THE

ASSURANCE MAGAZINE.

Memoir of the early History of Auxiliary Tables for the Computation of Life Contingencies. By Frederick Hendriks, Esq., Actuary of the Globe Insurance Company.

As nearly all those readers whom the subject-matter of the following pages is likely to interest, are already fully acquaihted with the nature and acknowledged utility of the Commutation Method, or arrangement of the preparatory Tables for Annuity and Assurance calculations into certain forms called the D,N,S,M, and R columns; it will, therefore, be unnecessary to enlarge on those points; and the facts to be presently adduced will have reference simply to the early history of that system of computation, or, more strictly, to the date when, and the person by whom, it was first really promulgated. In bringing such facts forward, it is requisite to disclaim the remotest intention of urging that full merit is not likewise due to those English writers who have either foreshadowed or extended the method in this country, and who, although not its first discoverers, were undoubtedly its improvers.

The method was arrived at separately by English and by German authors, but the priority in the respective dates will be seen fairly to belong to the latter.

The circumstances to be brought forward in support of this view appear to have hitherto escaped any notice in England. There can scarcely be a doubt that when the late Mr. Francis Baily* drew up his well-known Memoir on Barrett's Formulx, which was read to the Royal Society in June, 1812, his practical mind, and honourable endeavours to prevent, as he says, "Mr. Barrett's astonishing labours sinking into oblivion," offered a guarantee of his being perfectly unaware that formulx, applicable to the same purposes, and in a more complete form, had been published (though not in England) some 27 years previously; otherwise it may be justly presumed that he would not have characterised Barrett's invention as an entirely new one, or its principles as "opening a new and a wide field to the analyst," without adding parenthetically-" at least new in England." (Note A, page 15.)

Mr. Barrett's unsuccessful attempt to publish his Life Annuity Tables, dates from 1811, and Mr. Baily's letter to him of the 17 th June of that year is printed in the proposals for publication. Baily mentions that 25 years was the extent of time Barrett had devoted to the preparation of those Tables. This would bring their first conception to about the date of 1786 .

The method was made public in England by Mr. Baily's "Appendix to the Doctrine of Life Annuities and Assurances," printed in 1813; whilst in Germany it had been published in a far more advanced form so far back as the year 1785 , the date of the following work:" Einleitung zar Berechnung der Leibrenten und Anwartschaften die

[^0]vom Leben und Tode einer oder mehrerer Personen abhangen mit Tabellen zum practischen Gebrauch, von Johann Nicolaus Tetens, Professor der Philosophie und Mathematik zu Kiel." Leipzig: bei Weidmanns Erben und Reich, 1785.

The above title is as follows in English:-Introduction to the computation of Life Annuities and Reversions which depend on the life and death of one or more persons, with Tables for practical use, by John Nicholas Tetens, Professor of Philosophy and Mathematics at Kiel." Leipsic: Weidmann's Heirs, and Reich, 1785.

It will be preferable to append in a note, instead of inserting here, some particulars as to who and what the learned Professor was; (see Note 1;) and before giving translations of such portions of his work as bear on the subject under consideration, it will be interesting to remark that he commences his somewhat lengthy Preface by observing, that on account of the changes that had occurred in the Calemberg Widows' Fund, it fell to his duty to make himself acquainted with the branch of arithmetic developed in his "Introduction," when noticing that the various questions which arose in that occupation concerning the applicability of the general Tables of Mortality, and respecting the greatness of the risk of the Fund, and other enquiries, were of much importance; and finding these nowhere cleared up, in pursuing his investigations many other results of consequence were arrived at, and they suggested the idea of an original introduction in which he could add to what was known on the subject, such particulars as he thought " most concise and to the purpose."

The changes in the Calemberg Widows' Fund, which Tetens refers to as the cause of his work, are thus mentioned in the communication from Mr. Oeder, of Oldenburgh, which Dr. Price inserted in his work on Life Annuities (see 1st vol. page 132, 6th Edition), where, after noticing the case of the Bremen Institution, which promised Annuities to widows for a payment on admission of a sum equal to one yearly payment of the Annuity purchased, and an annual contribation during marriage of 15 per cent., or a little less than one-seventh of the Annuity, he goes on to say :-
"The States of the Duchy of Calemberg, of which Hanover is the capital, established in 1767 a like scheme, but on terms still more deficient; for, though it differed from the two former schemes in paying a regard to the ages of married persons; yet, notwithstanding several augmentations, the contributions required by it did not, two years ago, come up to half the value of the Annuities. Great numbers, influenced probably by the lowness of the terms and the authority of the States, have been induced to encourage this institution. In 1779 it had Annuities to pay to 600 widows, and consisted of no less than 3800 members or subscribers, whose widows would be entitled to Annuities. In consequence of a rapid increase, its insufficiency was not then become palpable enough to force either a dissolution or a timely and effectual reformation. It was, therefore, likely to lay the foundation of great confusion and distress."

From the preceding extracts it will be seen that these "foreign bubbles" (as Dr. Price terms them) gave rise to the work of Professor Tetens, and the coincidence with the motives assigned by Mr. Baily, in introducing Barrett's Formulæ is somewhat remarkable. The following are Baily's prefatory remarks :-
" Nothing, perhaps, tended so much to destroy the numerous Bubble Societies which sprang up about forty years ago; nothing, probably, opened so effectually the eyes of the public with respect to their delusive schemes, as the publication of more correct and comprehensive Tables of the Values of Life Annuities, whereby the true value which ought to be given in such cases, was more accurately determined. And, as one improvement in science generally leads on to another, this naturally opened the way to a more complete and comprehensive investigation of the subject; so that, at the present day, a new, a distinct, and an interesting branch of analysis has arisen, which was unknown to mathematicians of a former period."

