
MATCHING AND PORTFOLIO SELECTION: PART 2 

BY A. J. WISE, M.A., F.I.A., F.S.S., F.P.M.I. 

8. RECAPITULATION 

8.1 This paper is concerned with the selection of investment portfolios to meet 
specified criteria which involve the liabilities of a long term investing institution 
such as a pension fund or a life office. In Part 1 (5) I showed a certain relationship 
between, on the one hand, portfolios selected according to a criterion of pure 
matching to the liabilities and, on the other hand, portfolios selected according to 
a more general criterion of ‘efficiency’. This connection points to a particular 
actuarial approach to the selection of portfolios, which is now further examined 
in Part 2. 

8.2 Writing Part 2 separately presents an opportunity to re-state the main 
ideas. The next few paragraphs recapitulate the basic points with a view to 
reducing, within the subsequent discussion, the amount of cross-reference to Part 
1, and to the three preceding papers(1)(2)(4) on which the study is based. 

The nature of the model 
8.3 We are dealing with a non-deterministic actuarial model which comprises 

the following elements: 

(a) a portfolio of marketable assets with specified or estimated future cash 
flows, and aggregate present price P; 

(b) a set of non-marketable liabilities with specified or estimated future cash 
flows; 

(c) a statistical model for uncertain factors such as future rates of investment 
returns and inflation; 

(d) the ultimate surplus from the portfolio when all the liability payments have 
been met, which can be regarded as a random variable; 

(e) the mean of the ultimate surplus, E; and 
(f) the variance of the ultimate surplus about its mean, V. 

8.4 The portfolio price P is governed by the choice of assets which make up the 
aggregate portfolio, and by the prices of those assets. The mean and variance of 
the ultimate surplus, E and V, are governed by the cash flows resulting from the 
assets and the liabilities. Therefore E and V are liable to variation according to 
the choice of assets in the portfolio, according to variation in the liabilities, and 
according to changes in the actuarial assumptions with which the future cash 
flows are estimated. P is a present market value whilst E and V are values at the 
specified future date of accounting for ultimate surplus. 
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Criteria for portfolio selection 
8.5 Given a particular set of liabilities and particular assumptions, the choice 

which is available regarding the asset portfolio gives a degree of control over P, E 
and V. If we attach conditions to these values we restrict the choice of portfolio. 
For example, one of the criteria for ‘pure matching’ is to minimise V subject to 
E = 0. A criterion for an ‘efficient portfolio’ is to minimize V subject to specified P 
and E. It is interesting to ask: which criteria are appropriate for actuarial work? 

8.6 The actuarial criterion put forward in Part 1 is specified in terms of E and 
another parameter called v. Before recalling the definition of v, it is useful first to 
present a diagrammatic view of the elementary case study. 

The two-security case 
8.7 The case study described by Wilkie(2) in sections 5 to 20 involved only two 

securities S1 and S2. The nominal holdings of each in a portfolio are denoted by x1 
and x2, respectively. The equations quoted in § 2.6 (of Part 1) show how E, V and 
P are determined by the choice of x1 and x2. 

8.8 Let us specify in our particular example that the mean ultimate surplus E is 
to be zero. The range of possibilities for x1 and x2 is reduced by this condition to 
one degree of freedom. Taking the price of security S1 as 93 and that of S2 as 95, 
the one-dimensional range of feasible portfolios (see § 3.14) is given by the 
following equations in this example: 

8.9 Table 6 shows a few values of v, and the results for each. 

Table 6. Prices P1 = 93, P2 = 95 and E = 0. 

Parameter Portfolio Characteristics 
Label v x1 x2 P V 

a 4 2·997 –·281 252·05 2·01 
b 2 2·347 ·359 252.39 ·98 
c -2 1·698 ·998 253.08 ·63 
d –2 1·048 1·638 253·08 ·98 
e -4 ·399 2·277 253·43 2·01 

The V-P graph 
8.10 We can plot the feasible portfolios as points in a plane whose axes give the 

measure of V and P. In our example, if we were to work out all feasible portfolios 
for all values of the parameter v, the result would be a parabolic line, as illustrated 
in Graph 1. The five portfolios shown in the above table are labelled in the 
diagram. 

