(x, t)) 

resref(x, t) = Sgn(dref(x, t) - eref(x, t) * mref(x, t)) * (2 * (dref(x, t) * WorksheetFunction.Ln(dref(x, t) / eref(x, t) 

/ mref(x, t)) - dref(x, t) + eref(x, t) * mref(x, t))) ^ 0.5 

devref = devref + resref(x, t) ^ 2 

Next t 

Next x 

disref = devref / (34 * 30 - (34 + 30 * 2 + 63 - 4)) 

 

For x = 60 To 89 

For t = 1980 To 2013 

resref(x, t) = resref(x, t) / disref ^ 0.5 

Next t 

Next x 

 

' calculate book standardised residuals 

 

devbook = 0 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

etabook(x, t) = abook(x) + bref(x) * kbook(t) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mbook(x, t) = -WorksheetFunction.Ln(1 - qbook(x, t)) 

resbook(x, t) = Sgn(dbook(x, t) - ebook(x, t) * mbook(x, t)) * (2 * (dbook(x, t) * WorksheetFunction.Ln(dbook(x, 

t) / ebook(x, t) / mbook(x, t)) - dbook(x, t) + ebook(x, t) * mbook(x, t))) ^ 0.5 

devbook = devbook + resbook(x, t) ^ 2 

Next t 

Next x 

disbook = devbook / (14 * 30 - (14 + 30 - 1)) 

 

For x = 60 To 89 

For t = 2000 To 2013 

resbook(x, t) = resbook(x, t) / disbook ^ 0.5 

Next t 

Next x 
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Time Series Processes 

 

The following Excel VBA codes are written for fitting the time series processes under the 

M7-M5 model, in which simply the method of moments and the ordinary least squares are 

used. More sophisticated methods like the conditional maximum likelihood may also be 

adopted. Note that some values in the intermediate calculation steps are temporarily recorded 

in the worksheet for convenience. The terms below are rather self-explanatory; for example, 

k1driftref, k1sdref, and cor12ref refer to 1d , 
1, , and 

2,1,  of the multivariate random walk 

with drift (MRWD); gconref, garref, and gsdref represent 0 , 1 , and   of the 

autoregressive integrated moving average process, ARIMA(1,1,0); and k1conbook, 

k1ar1book, k1ar2book, k1sdbook, and corbook denote 0,1 , 1,1 , 2,1 , 1, , and 2,1,  of the 

vector autoregressive process of order one, VAR(1). 

 

' fit MRWD to reference kappa1, kappa2, kappa3 

 

For t = 1981 To 2013 

Cells(t - 1980, 1) = k1ref(t) - k1ref(t - 1) 

Cells(t - 1980, 2) = k2ref(t) - k2ref(t - 1) 

Cells(t - 1980, 3) = k3ref(t) - k3ref(t - 1) 

Next t 

 

dk1ref = Range("A1:A33") 

dk2ref = Range("B1:B33") 

dk3ref = Range("C1:C33") 

 

k1driftref = WorksheetFunction.Average(dk1ref) 

k2driftref = WorksheetFunction.Average(dk2ref) 

k3driftref = WorksheetFunction.Average(dk3ref) 

k1sdref = WorksheetFunction.StDev(dk1ref) 

k2sdref = WorksheetFunction.StDev(dk2ref) 

k3sdref = WorksheetFunction.StDev(dk3ref) 

cor12ref = WorksheetFunction.Correl(dk1ref, dk2ref) 

cor13ref = WorksheetFunction.Correl(dk1ref, dk3ref) 

cor23ref = WorksheetFunction.Correl(dk2ref, dk3ref) 

 

' fit ARIMA(1,1,0) to reference gamma 

 

For c = 1892 To 1953 

Cells(c - 1891, 4) = gref(c) - gref(c - 1) 

Next c 

 

xref = Range("D1:D61") 

yref = Range("D2:D62") 

 

fitref = WorksheetFunction.LinEst(yref, xref, True, True) 

gconref = fitref(1, 2) 

garref = fitref(1, 1) 
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gsdref = fitref(3, 2) 

 

' fit VAR(1) to book kappa1, kappa2 

 

For t = 2000 To 2013 

Cells(t - 1999, 5) = k1book(t)  

Cells(t - 1999, 6) = k2book(t)  

Next t 

 

xbook = Range("E1:F13") 

y1book = Range("E2:E14") 

y2book = Range("F2:F14") 

 

fit1book = WorksheetFunction.LinEst(y1book, xbook, True, True) 

k1conbook = fit1book(1, 3) 

k1ar1book = fit1book(1, 2) 

k1ar2book = fit1book(1, 1) 

k1sdbook = fit1book(3, 2) 