Tetens gives in his Preface a condensed view of the researches in the Theory of Life Annuities made by Dr. Halley, De Moivre, and others. (Note No. 2.) The works of Simpson he speaks of with much praise, and then introduces his own contributions to the subject in the following terms:-
"Of the more recent British authors on this matter only Morgan and Price have come to my knowledge, as having produced anything excellent or original. In the general theory both agree with Simpson. Morgan has indicated a double method of computing Annuities, which has, in all respects, much value. Dr. Price, who, with justice, much recommends it, seems, however, to ascribe to it somewhat too great pre-eminence. I have not found it so easy or short as not to have had reasons for devising yet another, and for preferring this latter method. One can compare them and judge.
"Dr. Price has made many original remarks of consequence in practice, especially in the fourth edition of his ' Observations on Reversionary Payments,' in two volumes, 1783.
"In the year 1752, when the above-mentioned 'Select Exercises' of Simpson appeared, it seemed that in Germany one was not yet so much as acquainted with the elements of these calculations. We had Widow's, Orphans', and Dead People's Funds; but of what description? All projected at random, or upon an approximative, but in these cases generally deceptive calculation, without just principles, or upon such as have also had theresult, which thelikeill-calculated projects generally give rise to. Still, we do not need to blush on this account, for such practical follies have likewise occurred among our neighbours on the other side of the sea. They have Provident Associations, which are nearly as faulty as the most faulty of ours, and which are of more recent date than the writings from which they could instruct themselves of a better administration. Reason in books is also with them; not reason in practice. But what might surprise is this, that we in Germany remain behind hand in the science itself; we who are, moreover, so very active in transplanting among us new foreign discovered knowledge. In 1706 Euler first propounded his method of computing Widows' Annuities. It was considered of importance as a new discovery, and certainly the illustrious man had found it out of his own accord, but it had no quality less than that of novelty: it was the same method of computing according to the Mortality Tables, as had long been known to the English. (Note No. 3.) From that time forward we have made it a study. Messrs. Seyberth, Kritter, Lambert, Fuss, Oeder, Lous, Bugge, and Florencourt, have laboured therein with intelligence and advantage. We may say that we are equal to the Britons in those
branches of it which immediately appertain to our requirement, and, if one looks at it strictly, we excel them in some one or other. But if we wish to be just, we must admit that Simpson had gleaned in no German book, and also that much might be learnt from Price, after one has likewise mastered all that has been written on the subject by our countrymen.
"This position of the science, and of so useful a science, was the circumstance which chiefly incited me to pursue it further than I at first intended, and further, perhaps, than the business which led me to it would have required for itself alone.
"The Britons have long been our teachers; or, properly, they could have been so. May not the German, then, embrace the resolution, so to bring it about, that in their turn they can learn something from us, if they will. I would fain incite and give opportunity to that purpose." (Note B, see page 19.)

This praiseworthy sentiment of Professor Tetens was expressed, however, at a period when a long course of political troubles was about to prevent any extended communication of ideas between Great Britain and Germany reciprocally, and to postpone till more peaceful days, the establishment on the continent of the various Provident Annuity and Insurance Institutions, which have since been founded on correct principles, and to the appreciation of which, and as offering valuable information, the work of Professor Tetens had long been available.

The following translated extracts, with occasional remarks and notes, have now to be submitted, and the reader is requested, after their perusal, to ask himself the question, Whether, reviewing the circumstances adduced, must it not be concluded that Tetens was the first discoverer of the modern system of arranging Life Tables? If the present memoir be the means of satisfying its readers of that fact, then its object will have been fully carried out, and the care bestowed on its compilation amply recompensed.

Translated Extraets, with remarks and notes:
"Practical method of computing the mean Duration of Life and Life Annuities according to any given Table of Mortality.
"The methods of computation hitherto applicable to these subjects either only lead to nearly correct values, being Methods of Approximation, or else they give such values quite correctly. Recourse was had to the former because the latter appeared diffuse and laborious. But they are not so, when one is but provided with the auxiliary Tables which appertain to the calculation of interest.
"By means of a new Auxiliary Table which can be made in accordance with the Table of Mortality by which it is to be reckoned, and at the rate of interest proposed for its foundation, the whole labour, as well for Life Annuities as for the mean duration of life, may be reduced to one division. The preparation of that table requires nothing more than an easy addition when regard is had to the Duration of Life only, but demands somewhat more trouble if it be extended to the calculation of Life Annuities, -it would not therefore be desirable to make it for one single Annuity of the kind. But then it gives simultaneously all values of Life Anmuities as well as all durations for every age at once. I will here annex it as applied to Suss-
milch's Table of Mortality.-(Note 4, p. 5). It is the model for others of the like description."-(Note 5, p. 15.)

TABLE T. (1).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline A.

Age. \& B.
Living
accord-
meg to
Suss-
milch. \& C. The Numbers in B discounted for the years of the age, r belng $=1 \% 4$. \& D.
sum of
the
Numbers
in B
added up-
ward from

bencath. \& \begin{tabular}{l}
E.

Sum of the Numbers in C added upward from beneath.

 \& A. \&

B.

Living

according to

Suss-

mich.
\end{tabular} \& C. The Numbers in B. discounted for the years of the age, r being $=1 \cdot 04$. \& D.

Sum of
the
Numbers
in B
added up-
ward from

beneath. \& | E. |
| :--- |
| Sum of the Numbers m C . added upward from beneath. |

\hline 0 \& 1000 \& 1000 \& 28988 \& 12431.48 \& \& \& \& \&

\hline 1 \& 750 \& $721 \cdot 15$ \& 27988 \& 11431-48 \& 51 \& 291 \& 3937 \& 4934 \& $455 \cdot 74$

\hline $\underline{2}$ \& 661 \& $611 \cdot 13$ \& 27238 \& $10710 \cdot 33$ \& 52 \& 282 \& 36.69 \& 4643 \& 416.37

\hline 3 \& 618 \& $549 \cdot 40$ \& 26577 \& $10099 \cdot 20$ \& 53 \& 273 \& $34 \cdot 15$ \& 4361 \& $379 \cdot 68$

\hline 4 \& 693 \& $560 \cdot 90$ \& 25959 \& $9549 \cdot 80$ \& 54 \& 264 \& $3 \mathrm{I} \cdot 75$ \& 4088 \& 34553

