The Actuarial Profession making financial sense of the future

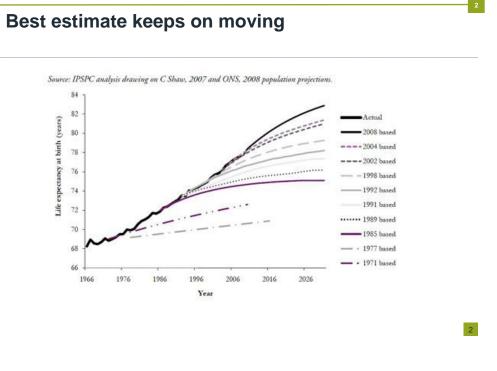
Mortality and Longevity Seminar 2012 Peter Telford and Joseph Lu

What kind of uncertainty?

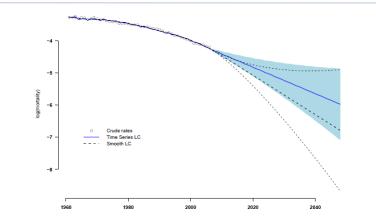
Rules for a well-behaved risk

- Diversifiable within portfolio
- Relevant past experience
- Risk segments understood
- Aligned interests

© 2010 The Actuarial Profession • www.actuaries.org.uk


- Causation understood
- Generally accepted model

Small fluctuations


- Small basis risk
- Limited heterogeneity
- ➔ Little anti-selection
- ➔ Few surprises
- ➔ No winner's curse

Longevity breaks all the rules

• Hence the wrong kind of uncertainty

High dispersion between models

Different projections from the same data set illustrating model risk. Both models are part of the Lee-Carter family, with the only different being whether a time series or a penalty is used for projection. The data set is for males in England and Wales. (Richards and Currie 2009)

Users and uses of models

Long term decision makers

- Buy or sell annuity
- Offer or modify employee
 benefits
- Acquire or divest business
- Longevity positions are taken for their run-off value
- Most positions could be closed out, at least in theory

Short term controllers

- Prudential regulation
- Accounting and reporting
- Planning, risk management and financing
- Applied regularly to existing positions
- Often involves a close-out assumption

4

5

What kind of model?

Long term (run-off)

© 2010 The Actuarial Profession • www.actuaries.org.uk

- Aligned with buy/sell/hold decisions
- Focus on "more likely" outcomes – e.g. quartiles
- · Actuary in real time
- Risk that the model is wrong in hindsight – i.e. the "unknown unknowns"

Short term (1 year)

- Aligned with control processes and requirements
- Focus on "less likely" outcomes – e.g. 99.5%
- Actuary in a box
- Risk that the model needs to change

Long term and short term models are difficult to compare

Equivalent points of distributions are not well-defined

7

What kind of inputs?

Bringing longevity within the rules

- Build relevant past experience or apply controls for basis risk
- Understand segmentation health, employment, socioeconomic status, …
- Understand causation medicine, lifestyle, environment, ...
- Seek convergence of models but differentiation based on the quality of risk science is appropriate

Issues that models can't fix

- Non-diversifiable risk
- Non-aligned interests

Solvency II internal model for longevity risk

Model requirements

- Six tests: use, statistical quality, calibration, P&L attribution, validation, documentation
 - Be capable of deployment into decision making
 - Cover all material risks
- Transparent and open to challenge
 - Allow users to engage with the approach, design, and calibration of risks, not just the answers
- Consistent with balance sheet processes
 - S.II tests the movement in balance sheet over 1 year

© 2010 The Actuarial Profession • www.actuaries.org.uk

Case study

- Base Mortality
 - Conventional A/E of life table
 - Discuss other possibilities
- Future Mortality

© 2010 The Actuarial Profession • www.actuaries.org.uk

- Market practice using CMI Model
- Discuss other approaches

Example Longevity Risk Assessment Framework

Steps	Activity	Example
1	Identify Key Risk Categories	Base and Future Mortality
2	Identify Sub-components	Future Mortality: -Initial mortality rates -Long-term rates etc.
3	Identify Sources	Data, Randomness, Model, Judgement, Drivers for mortality change (?)
4	Determine best estimate	
5	Determine one-year change distributions for each source in step 3	
6	Determine relationship between distributions	
7	Combine distributions	
8	Validation	

Base Mortality Case Study: Steps 1 & 2

- Case study
 - Base Mortality
 - Ultimate A/E of life table

Base Mortality Step 3: Sources of risks

- BAS (2008) identified the following sources of uncertainty
 - Random fluctuation
 - Data
 - Model/parameters
 - Decision Judgement

13

Base Mortality Step 4

- Step 4: Determine best estimate
 - Perform goodness-of-fit to choose life table
 - Perform mortality investigation to obtain Actual vs Expected (A/E) adjustment to life table
 - Model late reported deaths