8.11 The parameter v traces out points on the parabolic line in this V-P graph. 
Each point marks a feasible portfolio, namely a portfolio which meets our 
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Graph 1. Securities S1 and S2. 

condition that E = 0. In § 3.11 of Part 1, v was defined as the negative of the 
gradient of V with respect to P. Accordingly the value v = 0 marks the apex of 
the parabola, namely the point of minimum V for given E = 0. (This portfolio is 
the so-called unbiased match.) As v is increased from zero, the selected portfolio 
is shifted along the left arm of the parabola, in the direction of lower P and higher 
V. I have called v the ‘degree of risk’, because it measures the extent to which one 
wishes to accept a higher variance of ultimate surplus, or ‘risk’, in return for 
reduced price. (The word ‘risk’ is of course being used here in a long-term 
strategic sense.) 

8.12 Negative values of v specify portfolios on the right arm of the parabola; 
these are ‘inefficient portfolios’ because they have both P and V higher than other 
portfolios (such as that at the apex) and are therefore unlikely to be of interest. 

8.13 Another way of looking at v is to consider lines of the form V + vP = k. 
The number k can be varied to produce a range of such lines on the graph, all of 
which are parallel with slope – v. One such line is shown in Graph 1; it has slope 
– 2 and it happens to touch the parabola at point b. If we consider the range of 
such parallel lines with v = 2 it is apparent that the particular line shown on the 
graph is the one with the smallest value of k which intersects the parabola. 

8.14 Generally, the portfolio selected by parameter v is the one which 
minimizes V + vP, for given E. This is another way of saying that v prescribes the 
desired balance between variance V and price P. If v is small or zero, this means 
that we are concerned to reduce the risk but we are not very concerned about the 
price of the portfolio. If v is large, relative to V, then we are trying to reduce 
the price of the portfolio and we are not too worried about the risk. In between 
the extreme choices for v will be a whole range of reasonable ones. 



554 Matching and Portfolio Selection: Part 2 

General formula 
8.15 The formula in § 8.8 gives the asset holdings when E = 0, and is a special 

case of the formula given in Part 1, § 3.14. The general solution for x1 and x2 in 
terms of E and v may be written thus: 

(The values of and z2 for the case study were summarized in § 6.2.) 
8.16 This formula generalizes from 2 to n securities in the natural manner. 

Therefore if we use the vector x = (x1, x2, . . . . , xn) to denote the nominal holdings 
in each security, the general formula for a portfolio in terms of E and v is (see 
§ 5.3): 

8.17 The values of xº, y and z are particular to each case in question, but they 
possess interesting general characteristics which were described in section 5 of 
Part 1. Briefly, xº is the unbiased match to the liabilities, y is to do with the 
expected return on the portfolio, and z is to do with the degree of risk. 

8.18 This general formula provides a technique with which the actuary can 
specify the required mean ultimate surplus E and degree of risk v to determine the 
appropriate portfolio. The price P of that portfolio can be regarded as ‘the value 
of the liabilities’, but the liability value is of course dependent on the particular 
values assigned to the two parameters as well as all the actuarial assumptions. 

8.19 The procedure which has been outlined so far leads to portfolios which 
may include negative holdings of assets, and this may be regarded as unrealistic. 
This brings us to the main point of Part 2, which is to consider the selection of 
optimum portfolios with prescribed values of E and v but with no negative asset 
holdings. 

9. THE SELECTION OF POSITIVE PORTFOLIOS 

9.1 The problem of finding portfolios without negative asset holdings (which I 
call positive portfolios) is rather similar to that of finding the positive match.(1)(4) 
The basic objective is to find out which assets occur in the selected positive 
portfolio. This is not a straightforward task; for example it would not be correct 
simply to work out the E, v portfolio to see which asset holdings were negative 
and then re-work the calculation as if such assets were not included in the model. 