\hline 5 \& 579 \& 475.90 \& 25366 \& 9042.90 \& 55 \& 255 \& 2949 \& 3824 \& 313.78

\hline 6 \& 567 \& $448 \cdot 11$ \& 24787 \& 8567.00 \& 56 \& 246 \& 2736 \& 3569 \& $284 \cdot 29$

\hline 7 \& 556 \& 42251 \& 24220 \& 8118.89 \& 57 \& 237 \& 2534 \& 3323 \& $256 \cdot 93$

\hline 8 \& 547 \& 39969 \& 23664 \& $7696 \cdot 38$ \& 58 \& 228 \& $23 \cdot 44$ \& 3086 \& 231.59

\hline 9 \& 539 \& 378.69 \& 23117 \& 729669 \& 59 \& 219 \& 21.65 \& 2858 \& 208-15

\hline 10 \& 532 \& $359 \cdot 40$ \& 22578 \& $6918 \cdot 00$ \& 60 \& 210 \& 1996 \& 2639 \& $186 \cdot 60$

\hline 11 \& 527 \& $342 \cdot 33$ \& 22046 \& 6558.60 \& 61 \& 201 \& 18.37 \& 2429 \& 166.54

\hline 12 \& 523 \& $326 \cdot 66$ \& 21519 \& 6216.27 \& 62 \& 192 \& 16.87 \& 2228 \& 14817

\hline 13 \& 519 \& 311.70 \& 20996 \& 588961 \& 63 \& 182 \& $15 \cdot 38$ \& 2036 \& 131.30

\hline 14 \& 515 \& 297.40 \& 20477 \& 5577.91 \& 64 \& 172 \& 13.98 \& 1854 \& $115 \cdot 92$

\hline 15 \& 511 \& 283.74 \& 19962 \& $5280 \cdot 51$ \& 65 \& 162 \& 12.66 \& 1682 \& 10194

\hline 16 \& 507 \& 270.69 \& 19451 \& 4996.77 \& 66 \& 152 \& 11.42 \& 1520 \& 8928

\hline 17 \& 503 \& 258.23 \& 18944 \& 4726.08 \& 67 \& 142 \& 10.26 \& 1368 \& 77.86

\hline 18 \& 499 \& 246.32 \& 18441 \& 446785 \& 68 \& 132 \& $9 \cdot 17$ \& 1226 \& 67.60

\hline 19 \& 495 \& $234 \cdot 95$ \& 17942 \& 4221.53 \& 69 \& 122 \& $8 \cdot 15$ \& 1094 \& 58.43

\hline 20 \& 491 \& 224.09 \& 17447 \& 3986.58 \& 70 \& 112 \& $7 \cdot 19$ \& 972 \& 5028

\hline 21 \& 486 \& $213 \cdot 27$ \& 16956 \& 3762-49 \& 71 \& 103 \& 636 \& 860 \& 43.09

\hline 22 \& 481 \& 202.96 \& 16470 \& 354922 \& 72 \& 94 \& $5 \cdot 58$ \& 757 \& $36 \cdot 73$

\hline 23 \& 476 \& $193 \cdot 13$ \& 15989 \& 334626 \& 73 \& 85 \& 4.85 \& 663 \& $31 \cdot 15$

\hline 24 \& 471 \& $183 \cdot 75$ \& 15513 \& 315313 \& 74 \& 77 \& $4 \cdot 23$ \& 678 \& 26.30

\hline 25 \& 466 \& 17480 \& 15042 \& 296938 \& 75 \& 69 \& $3 \cdot 64$ \& 501 \& $22 \cdot 07$

\hline 26 \& 461 \& 166.28 \& 14576 \& $2794 \cdot 58$ \& 76 \& 62 \& $3 \cdot 15$ \& 432 \& 18.43

\hline 27 \& 456 \& 158-15 \& 14115 \& 262830 \& 77 \& 55 \& 268 \& 370 \& 15.28

\hline 28 \& 451 \& 150.40 \& 13659 \& $2470 \cdot 15$ \& 78 \& 49 \& $2 \cdot 30$ \& 315 \& 12.60

\hline 29 \& 445 \& 142.69 \& 13208 \& 2319.75 \& 79 \& 43 \& 194 \& 266 \& $10 \cdot 30$

\hline 30 \& 439 \& 135-35 \& 12763 \& 2177.06 \& 80 \& 37 \& 1.61 \& 223 \& $8 \cdot 36$

\hline 31 \& 433 \& $128 \cdot 37$ \& 12324 \& 2041.71 \& 81 \& 32 \& 1.33 \& 186 \& 675

\hline 32 \& 427 \& $121 \cdot 72$ \& 11891 \& 1913.34 \& 82 \& 28 \& 112 \& 154 \& $5 \cdot 42$

\hline 33 \& 421 \& $115 \cdot 39$ \& 11464 \& 1791.62 \& 83 \& 24 \& 093 \& 126 \& 430

\hline 34 \& 415 \& $109 \cdot 37$ \& 11043 \& 1676-23 \& 84 \& 20 \& 0.74 \& 102 \& $3 \cdot 37$

\hline 35 \& 409 \& 10365 \& 10628 \& 1566 -86 \& 85 \& 17 \& 0.61 \& 82 \& $2 \cdot 63$

\hline 36 \& 402 \& 97.95 \& 10219 \& 1463:21 \& 86 \& 14 \& 048 \& 65 \& $2 \cdot 02$

\hline 37 \& 395 \& 92.55 \& 9817 \& $1365 \cdot 26$ \& 87 \& 12 \& $0 \cdot 40$ \& 51 \& $1 \cdot 64$

\hline 38 \& 388 \& 87.41 \& 9422 \& 1272 71 \& 88 \& 10 \& 0.32 \& 39 \& 114

\hline 39 \& 381 \& 82.53 \& 9084 \& 1185-30 \& 89 \& 8 \& 0.24 \& 29 \& 0.82

\hline 40 \& 374 \& 77.90 \& 8653 \& $1102 \cdot 77$ \& 90 \& 6 \& $0 \cdot 18$ \& 21 \& 0.58