Base Mortality Step 5

© 2010 The Actuarial Profession • www.actuaries.org.uk

© 2010 The Actuarial Profession • www.actuaries.org.uk

- Step 5: Determine one-year change distribution for sources of risk:
 - Random risk depends on number of pensioners and concentration of benefits.
 - Risk that data is not complete, accurate or relevant.
 - Risk of model is inadequate, e.g. exposure calculation or late reported deaths.
 - Justify any judgement

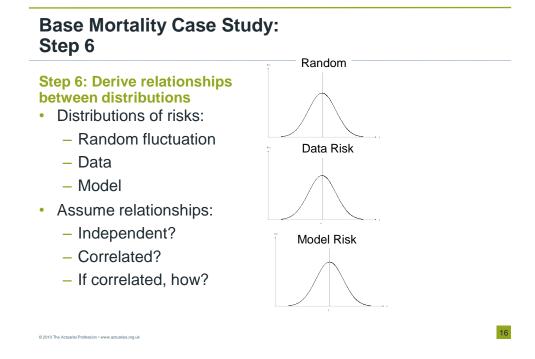
Base Mortality Case Study: Example of distribution of risk of random fluctuation

Experience of 10K pensioners is distribution (red) is more certain than concentrated (10% people owning 50% more certain than 1K pension) Distribution of Big 10K Distribution of scenarios A/E of weighted by pension amount increases variance 140 140 8 120 120 5 out of 200 ŏ 100 100 rios 80 Big 10K of scenarios 80 cena Small 1K 60 60 è 40 Number Number 4٢ 20 20 83%-83-87% 88-92% 93-97% 98-102% 103 108-113-118%-0 112% 117% 107% 83%-83-87% 88-92% 103-107% 108-112% 113-117% 93-97% 98-102% Percentage of death in simulation against expected number of Percentage of death in simulation against expected deaths deaths (A = lives, A Amount = weighted by amount) (Expect 1000 deaths in Big 10K and 100 deaths in Small 1K) Big 10K Big 10K Amount

Base Mortality Case Study: Example of distribution of other sources of risk

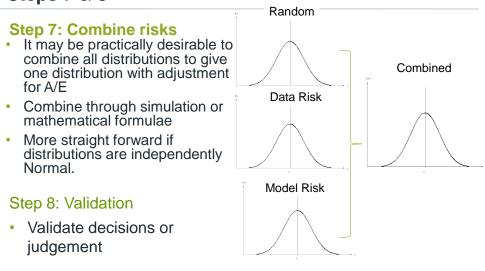
Data risk

© 2010 The Actuarial Profession • www.actuaries.org.uk


- Use historical experience of data changes and errors
- Likely to have sparse experience
- Judgement required for distribution if material
- Careful that no double counting in operational risk

Model Risk

• e.g. Modelling for IBNR


Experience of equal pension

- Use historical experience of method changes
- Likely to have sparse experience
- Judgement required for distribution if material
- Otherwise demonstrate immateriality

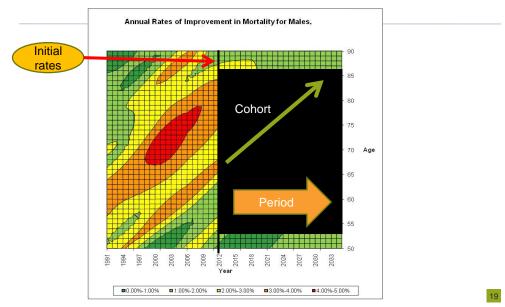
Base Mortality Case Study: Steps 7 & 8

© 2010 The Actuarial Profession • www.actuaries.org.uk

Future Mortality: Steps 1 & 2

- Case study
 - Future Mortality Trend

(CMI Model)


- Initial mortality improvement rates
- Period Component
 - · Initial mortality improvement
 - Convergence pattern
 - Long-term rates
- Cohort Component
 - Initial mortality improvement
 - Convergence pattern

Other methods

- Extrapolative model
 - Lee-Carter (variants)
 - P-Spline
 - CBD etc.
- Explanatory models
 - Smokers Model
 - Disease Based
 - Health policy
- Combination Models

18

- Cause of death
- Other

CMI Model Projects Annual Rates of Mortality Improvement: Initial, Cohort Period Components

Step 3: Sources of risks

- · BAS (2008) identified the following sources of uncertainty
 - Random fluctuation
 - Data
 - Model/parameters
 - Decision Judgement
- Potential drivers for future longevity
 - Behavioural or lifestyle changes, e.g. smoking
 - Risk factors change, e.g. blood pressure, obesity
 - Public policies
 - Medical interventions
 - Epidemics