Case study 
9.2 The problem may be explored by reference to the case study. To ensure 

that the example is non-trivial let us introduce a third security S3, which yields 
cash flows of 10 at the end of the first year, 20 at the end of the second, and 100 at 
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the end of the third. The cash flows resulting from all three securities, and from 
the liabilities, may be summarized thus: 

Securities: S1: (10, 100, 0) 

S2: (10, 10, 100) 

S3: (10, 20, 100) 

Liabilities: (100, 100, 100) 

9.3 Suppose that the prices of the three securities, for unit amount, are: 

P1 = 93 and P2 = 95 (as before) and P3 = 103 

Then the price P of the portfolio is: 

9.4 The variance V of ultimate surplus is given by the formula: 

where: 

V is the matrix of covariances between the rolled-up returns on the three 
securities. For the given stochastic model: 

c is the vector of covariances between the rolled-up return on the liabilities and 
the rolled-up returns on the three securities: 

and VL is the variance of rolled-up return on the liabilities: 

9.5 The mean ultimate surplus E is given by the formula: 

where the Ei are the expected rolled-up returns on the three securities and the 
liabilities: 

Let us continue to specify E = 0, restricting the feasible portfolios to two degrees 
of freedom. 

9.6 A few feasible portfolios are shown in the following table, which includes 
the five portfolios of Table 6 as special cases with x3 = 0. 
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Table 7. Prices P1 = 93, P2 = 95, P3 = 103 and E = 0 

Portfolio Characteristics 
Label x1 x2 x3 P V 

a 2·997 –·281 ·00 252·05 2·01 
b 2.997 ·359 ·00 252·05 ·98 
c 1·698 ·998 ·00 
d 1·048 1·638 ·00 
e ·399 2·277 ·00 
f 1·622 ·00 ·985 
g 2·712 ·00 ·00 
h ·00 ·00 2·452 
i ·00 2·670 ·00 
j ·300 1·800 ·500 

252·74 ·63 
253·08 ·98 
253·43 2·01 
252·35 ·65 
252·20 1·47 
252·57 2·45 
253·64 2·99 
250·40 2·16 

V-P graph 
9.7 If we were to plot all the feasible portfolios on the V-P graph, the result 

would be an area (because there is an infinity of portfolios with two degrees of 
freedom) bounded by a parabola. Graph 2 shows the boundary (which appears 
virtually straight over the chosen range) together with the ten portfolios of 
Table 7. 

9.8 The boundary parabola marks the three-security portfolios with mini- 
mum variance for given P (and E = 0). Any such minimum variance portfolio 
x = (x1, x2, x3) is determined by the formula given in Part 1, § 5.3 (subject to the 

Graph 2. Securities S1, S2 and S3. 
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necessary condition in each case that the covariance matrix V is non-singular). 
With E = 0 the formula reduces to: 

The parameter v therefore traces out the points along the boundary parabola, in 
a similar manner to the two-security case. 

Combination of securities 
9.9 The same general formula yields the minimum variance portfolio for any 

non-trivial combination of securities. Each combination gives rise to different 
values of xº and z as shown in the following table. The first row gives the formula 
for the two securities S1 and S2, as shown in § 8.8, while the other rows enable the 
corresponding formulae for the other combinations of securities to be written 
down in a similar manner. 

Table 8. Alternative minimum variance portfolios 

Admitted xº Z 

securities Z1 Z2 Z3 

S1, S2 1·698 ·998 ·00 ·325 -·320 ·00 
S1, S3 1·618 ·00 ·989 ·100 ·00 –·090 
S2, S3 ·00 –16·27 17·40 ·00 –35·10 32.23 
S1, S2, S3 9 82 -81 - 179.8 – 1997.8 1997.5 

9.10 It has to be said that the last line of Table 8 cannot be calculated exactly 
using the formula of Part 1 § 5.3 because the full covariance matrix V for all three 
securities (as shown in § 9.4) is singular and cannot be inverted. This is a special 
case arising from the fact that the number of securities equals the number of time 
steps and a special calculation procedure is needed to obtain the correct solution. 
As this particular aspect is incidental to the main point of the discussion, details 
are omitted. 