\hline 41 \& 367 \& $73 \cdot 50$ \& 8279 \& $1024 \cdot 87$ \& 91 \& 5 \& $0 \cdot 14$ \& 15 \& $0 \cdot 40$

\hline 42 \& 360 \& $69 \cdot 33$ \& 7912 \& 951.37 \& 92 \& 4 \& $0 \cdot 11$ \& 10 \& $0 \cdot 26$

\hline 43 \& 353 \& 65.36 \& 7552 \& 882.04 \& 93 \& 3 \& 0.08 \& 6 \& $0 \cdot 15$

\hline 44 \& 346 \& 61.60 \& 7199 \& 816.68 \& 94 \& 2 \& 005 \& 3 \& 0.07

\hline 45 \& 339 \& 58.04 \& 6853 \& 755.08 \& 95 \& 1 \& 0.02 \& 1 \& 0.02

\hline 46 \& 332 \& 54.65 \& 6514 \& 697.04 \& 96 \& \& \& \&

\hline 47 \& 324 \& 51.28 \& 6182 \& 64239 \& \& \& \& \&

\hline 48 \& 316 \& $48 \cdot 09$ \& 5858 \& 691.11 \& \& \& \& \&

\hline 49 \& 308 \& $45 \cdot 07$ \& 5542 \& 54302 \& \& \& \& \&

\hline 50 \& 300 \& 42:21 \& 5234 \& 49795 \& \& \& \& \&

\hline
\end{tabular}

" This Table constructed, nothing more is requisite for the computation of the mean duration of life, than that when the age of a person is a, the number in the column D against the next following year $a+1$, be divided by the number, in column B against the given age, and $\frac{1}{2}$ added thereto.
"The number in the column D against the year $a+1$, inc uding the sum of the numbers of living in B, from the year $a+1$ upward, the latter included, to the end of the Table. Let A be the number at which we set out, or the number living at the given age, which stands against the year of this age in column B, then the number in column D against the next following year is-

$$
={ }^{1} \mathbf{A}+{ }^{2} \mathbf{A}++^{-x} \mathbf{A}
$$

This being then divided by A and $\frac{1}{5}$ added, gives-

$$
\frac{{\underset{1}{A}}^{A}+\frac{2^{2}}{A}++^{-x}}{\mathrm{~A}}+\frac{1}{9}=\mathrm{E}^{-}
$$

"Example.-Let the given age be 15 years, then $A=511$. The number standing under D , against the 16 th year, is 19451 . Now,

$$
\frac{19451}{511}+\frac{1}{2} \text { is }=38.06+0.5=38.56
$$

This is the mean duration of life.
"To find the value of a Life Annuity of 1 , that is for the whole year, in which the intermediate periods are not reckoned, and the rent itself is payable always at the end of the year, one divides the number from column E, which stands against the age with 1 year added, by the number in column C against the given age itself.
" Example.-Let the giver age be 20 years, then the number 3762.49 stands in the colump E against 21 years, and 224.09 in the column C against 20 years. Now, $\frac{3762 \cdot 49}{224.09}=16.79$. This is the net present value of a Life Rent of 1 for a person aged 20 years, when the interest of money is reckoned at 4 per cent.
"The values found are correct only to two decimal ciphers when the numbers in column B are only taken to so many places. Should a table be prepared with nicety, then one must extend it further, up to 5 figures. In the preceding example one finds by the numbers employed, $\lambda \overline{20}=16.7901$; but the more exact required value is 16.7905.-(Note 6, see page 15).
"Moreover it becomes evident from the arrangemen ${ }^{\text {* }}$ of the Auxiliary Table itself, that the method of computation is accurate. The number against the year 20 in column C , viz. 224.09 is the number of living in that year in column B (491), discounted back for 20 years, expressed thus $\frac{491}{7^{20}}$

The next numbers of the same column C are the following numbers of the living discounted.

$$
\frac{\frac{1}{\mathbf{A}}}{r^{20}+1} \quad \frac{{ }^{2} \mathbf{A}}{r^{20}+2} \quad \frac{\frac{3}{-2} \mathbf{A}}{r^{20}+3}
$$

and so farther, where A again represents the number of the living at
commencement of the age of 20 years, ${ }^{l}$ A that for the first following year, ${ }^{\frac{2}{-}}$ A for the second, and so on. But now the number in column E, at 21 , gives the sum

$$
\frac{2}{r^{20}+1}+\frac{2^{2} A}{r^{20}+2}++\frac{x^{2} A}{r^{20}+x}
$$

therefore this number divided by the number of column C, against 20 years, is equivalent to

$$
\frac{1}{\mathbf{A}: r^{20}} \cdot\left(\frac{\frac{1}{A}^{r^{20}+1}}{\left.+\frac{2_{A}}{r^{20}+2}++\frac{\frac{x}{A}}{r^{20}+x}\right)}\right.
$$

and when instead of $20, a$ is substituted generally for any given age, it is equal to

$$
\begin{aligned}
& \frac{1}{A: r^{a}} \cdot\left(\frac{\frac{1}{A}_{A}^{r}}{r^{a}+{ }^{2}}+\frac{\stackrel{2}{A}_{A}^{r^{a}+2}}{r^{2}}+\frac{\frac{x}{r^{a}+x}}{r^{a}}\right) \\
& =\frac{1}{A} \cdot\left(\frac{\frac{1}{A}^{r}}{r}+\frac{\frac{z}{A}^{r^{2}}}{r^{2}}+\frac{\frac{x}{A}^{r^{x}}}{}\right)
\end{aligned}
$$