Step 3: Identify sources of risks

Risk description	Risks
Initial Rates	Data risk Risk that the annuitants that we insure exhibit different experience to that implied by the ONS England & Wales population Model risk Risk that the model for smoothing the ONS England & Wales mortality data is inappropriate. Random fluctuation Covers the impact of random fluctuation in the mortality trend experience observed in the ONS England & Wales mortality trend data
Long term improvement rate	Parameter & model risk Risk that the underlying assumptions made within the underlying model, e.g. Explanatory or Cause of Death Model, are inappropriate and result in an inappropriate long term rate
Period convergence	Model risk Risk that the emerging information changes the shape of the convergence function.
Cohort convergence	<u>Model risk</u> Risk that the emerging information changes the shape of the convergence function.

21

Future Mortality Case Study Step 4: Determine best estimate

- Case study: CMI Model
 - Decide initial mortality improvement
 - Period Component:
 - Initial rates
 - Convergence pattern
 - Long-term rate

Cohort Component

- Initial rates
- Convergence pattern

© 2010 The Actuarial Profession • www.actuaries.org.uk

- Other methods
 - Extrapolative model
 - Lee-Carter (variants)
 - P-Spline
 - CBD etc.
 - Explanatory models
 - Smokers Model
 - Disease Based
 - Health policy
 - Combination Models
 - Cause of death
 - Other

Future Mortality Case Study Step 5: Determine one-year probability distribution

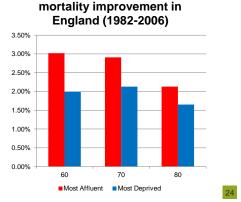
- Case study: CMI Model
 - Decide initial mortality improvement
 - Period Component:
 - Initial rates
 - Convergence pattern
 - Long-term rate
 - Cohort Component
 - Initial rates

© 2010 The Actuarial Profession • www.actuaries.org.uk

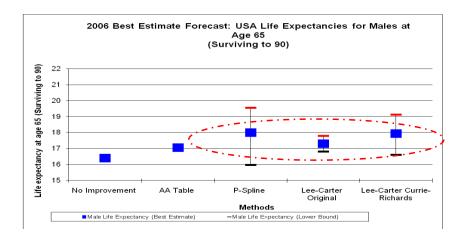
Convergence pattern

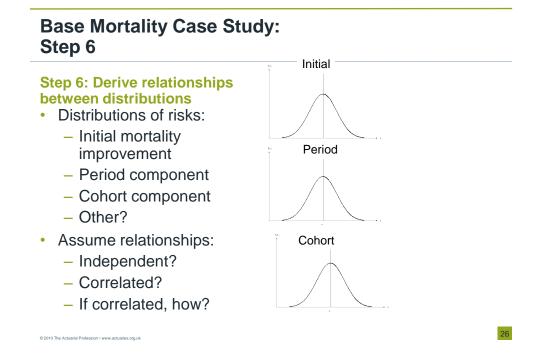
- Other methods
 - Convert run-off to one-year
 - Determine 99.5th percentile run-off
 - Convert to one-year by reading 90-95th percentile, assuming independence or not
 - Thought to be a convention
 - But difficult to explain to management
 - Extrapolative model
 - Simulate one-year projectionsUse historical and that 1 additional
 - year's of projected data to project all future mortality
 Derive distribution of value
 - But may be problematic if the best estimate is not derived from Extrapolative model.

Base Mortality Case Study: Example of distribution of sources of risk

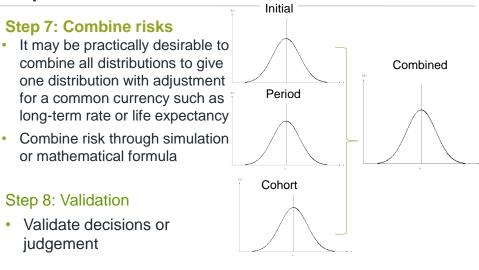

Data risk

© 2010 The Actuarial Profession • www.actuaries.org.uk


Risk that the annuitants that we insure exhibit different experience to that implied by the ONS England & Wales population



Most affluent fifth have experienced


Extrapolative Model Risk: Same input, different output

Base Mortality Case Study: Steps 7 & 8

© 2010 The Actuarial Profession • www.actuaries.org.uk

Conclusions

© 2010 The Actuarial Profession • www.actuaries.org.uk

"We demand rigidly defined areas of doubt and uncertainty!"

- · Considerable progress in making longevity risk more tractable
- Some of the uncertainty is inherent, and resistant to risk science
- · Long-term and short-term models both have important roles
- Solvency II appears to suit a short-term model that randomises the assumption setting process

Questions or comments?

<text>