 

fit2book = WorksheetFunction.LinEst(y2book, xbook, True, True) 

k2conbook = fit2book(1, 3) 

k2ar1book = fit2book(1, 2) 

k2ar2book = fit2book(1, 1) 

k2sdbook = fit2book(3, 2) 

 

corbook = 0 

For t = 2001 To 2013 

corbook = corbook + (k1book(t) - k1conbook - k1ar1book * k1book(t - 1) - k1ar2book * k2book(t - 1)) * 

(k2book(t) - k2conbook - k2ar1book * k1book(t - 1) - k2ar2book * k2book(t - 1)) 

Next t 

corbook = corbook / (13 - 2 * 1 - 1) / k1sdbook / k2sdbook 

 

The Excel VBA codes below are written for fitting the time series processes under the 

CAE+Cohorts model. The notation is again self-explanatory. 

 

' fit RWD to reference kappa 

 

For t = 1981 To 2013 

Cells(t - 1980, 1) = kref(t) - kref(t - 1) 

Next t 

 

dkref = Range("A1:A33") 

 

kdriftref = WorksheetFunction.Average(dkref) 

ksdref = WorksheetFunction.StDev(dkref) 

 

' fit ARIMA(1,1,0) to reference gamma 

 

For c = 1892 To 1953 

Cells(c - 1891, 2) = gref(c) - gref(c - 1) 

Next c 
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xref = Range("B1:B61") 

yref = Range("B2:B62") 

 

fitref = WorksheetFunction.LinEst(yref, xref, True, True) 

gconref = fitref(1, 2) 

garref = fitref(1, 1) 

gsdref = fitref(3, 2) 

 

' fit AR(1) to book kappa 

 

For t = 2000 To 2013 

Cells(t - 1999, 3) = kbook(t)  

Next t 

 

xbook = Range("C1:C13") 

ybook = Range("C2:C14") 

 

fitbook = WorksheetFunction.LinEst(ybook, xbook, True, True) 

kconbook = fitbook(1, 2) 

karbook = fitbook(1, 1) 

ksdbook = fitbook(3, 2) 

 

Central Projections 

 

The following Excel VBA codes are used to calculate the best (central) estimates of future 

mortality rates under the M7-M5 model.  

 

' calculate central projection estimates 

 

For t = 2014 To 2043 

k1ref(t) = k1driftref + k1ref(t - 1) 

k2ref(t) = k2driftref + k2ref(t - 1) 

k3ref(t) = k3driftref + k3ref(t - 1) 

Next t 

 

For c = 1892 To 1953 

gdiffref(c) = gref(c) - gref(c - 1) 

Next c 

 

For c = 1954 To 1983 

gdiffref(c) = gconref + garref * gdiffref(c - 1) 

gref(c) = gdiffref(c) + gref(c - 1) 

Next c 

 

For t = 2014 To 2043 

k1book(t) = k1conbook + k1ar1book * k1book(t - 1) + k1ar2book * k2book(t - 1) 

k2book(t) = k2conbook + k2ar1book * k1book(t - 1) + k2ar2book * k2book(t - 1) 

Next t 
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For x = 60 To 89 

For t = 2014 To 2043 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

etabook(x, t) = k1book(t) + (x - 74.5) * k2book(t) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

Next t 

Next x  

 

The Excel VBA codes below are used to calculate the best (central) estimates of future 

mortality rates under the CAE+Cohorts model. 
 

' calculate central projection estimates 

 

For t = 2014 To 2043 

kref(t) = kdriftref + kref(t - 1) 

Next t 

 

For c = 1892 To 1953 

gdiffref(c) = gref(c) - gref(c - 1) 

Next c 

 

For c = 1954 To 1983 

gdiffref(c) = gconref + garref * gdiffref(c - 1) 

gref(c) = gdiffref(c) + gref(c - 1) 

Next c 

 

For t = 2014 To 2043 

kbook(t) = kconbook + karbook * kbook(t - 1) 

Next t 

 

For x = 60 To 89 

For t = 2014 To 2043 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

etabook(x, t) = abook(x) + bref(x) * kbook(t) 

qref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

qbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

Next t 

Next x  

 

Residuals Bootstrapping 

 

The pseudo data sample in one random scenario under the M7-M5 model is generated from 

the Excel VBA codes below. Note that the residuals formula for the reference component is 

typed manually in cells(5 ,1), using the values from cells(2, 1), cells(3,1), and cells(4,1), and 

that the difference between cells(5,1) and cells(1,1) is typed in cells(6,1), before running the 

codes. The residuals formula for the book component is treated similarly in the second 

column. The M7-M5 model or CAE+Cohorts model can then be fitted to the resulting pseudo 
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data sample, dref(x, t) and dbook(x,t), in which the time series processes are fitted to the 

computed model parameters based on the pseudo data sample. 