$=$ the present worth of the Life Annuity at the age $a,=\lambda \bar{a}$.
"I consider this method the most excellent of all, especially because one may also use the so prepared auxiliary tables with much adrantage in the valuation of Joint Life Annuities, as I will show hereafter. Besides, as column C gives some trouble, one can deviate from it in regard to single life annuities by an easier arrangement.
"1st-Instead of the discounted numbers of the living, one takes the similarly discounted yearly decrements and places these in column C, and their sums from beneath upward in column E. The Decrements are much smaller numbers, therefore the discounting succeeds more easily and rapidly.
"2nd-If the given age be a, then one divides the number against a in column E, by the original number A.
" 3rd-This quotient being again multiplied by r^{a}, one thus arrives at the present value of the sum of 1 payable at the decease of a person aged a. The 21st Table contains these values according to Sussmilch's Table, and at the rate of interest $r=1.04$.
" 4 th-This product deducted from 1 and the remainder multipied by the present value of the perpeturty gives the value of the Life Anuuity of 1 , whence its worth is easily ascertained for any other amount of yearly rent.
"I will not therefore insert such a Table here myself. Its construction is easily intelligible. One sees that by this plan the labour of the arrangement is shortened, but then again more computation is wanted than by the before described process. However, such methods are very serviceable when we only seek for one or more Life Annuities by a certain Table of Mortality, without requiring to have them all.
"If the preceding plan be used, then the sum at the age a, which one takes from the table (calling it S)

$$
=\frac{\triangle \mathrm{A}}{r^{a}}+\frac{\Delta^{\frac{1}{2}} \mathrm{~A}}{r^{a+}}++\frac{\Delta^{x} \mathrm{~A}}{r^{a+x}}
$$

$\triangle A, \Delta^{\perp} A, \Delta^{x} A$, being the decrements following each other of the initial number A at age a, each discounted back to the commencement of the life. Thence is

$$
\frac{r^{a-2} S}{\mathrm{~A}}=\frac{1}{\mathrm{~A}} \cdot\left(\frac{\Delta \mathrm{~A}}{r}+\frac{\Delta^{\frac{1}{A}} \mathrm{~A}}{r^{2}}+\frac{\Delta^{\frac{x}{A}} \mathrm{~A}}{r^{x}}\right)
$$

This last quantity being again multiplied by r, is the present value of a sum of 1 payable at the death of a person of the given age a (the worth of an inheritance of 1 which is to be received at the death of the person.) This value will be used in many problems, therefore a special table for it was necessary. (See Note 7, page 16.)

Calling this value T then $\lambda \bar{a}$ is $=p(1-T)$
Let the given age be 40 years; then by the 21 st Table the value $\mathbf{T}=0.4737$, and, because by the same rate of interest $r=1.04$, p is $=25$, 一then we have $(1-0.4737) \times 25=13.1575$ for the Life Annuity or $\lambda \overline{40}$.

When the values of T have not already been computed from the values of the Life Annuities, in that case one could obtain the latter from the former. The English call the Life Annuity the value of the life (Der Werth des Lebens). The said values T might according to this analogy be termed values of the death. But they have already other names, and these are willingly retained in order to avoid the overstrained affected expressions of 'finding the value of the life from the value of the death' and the like.
" Third Method of calculating Life Annuities.
"The arrangement necessary in the following method is still easier:-
" 1. Instead of the yearly decrements their differences are taken, and each of these discounted back to the commencement of the age as before. Rejecting the lives under 10 years of age, as their Life Annuities seldom come into notice, then by Sussmilch's Table, the first difference of the decrements $5-4=1=\triangle A-\triangle^{\frac{1}{-}} A$ and the following ones up to the $20 t h$ year are all $=0$, and all the subsequent ones either 1 or 0 . Consequently the column of discoanted numbers, which hitherto has required the most computation, can be transcribed merely from the Table of discounted sums. (Table No. 2 at end of the work.)
" 2. One sums these discounted differences from beneath upward. But here it is to be noticed, that where the following decrement is greater than the one preceding, when $\Delta \stackrel{n+1}{-}_{A}>\Delta^{n} A$, then will the difference $\Delta{ }^{n}$ A $-\Delta \stackrel{n+1}{ } A$, and also the discounted difference be negative, and must therefore be deducted from the described summation from beneath upward.
" 3. To use these sums for any other age e.g. 20 years, the sum belonging to 20 years must again be multiplied by r^{20}. Let the so found sum of the differences for a commencing number be represented by \mathbf{N};
"4. One subtracts the number N from the finst decrement of the commencing number A, that is from $\triangle \mathrm{A}$, and one multiplies the remainder by $\frac{r p}{A}$. This is also again the value of the reversion. (Note 8, page 17.) Therefore,
" 5 . That value itself being deducted from unity, and multiplied by the present value of the perpetuity, gives the value of the Life Annuity of 1. This is expressed in Symbols

$$
\lambda \bar{a}=\left(1-r p \frac{(\Delta \mathrm{~A}-\mathrm{N})}{\mathrm{A}}\right) p
$$

Section 61.
"We can still further take the differences of the differences instead of the differences themselves, discount them back in the same manner, as before, and sum the discounted numbers backward from the end. With Sussmilch's Table of Mortality nothing is gained thereby, nor have we smaller numbers, or fewer to discount, than when the differences themselves are used. With other Tables it may be the reverse. The computation then to be made is, it is true, somewhat more contracted, but that is unimportant. In the Appendix I have treated of this more at length.
"There will also be found there another method of obtaining the value of Life Annuities by means of the decrements and values of temporary Annuities certain." (Zeitrenten.)

Extract from Appendix above referred to (page 157):-
"Another easier method of obtaining the value of Life Annuities is the following, but it does not present so convenient a general arrangement at one age as at another. One multiplies the present values of the temporary Annuities following each other in the 3rd Table, $\int \frac{1}{r}, \int \frac{1}{r^{2}}, \int \frac{1}{r^{3}}$, and so on, up to $\int \frac{1}{r^{x-2}}$, when x is the complement of the life, (Altersergänzung) each into the decrements belonging thereto, which are but small numbers, for example, $\int \frac{1}{r}$ is multiplied into $\Delta{ }^{\frac{1}{x}} \mathrm{~A}$, that is, into the decrement of the secona year. Further $\int \frac{1}{r^{2}}$ into $\Delta^{\frac{2}{2}} \mathrm{~A}$, and so forth.

$$
\begin{gathered}
\therefore \Delta^{\frac{1}{-}} \mathrm{A} \int \frac{1}{r}+\Delta{ }_{-}^{2} \mathrm{~A} \int \frac{1}{r^{2}}+\Delta \xrightarrow{3}_{\mathrm{A}}^{\mathrm{A}} \int \frac{1}{r^{3}}++ \\
\Delta \frac{x^{x-1}}{} \mathrm{~A} \int \frac{1}{r^{x-1}}=\mathrm{A} \lambda \bar{a}
\end{gathered}
$$

(See note 9, page 18.)