9.11 The four parabolae for the four combinations of securities appear in the 
V-P plane as shown in Graph 3, which covers a wider range of P than before. 
Each parabola relating to a partial set of securities, such as S1 and S2, marks 
portfolios which are feasible and which therefore lie within the boundary 
parabola for S1, S2, and S3. As the diagram shows, each of the three interior 
parabolae actually touches the boundary parabola tangentially. They must 
touch because as v traces the boundary parabola it attains values at which one of 
the xi becomes zero. For example point f is attained when v = ·04104 and x2 = 0. 
At this point security S2 drops out of the portfolio. 

9.12 Other portfolios of particular interest are also marked on Graph 3 at 
points g, h and i. These are points at which pairs of securities drop out of the 
portfolio (see Table 7) and they appear at intersections of the two-security 
parabolae. It should be noted, in passing, that the intersection of two lines on the 
V-P graph does not necessarily imply a coincidence of portfolios. Each point on 
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Graph 3. Combinations of Securities S1, S2 and S3. 

the graph can represent more than one portfolio, each of which has the same V 
and P (and E = 0). 

Positive portfolios 
9.13 Given that E = 0 the region of positive portfolios, namely those without 

negative asset holdings, is obviously limited and finite. It would not be possible to 
obtain portfolios with very large or very small price P (relative to the range under 
consideration) without allowing a suitably large holding in one or two of the 
securities; this would require a corresponding negative holding in other securities 
in order to meet the condition of zero expected ultimate surplus. 

9.14 It is easy to identify the positive portfolios which are of interest, which 
must be arcs on the minimum variance parabolae shown in Graph 3. It can be 
verified that the four arcs are those identified as follows. 

Table 9. Positive minimum vari- 
ance portfolios 

Admitted securities Parabola arc 

S1, S2 from g to i 
S1, S3 from g to h 
S2, S3 from h to i 
S1, S2, S3 from c’ to f 

where c’ is the point adjacent to c at 
which the two parabolae touch. (c is the 
apex of the S1, S2 parabola and is 
therefore fractionally to the right of c’.) 
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9.15 As noted in § 8.12, we are not likely to be interested in the inefficient 
portfolios which appear on the right arm of any parabola. This immediately rules 
out the three arcs from c to i, from f to h, and from h to i, and enables us to focus 
attention on just a small area of the graph between the values P = 252 and 253. 
The magnified picture appears in Graph 4. The positive portfolios of interest are 
those shown in solid lines. 

Graph 4. Positive portfolios. 

9.16 We can further rule out all portfolios with two securities S1 and S2 which 
lie on the arc from c’ tog. None of these portfolios is optimal. For example if we 
consider a particular portfolio p on this arc, this portfolio optimizes V + vP for 
portfolios in S1 and S2, but portfolio q on the arc from f to g achieves a lower 
value of V + vP for the same parameter v. Any portfolio on the arc from c’ to g 
can be bettered in this sense by an alternative portfolio to be found on the arcs 
from c’ to f and from f to g. 

9.17 It may be concluded that the efficient frontier of positive portfolios is 
represented along the very short arc from c to c’ (securities S1 and S2), from c’ to f 
(securities S1, S2 and S3) and front to g (securities S1 and S3). It is notable that the 
efficient frontier forms a continuous line from c (the positive unbiased match) to 
g (a portfolio consisting of the single security S1). The switches from one 
parabola to another occur at tangent points, so the negative gradient v varies 
continuously along the efficient frontier from zero at c to a value of 10·93 at g. 

9.18 Examples of portfolios along the efficient frontier are given in Table 10. 
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Table 10. Efficient positive portfolios 

Parameter Portfolio 
v x1 x2 

·00 1·698 ·998 
44 1·711 ·986 
·041 1·630 ·088 
·05 1·623 ·00 

1·00 1·718 ·00 
5·00 2·118 ·00 

10·93 2·712 ·00 

x3 

·00 
·00 
·897 
·984 
·898 
·537 
·00 

Characteristics 
P V 

252·74 ·634 
252·73 ·634 
252·39 ·648 
252·35 ·650 
252·34 ·656 
252·28 ·822 
252·20 1·473 

9.19 The pattern of these results is the same as before; as v is increased from 
the starting point of zero the price P of the resulting portfolio is decreased and the 
variance V of ultimate surplus is increased. The only differences are that the 
progression of P and V is not as steady as before, because of the switches from 
one combination of portfolios to another, and that the progression terminates. 