 

' rearrange standardised residuals 

 

l = 1 

For x = 60 To 89 

For t = 1980 To 2013 

residualsref(l) = resref(x, t) 

l = l + 1 

Next t 

Next x 

 

l = 1 

For x = 60 To 89 

For t = 2000 To 2013 

residualsbook(l) = resbook(x, t) 

l = l + 1 

Next t 

Next x 

 

' calculate fitted values 

 

For x = 60 To 89 

For t = 1980 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 – 2247.5 / 30) * k3ref(t) + gref(t - x) 

qfittedref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

mfittedref(x, t) = -WorksheetFunction.Ln(1 - qfittedref(x, t)) 

Next t 

Next x 

 

For x = 60 To 89 

For t = 2000 To 2013 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

etabook(x, t) = k1book(t) + (x - 74.5) * k2book(t) 

qfittedbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

mfittedbook(x, t) = -WorksheetFunction.Ln(1 - qfittedbook(x, t)) 

Next t 

Next x 

 

' resample reference residuals, bootstrap reference number of deaths 

 

For x = 60 To 89 

For t = 1980 To 2013 

u = Rnd() * 34 * 30 

u = WorksheetFunction.RoundUp(u, 0) 

Cells(1, 1) = residualsref(u) 

Cells(2, 1) = 5000 

Cells(3, 1) = eref(x, t) * mfittedref(x, t) 

Cells(4, 1) = disref 
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Range("A6").GoalSeek Goal:=0, ChangingCell:=Range("A2") 

dref(x, t) = Cells(2, 1) 

Next t 

Next x 

 

' resample book residuals, bootstrap book number of deaths 

 

For x = 60 To 89 

For t = 2000 To 2013 

u = Rnd() * 14 * 30 

u = WorksheetFunction.RoundUp(u, 0) 

Cells(1, 2) = residualsbook(u) 

Cells(2, 2) = 500 

Cells(3, 2) = ebook(x, t) * mfittedbook(x, t) 

Cells(4, 2) = disbook 

Range("B6").GoalSeek Goal:=0, ChangingCell:=Range("B2") 

dbook(x, t) = Cells(2, 2) 

Next t 

Next x 

 

For the CAE+Cohorts model, only three lines of the codes above need to be changed, as 

follows.  

 
etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

etabook(x, t) = abook(x) + bref(x) * kbook(t) 

 

Future Simulations 

 

The following Excel VBA codes are used to generate one random scenario of future mortality 

rates under the M7-M5 model. Note that all the parameters used here are computed from the 

pseudo data sample (not the original data) in the residuals bootstrapping process. 
 

' calculate Cholesky matrix for reference kappa1, kappa2, kappa3 

 

kcorref(1, 1) = 1 

kcorref(1, 2) = cor12ref 

kcorref(1, 3) = cor13ref 

kcorref(2, 1) = cor12ref 

kcorref(2, 2) = 1 

kcorref(2, 3) = cor23ref 

kcorref(3, 1) = cor13ref 

kcorref(3, 2) = cor23ref 

kcorref(3, 3) = 1 

 

CTref = kcorref 

 

For h = 1 To 2 

For i = h + 1 To 3 

ratio = CTref(i, h) / CTref(h, h) 
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For j = h To 3 

If j = h Then 

CTref(i, j) = 0 

Else 

CTref(i, j) = CTref(i, j) - ratio * CTref(h, j) 

End If 

Next j 

Next i 

Next h 

 

For i = 1 To 3 

ratio = CTref(i, i) ^ 0.5 

For j = i To 3 

CTref(i, j) = CTref(i, j) / ratio 

Next j 

Next i 

 

Cref = WorksheetFunction.Transpose(CTref) 

 

' calculate Cholesky matrix for book kappa1, kappa2 

 

kcorbook(1, 1) = 1 

kcorbook(1, 2) = corbook 

kcorbook(2, 1) = corbook 

kcorbook(2, 2) = 1 

 

CTbook = kcorbook 

 

For h = 1 To 1 

For i = h + 1 To 2 

ratio = CTbook(i, h) / CTbook(h, h) 

For j = h To 2 

If j = h Then 

CTbook(i, j) = 0 

Else 

CTbook(i, j) = CTbook(i, j) - ratio * CTbook(h, j) 

End If 

Next j 

Next i 

Next h 

 

For i = 1 To 2 

ratio = CTbook(i, i) ^ 0.5 

For j = i To 2 

CTbook(i, j) = CTbook(i, j) / ratio 

Next j 

Next i 

 

Cbook = WorksheetFunction.Transpose(CTbook) 
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' simulate reference kappa1, kapp2, kappa3 from MRWD 