In reverting to his own system (Table T (1) of this paper), Tetens gives a detailed account of "Morgan's Method of Computing Life Annuities by a double reckoning, of which one is at the same time the proof of the other." Our author then adds that the reason of his quoting such method is that Dr. Price prefers it to every other; but " wherefore" "he sees no just ground." He subsequently, however, recommends Morgan's method when a check is desired upon the figures in his new Table. He compares the two systems thus (page 102):-"This method (Morgan's) has decidedly its value, but I imagine, however, that in conciseness (Kürze) it is not to be compared with the one which I have before indicated." Tetens goes on to say that the preparation of his own Auxiliary Table (No. T(1) just quoted) "requires absolutely no division, but only multiplication and addition, when one has already the discounted numbers."

The Table of discounted numbers here means a Table of the present value of one receivable at the end of any number of years at a given rate of interest. (Table 2 of Smart's work.) Tetens notices that Morgan also publishes those discounted values. Morgan's Table is, however, for the rate of 4 per cent. only, whilst that of Tetens is also for 3,5 , and 6 per cent., being a Table computed for his work by Herr von Drateln, and the values are worked out to 10 places of decimals, being four places more than in Morgan's, and two more than in Smart's Table.

Section 85.

"By means of such an Auxiliary Table as the preceding one (§ 56) for the computation of Life Annuities, one finds the Deferred Life Annuities (aufgeschobene Leibrenten) in a similar manner by one division. The sum of the discounted numbers of living in column \mathbf{E}, against the year $a+n+1$ has to be divided by the discounted number of living, standing in column C against the year a, and the quotient is what is sought. When $a=20$ and $n=16$, then there stands against the year $a+n+1=37$, in the column E, $1365 \cdot 26$ and against 20 years in the column $\mathrm{C}, 224 \cdot 09$. Then $\frac{1365.26}{224.09}=6.093$ is the result."

Segtion 117.

[^1]TABLE T (2)

A. Year		C. Differences of the Decrements.	D.Sums of the Sums of the living.	E. Sums of the Sums of the discounted Numbers of living.	A.		C. Differences of the Decrements.	D. Sums of the Sums of the living.	E. Sums of the Sums of the discounted Numbers of living.
0	250	$+161$	857202	210074-50					
1	89	+ 46	827219	197643.02	51	9	0	59589	433976
2	43	+18	799231	18621154	52	9	0	54655	3884.02
3	25	+ 11	771993	175501-21	53	9	0	50012	$3467 \cdot 65$
4	14	+ 2	745416	16540201	54	9	0	45651	3087.97
5	12	+ 1	719457	155852-21	55	9	0	41563	2742.44
6	11	+ 2	694091	146809 -31	56	9	0	37739	$2428 \cdot 66$
7	9	+ 1	669304	138242 31	57	9	0	34170	$2144 \cdot 37$
8	8	+ 1	645084	$130123 \cdot 42$	58	9	0	30847	$1887 \cdot 44$
9	7	+ 2	621420	122427.04	59	9	0	27761	165585
10	5	+ 1	598303	$115130 \cdot 35$	60	9	0	24903	144770
11	4	0	575795	108212 35	61	9	-1	22264	1261.10
12	4	0	553679	$101653 \cdot 78$	62	10	0	19835	1094.56
13	4	0	532160	95437.48	63	10	0	17607	94639
14	4	0	511164	89547.87	64	10	0	15571	815.69
15	4	0	490687	8396996	65	10	0	13717	$699 \cdot 17$
16	4	0	470725	78689.45	66	10	0	12085	$597 \cdot 23$
17	4	0	457274	$73692 \cdot 68$	67	10	0	10515	507.95
18	4	0	432330	68966-60	68	10	0	9147	$430 \cdot 09$
19	4	-1	412889	$64498 \cdot 75$	69	10	0	7921	362.49
20	5	0	395947	60277-24	70	9	$+1$	6827	$304 \cdot 06$
21	5	0	378500	$56290 \cdot 64$	71	9	0	5855	253.78
22	5	0	361544	$52228 \cdot 15$	72	9	$+1$	4995	210.69
23	5	0	345074	$48978 \cdot 93$	73	8	0	4238	17396
24	5	0	329085	45632.67	74	8	$+1$	3575	$142 \cdot 81$
25	5	0	313572	42479:54	75	7	0	2997	116.51
26	5		298530	$39510 \cdot 16$	76	7		2496	94.44
27	5	-1	283954	$36715 \cdot 58$	77	6	0	2064	76.01
28	6	0	269839	3408728	78	6	0	1694	60.73
29	6	0	256180	$31617 \cdot 13$	79	6	$+1$	1379	$48 \cdot 13$
30	6	0	242972	29297.38	80	5	+1	1113	37.83
31	6	0	230209	$27120 \cdot 32$	81	4	0	890	$29 \cdot 47$
32	6	0	218885	25078.61	82	4	0	704	22.72
33	6	0	206994	$23165 \cdot 27$	83	4	+1	550	17-30
34	6	-1	195530	$21373 \cdot 65$	84	3	0	424	13.00
35	7	0	184487	19697*42	85	3	+ I	322	$9 \cdot 63$
36	7	0	173859	18130.56	86	2	0	240	7.00
37	7	0	163640	16667.35	87	2	0	175	498
38	7	0	153823	15302.09	88	2	0	124	$3 \cdot 44$
39	7	0	144401	14029-38	89	2	$+1$	85	$2 \cdot 30$
40	7	0	135367	12844.08	90	,	0	56	1-48
41	7	0	126714	$11741 \cdot 31$	91	1	0	35	$0 \cdot 90$
42	7	0	118435	10716*44	92	1	0	20	0.50
43	7	0	110523	$9765 \cdot 07$	93	1	0	10	0.24
44	7	0	108971	8883.03	94	1	0	4	0.09
45	7	-1	95772	$8066 \cdot 35$	95	1	$+1$	1	0.02
46	8	0	88919	7811×27	96	0	0	0	
47	8	0	82405	6614.23					
48	8	0	76228	5971.84					
49	8	-1	70365	5380.73					
50	9	0	64828	4837.71					

Section 118.