Generalization 
9.20 The significance of these observations is that they are equally true in any 

case with any number of securities. The V-P graph for n securities involves 
2n – n – 1 minimum variance parabolae (each of which involves two or more 
securities), some touching and some crossing as shown in the three-security 
examples. The positive portfolios will always be finite arcs on these parabolae, 
and the efficient frontier will always form a continuous line of arcs with 
monotonic gradient v. Mathematically, the situation is just the same as in the 
classical portfolio selection problem. (6) We have merely replaced E in the classical 
problem by P. 

9.21 Plainly if this type of analysis is to be used in practice, it will not be 
sensible to study graphs every time. Indeed it is not necessary to do so. The 
parameter v traces out the efficient frontier of positive portfolios, and all that is 
needed is a suitable quadratic programming algorithm to choose the right subset 
of securities for any given value of v. In my papers on matching(1)(2) I referred to a 
particularly suitable algorithm for finding the positive match portfolio. It turns 
out that a very similar algorithm is equally effective for determining efficient 
positive portfolios with any specified values of E and v. The mathematical details 
are not given here, but this particular algorithm was used to facilitate the 
production of all the further results quoted in this paper. 

10. APPLICATION TO PENSION FUNDS 

10.1 My paper on matching (1) showed how inflation could be brought into the 
model and it described examples of calculations made for a simplified model 
pension fund. The model was described in §§ 6.2 to 6.11 of that paper, and I shall 
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examine the same model in the new context. I start by ignoring future 
contributions and using five year time steps (see §6.12 of that earlier paper). 

10.2 The matching portfolios for the pension fund model were effectively the 
same as those selected by parameter values E=0 and v=0. (A technical 
difference was mentioned in § 4.2 of Part 1 but it is of no consequence.) We can 
therefore examine a broader range of efficient portfolios with the earlier 
calculations of matching portfolios appearing as a special case. 

10.3 The following table shows the result of keeping E=0 but increasing v 
until the selected portfolio reaches the terminal position of a single security. The 
starting value v = 0 gives the same portfolio, with the same price of 1706, as the 
positive match. 

Table 11. Pension fund model ignoring future contribu- 
tions—efficient frontier for E=0 

Parameter 
v 

0 
10 

100 
1000 
2000 
3000 
4000 
5000 

Portfolio 
Equity Fixed interest 

% nominal % nominal 

70 30 
70 30 
64 36 
35 65 
21 79 
10 90 
0 100 
0 100 

Characteristics 
P V 

1706 1,702 
1705 1,708 
1688 2,600 
1613 33,000 
1584 75,000 
1565 122,000 
1549 176,000 
1549 176,000 

10.4 This particular model involves 12 different securities, in the form of six 
equity and six fixed interest investments which are sold or redeemed at different 
dates. The Appendix shows the detailed distribution of these assets in the various 
alternative portfolios, and the above summarizes the proportions by nominal 
amount (not market value) held in the two investment sectors. It will be seen that 
the effect of increasing v is to reduce the equity component and increase the fixed 
interest component until at the terminal position (for a value of v between 3000 
and 4000) only a single fixed interest stock is held. 

10.5 The earlier paper went on to look at the positive match for the same 
liabilities net of future contributions. In one of the two cases quoted, the price of 
the positive match was given as 1044 for an annual rate of contribution of 20 
units in each five-year age group. Table 12 indicates the efficient frontier for these 
net liabilities. 