 

For t = 2014 To 2043 

For i = 1 To 3 

Rref(i, 1) = WorksheetFunction.NormSInv(Rnd()) 

Next i 

Zref = WorksheetFunction.MMult(Cref, Rref) 

k1ref(t) = k1driftref + k1ref(t - 1) + k1sdref * Zref(1, 1) 

k2ref(t) = k2driftref + k2ref(t - 1) + k2sdref * Zref(2, 1) 

k3ref(t) = k3driftref + k3ref(t - 1) + k3sdref * Zref(3, 1) 

Next t 

 

' simulate reference gamma from ARIMA(1,1,0) 

 

For c = 1954 To 1983 

Zref = WorksheetFunction.NormSInv(Rnd()) 

gdiffref(c) = gconref + garref * gdiffref(c - 1) + gsdref * Zref 

gref(c) = gdiffref(c) + gref(c - 1) 

Next c 

 

' simulate book kappa1, kappa2 from VAR(1) 

 

For t = 2014 To 2043 

For i = 1 To 2 

Rbook(i, 1) = WorksheetFunction.NormSInv(Rnd()) 

Next i 

Zbook = WorksheetFunction.MMult(Cbook, Rbook) 

k1book(t) = k1conbook + k1ar1book * k1book(t - 1) + k1ar2book * k2book(t - 1) + k1sdbook * Zbook(1, 1) 

k2book(t) = k2conbook + k2ar1book * k1book(t - 1) + k2ar2book * k2book(t - 1) + k2sdbook * Zbook(2, 1) 

Next t 

 

' simulate reference q, book q 

 

For x = 60 To 89 

For t = 2014 To 2043 

etaref(x, t) = k1ref(t) + (x - 74.5) * k2ref(t) + ((x - 74.5) ^ 2 - 2247.5 / 30) * k3ref(t) + gref(t - x) 

etabook(x, t) = k1book(t) + (x - 74.5) * k2book(t) 

qsimref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

qsimbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

Next t 

Next x 

 

The Excel VBA codes below are used to produce one random scenario of future mortality 

rates under the CAE+Cohorts model. Note that all the parameters used here are calculated 

from the pseudo data sample (not the original data) in the residuals bootstrapping process. 

 

' simulate reference kappa from RWD 

 

For t = 2014 To 2043 

Zref = WorksheetFunction.NormSInv(Rnd()) 
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kref(t) = kdriftref + kref(t - 1) + ksdref * Zref 

Next t 

 

' simulate reference gamma from ARIMA(1,1,0) 

 

For c = 1954 To 1983 

Zref = WorksheetFunction.NormSInv(Rnd()) 

gdiffref(c) = gconref + garref * gdiffref(c - 1) + gsdref * Zref 

gref(c) = gdiffref(c) + gref(c - 1) 

Next c 

 

' simulate book kappa from AR(1) 

 

For t = 2014 To 2043 

Zbook = WorksheetFunction.NormSInv(Rnd()) 

kbook(t) = kconbook + karbook * kbook(t - 1) + ksdbook * Zbook 

Next t 

 

' simulate reference q, book q 

 

For x = 60 To 89 

For t = 2014 To 2043 

etaref(x, t) = aref(x) + bref(x) * kref(t) + gref(t - x) 

etabook(x, t) = abook(x) + bref(x) * kbook(t) 

qsimref(x, t) = Exp(etaref(x, t)) / (1 + Exp(etaref(x, t))) 

qsimbook(x, t) = Exp(etabook(x, t) + etaref(x, t)) / (1 + Exp(etabook(x, t) + etaref(x, t))) 

Next t 

Next x 

 

Numerical Optimisation 

 

Consider the standardised longevity swap in Subsection 4.1. Suppose the cell A2 contains the 

notional amount of the swap and the cell A1 calculates the level of longevity risk reduction 

based on the simulations and the weight of the swap. The following Excel VBA codes can be 

used to find numerically the optimal weight of the swap in order to maximise the level of 

longevity risk reduction, i.e. minimise the longevity risk of the aggregate position.  

 

SolverReset 

SolverOk SetCell:="$A$1", MaxMinVal:=1, ValueOf:=0, ByChange:="$A$2", Engine:=1 _ 

    , EngineDesc:="GRG Nonlinear" 

SolverSolve True  

 

If there are two standardised longevity swaps as in Subsection 4.2, the optimal weights of the 

swaps (say, in the cells A2 and A3) can be found by simply adjusting the codes above to 

ByChange:= “$A$2:$A$3”. This procedure can readily be extended to incorporate other 

objectives and hedging instruments.  
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Appendix III Original Call for Proposals 
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