"This Table is only, however, made according to Sussmilch's Table of Mortality, but can be easily constructed according to any other
order of dying. It requires the before given Table for single lives ($\$ 56$). From the latter it can be prepared in less than an hour's time. It consists entirely in an easy addition of numbers. The whole work which can be called in any way laborious, is, that one must compute in the first Table for single lives the discounted numbers of laving (being the numbers for column E). All the rest is then as good as completed.
"The Table before us contains in column C , the difference of the decrements in B (what A and B. are one perceives at a glance). The difference of one decrement from the next following is placed at the side of the former, and this is positive when the following decrement is smaller, and negative in the contrary case.
"The column D of this Table contains the sum of the numbers in column D of the former Table. The sums of the living for every year are summed anew from beneath upward, so that the number, which stands against any year, is the sum of all the numbers which stand in the former Table against the same year, and which follow from it to the end of the Table. There stands in the present Table against the 15 th year the number 490687. This is the sum of 19962 against the 15 th year in the former Table, and all following numbers together.

The sums of the living in the former table for a certain age a are
 then the number in the present Table, column D, for the same year, can be distinguished by S. $\int \frac{1}{\mathrm{~A}}$. For it contains

$$
\begin{aligned}
& =\iint^{1} \mathbf{A}+\int^{2^{2}} \mathbf{A}+\int^{\frac{3}{A}} \mathbf{A}++=S \cdot \int^{1_{A}}
\end{aligned}
$$

"Thus far the Table extends to the computation of the duration of joint lives. The last column \mathbf{E} appertains to the calculation of Annuities which are payable so long as the joint lives endure. This column E is in like manner constructed by summation of the column E of the former Table, as the numbers of such latter Table from the discounted numbers of living. When the series of the discounted numbers of living for a given age

$$
=\frac{1}{r^{a}}\left(\frac{\frac{1}{A}}{r}+\frac{2_{A}}{r^{2}}+\frac{\frac{3}{A}}{r^{3}}++\frac{\frac{x}{-}}{r^{2}}\right)
$$

is represented by $\int \frac{{ }_{-}^{A}}{r^{a}+1}$, then that is the number which stands in the former Table against the year a. The one, however, which stands in the present Table against a in the column \mathbf{E}, is

$$
\begin{aligned}
=\frac{1}{r^{n}}\left(\frac{\frac{1}{A}}{r^{1}}\right. & +\frac{\frac{2}{A}}{r^{2}}+\frac{\frac{3}{-} \mathrm{A}}{r^{3}}++\frac{\frac{x}{\mathrm{~A}}}{r^{x}} \\
& +\frac{\frac{2}{-} \mathrm{A}}{r^{2}}+\frac{-\mathrm{A}}{r^{3}}++\frac{\frac{x}{-} \mathrm{A}}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\frac{3_{-}}{r^{3}}++\frac{\frac{x}{A}^{A}}{r^{x}}++\right) \\
& =S \cdot \int \frac{1_{A}}{r^{6}+1}
\end{aligned}
$$

"In using the last Table, one must have the columns B and C of the first at same time before one -I feared that the Table might become too wide for the space of the page, otherwise I would again have here introduced those columns."

Sbotion 119.
"From this Table may be found by one division the values of Life Annuities increasing according to the natural order of numbers $\mathrm{L} \bar{a}(\S 76$.
"The number at the age $a+1$ in column E must be divided by the discounted number of living in column C of the first Table. The quotient is the required value of the increasing Life Annuity. (§89.)
" For the quotient is-

$$
\begin{array}{r}
=\frac{1}{r^{a}} \cdot \frac{1}{A: r^{a}} \cdot\left(\frac{\frac{1}{A}}{r^{1}}+\frac{\frac{2}{A}}{r^{2}}++\frac{\frac{x}{A^{x}}}{r^{2}}\right. \\
\left.+\frac{\frac{2}{A}}{r^{2}}++\frac{\frac{x}{r^{x}}}{r^{2}}\right)
\end{array}
$$

"For example-Let the given age be 20 years $=a$. The number standing against 21 years is $56290^{\circ} 64$. The discounted number of living in the first Table is 224.09 . Thence $\frac{56290.64}{224.09}=251.64$. (Note 10, p. 19.) According to the hypothesis of equal decrements (gleichförmigen Absterben) the value was 248.805." (Chap. 1, § 79.)

Professor Tetens then gives some approximative and other rules for determining the average duration of joint lives, and the values of Annuities thereon, generally by addition and substraction of differences of which the Table last given is the element of foundation. It is to be remarked that the practical importance of preparing Joint life Tables for every combination of ages was not of absolute necessity at the time when he wrote; moreover, his plan of obtaining values for joint lives was suggested by its applicability to the Sussmilch Table of Mortality, in which the differences from the ages of 10 to 96 were either 1 or 0 .

The subject of this paper has now taken up more space than was at first intended, and, whilst apprehending that it may prove comparatively uninteresting to the general reader, yet to the actuary, or to any person to whom the progress of the theory of Life Contingencies carries either information or instruction, it is ventured to observe that the consideration of the early history of the theory of Life Contingencies, withont reference to Professor Tetens' researches, which are here first introduced to his notice, would be, not only incomplete, but inconsistent with a correct view of the system in its whole history and practice.