10.6 The results in Table 12 show the features to be expected: the price of the 
portfolio is 1044 for v = 0, and the price reduces while the variance increases with 
larger values of v. Clearly the factor of inflation is being dealt with adequately 
because the ‘low risk’ portfolios exhibit a balance of equity and fixed interest 
investments whilst the ultimate high risk portfolio is a single fixed interest 
security, whether future contributions are allowed for or not. 
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Table 12. Pension fund model with future contribu- 
tions—efficient frontier for E=0 (Case 1) 

Portfolio 
Parameter Equity Fixed interest Characteristics 

v % nominal % nominal P V 

0 71 29 1044 6,552 
10 70 30 1044 6,554 

100 68 32 1041 6,700 
1000 49 51 1012 22,000 
2000 29 71 985 63,000 
3000 11 89 966 109,000 
4000 0 100 955 144,000 

10.7 In view of § 5.15 of Part 1 it may be anticipated that the ultimate high risk 
portfolio, and therefore the nature of the various portfolios along the efficient 
frontier, will depend upon the ordering of the expected rates of return Ei/Pi for 
the different securities. To test this supposition, consider the alternative scenarios 
in Table 13, in which both current market values and future equity dividend 
growth are varied. 

Table 13. Alternative economic scenarios 

Current market conditions 
Fixed interest Equity Actuarial assumption 

Case no. redemption yield dividend yield Dividend growth 

% p.a. % p.a. % p.a. 
1 11·0 4·8 4·5 
2 8·0 4·8 4·5 
3 11·0 6·82 4·5 
4 11·0 4·8 6·5 
5 8·5 3·5* 4·5 

* In all cases we assume here that the eventual sale of equities will be 
made on the basis of a 4·8% dividend yield. Only the current market 
conditions have been varied. 

10.8 Case 1 is the scenario for the results shown above in Table 12, while the 
corresponding results for the altered market conditions of Case 2 are shown in 
Table 14. 

10.9 In Case 2 the fixed interest securities are relatively unattractive, with a 
redemption yield of only 8·0%, and the ultimate high risk portfolio is all in 
equities. (The selection of 100% equities is reached at a relatively low value of v, 
but the initial range of durations to date of sale is narrowed down as v is increased 
beyond 1000.) An all-equity portfolio is high risk in this context because our 
model assumes fixed 3% annual increases on pensions—there is no allowance for 
extra increases if inflation is higher than expected. That is why the matching 
portfolio (v = 0) involves a significant proportion of fixed interest stocks: 29% by 
nominal amount. 
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Table 14. Pension fund model with future contribu- 
tions—efficient frontier for E = 0 (Case 2) 

Portfolio 
Parameter Equity Fixed interest Characteristics 

v % nominal % nominal P V 

0 71 29 1139 6,552 
100 74 26 1132 6,958 
500 90 10 1092 19,000 

1000 100 0 1080 27,000 
2000 100 0 1071 39,000 
3000 100 0 1065 55,000 
4000 100 0 1060 73,000 

10.10 Incidentally the composition of the matching portfolio is the same in 
Case 2 as in Case 1 because it is independent of current market values. Its price is 
higher, 1139 compared with 1044, because of the higher price of the fixed interest 
stocks in this scenario. 

10.11 In Case 3 we look at an alternative situation involving a high dividend 
yield. The expected return on equities taking income and assumed future growth 
together is greater than the redemption yields on fixed interest stocks. The 
general pattern of the efficient frontier is therefore rather similar to that in Case 2. 

Table 15. Pension fund model with future contribu- 
tions—efficient frontier for E = 0 (Case 3) 

Portfolio 
Parameter Equity Fixed interest Characteristics 

v % nominal % nominal P V 

0 71 29 826 6,552 
100 74 26 818 6,937 
400 94 6 779 18,000 

1000 100 0 764 25,000 
5000 100 0 750 65,000 

10000 100 0 747 75,000 

10.12 In Case 4 we have the same current market conditions as in Case 1 but 
the rate of future dividend growth, which is an actuarial assumption, has been 
increased. 

Table 16. Pension fund model with future contribu- 
tions—efficient frontier for E=0 (Case 4) 

Portfolio 
Parameter Equity Fixed interest Characteristics 

v % nominal % nominal P V 

0 63 37 887 5,253 
100 64 36 878 5,796 
500 70 30 834 19,000 

1000 82 18 789 53,000 
1500 98 2 752 98,000 
2000 100 0 748 104,000 
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10.13 The result is again similar to Cases 2 and 3, because the high dividend 
growth assumption ensures that the expected return on equities exceeds that on 
fixed interest stocks. For a change the matching portfolio (v = 0) now differs from 
the previous cases and it includes a larger proportion of fixed interest stocks. 
Changes in actuarial assumptions alter projected future cash flows, which 
variations in current market values do not. (We are of course free to amend the 
actuarial assumptions in the light of current market conditions.) In this case the 
higher dividend growth assumption presumably has the effect of making the 
equities less well matched to the liabilities because of their lengthened mean term. 

10.14 In Case 5 the redemption yield on fixed interest stocks (8.5%) is only 
marginally greater than the expected return on equities (1·035 × 1·045 = 1·082). 
All the expected returns are below the 9% valuation rate of interest. 

Table 17. Pension fund model with future contri- 
butions—efficient frontier for E = 0 (Case 5) 

Portfolio 
Parameter Equity Fixed interest Characteristics 

v % nominal % nominal P V 

0 71 29 1396 6,552 
100 65 35 1379 7,447 

1000 19 81 1242 
104 

76,000 
0 100 1187 ·2 × 106 

105 0 100 1163 1·1 × 106 
106 0 100 1159 1·6 × 106 

10.15 As could be expected, a fixed interest stock figures in the ultimate high 
risk portfolio. This end of the efficient frontier is not reached until a very high 
value of v is specified, because of the closeness between the expected yields on the 
various securities. It will also be seen from the Appendix that the effect of 
increasing v is to move the selected portfolio into the securities which are held for 
the shorter durations. The explanation for this feature is that the expected return 
on a security includes interest at the valuation rate on reinvestment of the 
projected future proceeds of income and capital. In this particular case the 
advantage lies with the shortest fixed interest stock, because of the 9% assumed 
rate of return after redemption of the investment. 

10.16 The final example (Table 18) returns to the first example discussed in 
§§ 10.1 to 10.4, with the introduction for the first time of a positive expected 
surplus. The details of the selected portfolios are given in the Appendix. They are 
fairly similar to those for E=0 (see Table 11 and Appendix), but with a greater 
emphasis on the fixed interest stocks and the assets of longer term. 
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Table 18. Pension fund model ignoring contributions— 
efficient frontier for E=1000 

565 

Parameter 
v 

0 
10 

100 
1000 
2000 
3000 
4000 

Portfolio 
Equity Fixed interest 

% nominal % nominal 

64 36 
64 36 
59 41 
35 65 
23 71 
12 88 
2 98 

Characteristics 
P V 

1771 3,410 
1769 3,420 
1754 4,200 
1694 28,000 
1666 70,000 
1648 116,000 
1630 178,000 

11. CONCLUSION 

11.1 In this paper I have sought to reason that the expected surplus E and the 
degree of risk v are appropriate parameters which an actuary may use to 
determine strategic portfolio structures relative to long term liabilities. In any 
given situation there is always an efficient frontier of positive portfolios; these are 
the portfolios with no negative asset holdings which are optimal in the sense that 
any other such portfolio with the same price P and expected surplus E will give a 
larger variance V of ultimate surplus. The concept is very similar to that of 
classical portfolio theory except that the long term liabilities are included and the 
price P of the portfolio is substituted for E in the trade-off against V. 

11.2 The efficient frontier is a one-dimensional range of portfolios which can 
be traced out by the parameter v. At one end of the range v=0, the variance is 
minimized and the portfolio is the positive unbiased match as defined in my 
earlier papers.(1)(4) At the other extreme the ultimate high risk portfolio consists 
of a single security, the one with the highest expected return. From one end of the 
efficient frontier to the other, the parameter v can be used to trace all the efficient 
portfolios. As v is increased the composition of the portfolio changes steadily 
from the matching to the ultimate high risk portfolio, the price of the portfolio 
reduces and the variance of ultimate surplus increases. There are no sudden 
jumps or discontinuities in any of these features. 

11.3 The composition of the matching portfolio is independent of current 
market conditions, but that of the ultimate high risk portfolio is not. In 
consequence, the efficient frontier is liable to short term fluctuations with 
changing market conditions, although the degree of this effect on any particular 
choice of portfolio will depend on the extent of departure from the matching 
position. 

11.4 The efficient frontier is also dependent on the actuarial assumptions. It 
might therefore be difficult to justify and explain the technique for practical 
applications, although such considerations have not inhibited actuaries in the 
past! It is clear that analysis of sensitivity to alternative assumptions would be 
necessary before attempting to draw conclusions from the numbers. 
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11.5 The theory is not affected by the complexity of the liability model, and it 
is apparent that any degree of complexity can be represented and successfully 
dealt with providing that the future cash flows can be estimated. 

11.6 The calculations reported in this paper have all been based on an 
analytical treatment of the stochastic model of interest and inflation. Appendix C 
to my earlier paper(4) showed how to derive exact figures for the covariance-type 
matrix. However, analytical methods are not able to deal with the more realistic 
stochastic models for investment returns and inflation which actuaries might 
wish to use in practice. In particular the long term stochastic model which has 
been developed by Wilkie(7) is too complicated to be applied in the analytical way. 

11.7 There is however another way forward, and that is by use of simulation 
methods. The portfolio selection technique requires for its basic data the 
expected returns on the liabilities and each of the available securities, and the 
matrix of covariances between all these accumulated amounts. If we used a 
stochastic model as a basis for numerous simulations of the asset and liability 
cash flows, we could arrive at estimates of all the required means and 
covariances. The estimates could be made as accurate as we wished by doing 
enough simulations, subject to the constraints of computing time. We could even 
build in the effects of financial options and guarantees in the simulations of asset 
and liability cash flows, and these effects would be represented in the mean and 
covariance estimates. Some work on this has been done, and the indications are 
that realistic practical applications can be put in hand in this way. 

11.8 I conclude by expressing my grateful thanks to all those whose own 
efforts helped me to produce this paper: especially to David Wilkie, to Mike 
James and other colleagues who produced and verified numbers and graphs from 
the computer, and to Margaret Payne who produced the typescript. 
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APPENDIX—EFFICIENT FRONTIERS FOR THE PENSION FUND 
MODEL 

Table 11 (§ 10.3) shows the sector distribution of selected efficient portfolios. 
The nominal holdings in each of the 12 securities are given below for each of the 
selected portfolios. 

Table 11 supplement 

Asset redemption Parameter 

dates 0 10 100 1000 2000 3000 4000 

Equity 1–5 176 173 137 0 0 0 0 
6–10 171 169 144 8 0 0 0 

11–15 314 312 283 133 24 0 0 
16–20 420 418 374 189 7 0 0 
21–25 127 127 164 0 0 0 0 
26–30 0 0 0 241 315 160 0 

Fixed interest 3 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
23 512 520 68 0 0 0 0 
28 0 0 540 1082 1285 1459 1609 

Similar information is shown below for Table 17 (§ 10.14) and Table 18 (§ 10.16). 

Table 17 supplement 

Asset redemption Parameter 

dates 0 100 1000 104 

Equity 1–5 0 0 0 0 
6–10 21 7 0 0 

11–15 200 185 0 0 
16–20 382 325 0 0 
21–25 142 168 0 0 
26–30 0 0 189 0 

Fixed interest 3 0 0 0 0 
8 0 0 0 296 

13 0 0 283 677 
18 0 92 523 0 
23 309 270 0 0 
28 0 0 0 0 

105 106 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

762 947 
189 0 

0 0 
0 0 
0 0 
0 0 
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Table 18 supplement 

Asset redemption Parameter 
dates 0 10 100 1000 2000 3000 

Equity 1–5 129 125 91 0 0 0 
6–10 135 132 109 0 0 0 

11–15 283 280 255 123 15 0 
16–20 394 389 360 188 6 0 
21–25 211 215 230 0 0 0 
26–30 0 0 0 303 373 210 

Fixed interest 3 0 0 0 0 0 0 
8 0 0 0 0 0 0 

13 0 0 0 0 0 0 
18 0 0 0 0 0 0 
23 216 166 0 0 0 0 
28 425 485 736 1120 1321 1493 

4000 

0 
0 
0 
0 
0 

29 
0 
0 
0 
0 
0 

1663 