June, 1850.
F. H.

Note No. 1. (Page 2.)

Our available authorities respecting Johann Nicolaus Tetens are the "Encyclopädie der Deutschen Nationalliteratur" by Dr. O. L. B. Wolff, 7th volume. Leipzig, 1842, and the "Biographie Universelle," 45 th volume. Paris, 1826.

Tetens was born September, 1737, at Tetensbüll, Eiderstädt, in the Duchy of Schleswig; he studied from 1755 to 1758 at Rostock and Copenhagen-was appointed in 1763 professor of Physies at Butzow, and occupied from 1765 to 1770 the post of Director of the Educational Establishment which he had newly organized there. In the year 1776 he was invited to Kiel and named to the Professorship of Philosophy and Matheratics in the University of that town. In 1789, he removed to Copenhagen, where he died 19th August, 1807, after having for nearly 20 years occupied some very honourable posts in the administration, as Assessor in the Financial College and Director of Revenue-next in 1791 as Danish State Counsellor and Deputy in the Financial College, and lastly as Privy Counsellor. From 1787, he was a Fellow of the Royal Danish Society.

His German writings are-
No. 1.-Von den vorzüglichsten Beweisen für das Dasein Gottes. Butzow and Wismar, 1761. "On the most prominent proofs of the existence of God."

No. 2.-Ueber den Ursprung der Sprache und Schrift. 8vo. Butzow and Wismar, 1772. "On the origin of Speech and of Writing.".

No. 3.-Ueber die allgemeine speculative Philosophie. Butzow, 1775. "Upon general speculative philosophy."

No. 4.-Philosophische Versuche über die menschliche Natur und ihre Entwickelung. 2 vols. 8vo. Leipzig, 1777. "Philosophical Essay on Human Nature and its Development."

No. 5.-Gedanken über einige Ursachen, warum in der Metaphysik nur wenige ausgemachte Wahrheiten sind. Butzow, 1780. "Thoughts respecting some reasons why in Metaphysics there are but few determined truths."

No. 6.-Einleitung zur Berechnung der Leibrenten und Anwartschaften. 8vo. Leipzig, 1785. "Introduction to the Calculation of Life Annuities and Reversions." The second part, forming another volume of the same work, was published at Leipzig, 1786.

No. 7.-(written in French). Voyage sur les côtes de la Mer du Nord, pour y observer la construction des Digues. 8vo. Leipxig, I788.

No. 8.-(written in French). Considerations sur les Droits réciproques des puissances belligérantes et des puissances neutres sur Mer. 8vo. Copenhagen, 1805.

No. 9.-Tetens also edited the following work in Latin. "Jens Kraftii prælectiones mechanicæ cum additamentis, latinè redditæ." 4to. Butzow, 1773.

Of the above, only Nos. 1 to 5 inclusive are mentioned by Wolf, and only Nos. 2, 3, 6, 7, 8, and 9 in the Biographie Universelle.

In the general catalogue of the British Museum Library we have only found one of the nine works, viz., No. 8 in the above list-"Considerations sur les Droits, \&c."

The preceding account of Professor Teteng will be most appropriately concluded with the following remarks from the "Encyclopädie der Deutschen Nationalliteratur." -
"Tetens acquired for himself a celebrity especially by reason that in opposition to those of his time, he treated practical philosophy intelligibly to all, and knew how to bring it forward for that purpose in a clear and luminous manner."

Note No. 2. (Page 3.)

The following passage on the above subject is too remarkable to be omitted:
"These Annuity calculations have long been known in England. Halley, whom we have to thank for so many useful discoveries, came upon them already at the end of the preceding centary. Huygens, before him, had taught how to compute probabilities. His principles Halley applied to the Registers of Death, when they were brought into order, and formed the method upon which to compute Life and Widows' Annuities. Some still call such method 'Halley's,' which is quite as reasonable as when one calls the well-known Theorem in Geometry, 'the Pythagorean'; but some who thus named it, did so in
lack of their own conviction of its accuracy, and wished thereby to set it up as such a method as might rest on Halley's reputation, But the reflection upon this is not unserviceable, that it is the identical method which exists in the nature of things, which follows necessarily from it, and therefore is one which every person, if he must not necessarily come upon it, will, however, arrive at it at first, and also in truth every one has come to, who has sought a method upon right principles."
Tetens has not put the last three words in italics, but it is better to do so as they contain the pith of the whole paragraph.

Note 3. (Page 3.)
Vide " Milne's Treatise on the Valuation of Annuities and Assurances." Vol. 1, p. 16.

Note A. (Page 1.)

See also Note at page xxv, of "Baily's Doctrine of Life Annuities," particularly the concluding passage, viz. :-" Those useful and interesting parts of the science which relate to the subject of Reversions, Survivorships, and Assurances, together with their several applications to the various purposes of life do not enter into any of the foreign treatises which I have had an opportunity of seeing."

Note 4. (Page 5.)
This Table of Mortality was arranged by Baumann upon the average results of various observations (chiefly made in Brandenburg), and was first inserted in the "Gôttliche Ordnung" of Sussmilch, 4th Edition, 1775.

Note 5. (Page 5.)
It will lead to more clearness of perception of the extracts and notes, if the two tables of Tetens be symbolised thus:-the following by T (1), and the other, a few pages forward, by T (2). A distinction indeed is necessary, as there are columns in each table with like headings.

Note 6. (See Page 6.)

From the preceding example the arrangement will be easily perceived, where the numbers at ages of $a+1, a+2, a+3$, \&c., of columns \mathbf{E}, of Tables T (1), and T (2), correspond with those at ages of $a, a+1, a+2$, \&c. of modern notation; in which structural relation of the ordinary D and N columns, Tetens' arrangement is similar to that of Barrett, which is still preserved by Mr. Farr.

Tetens' remark on the calculation of his Table T (1) to a greater number of decimals, has induced us to check it in that manner between the ages of 95 and 90 , which affords an opportunity of annexing the usual columns computed to the extended number of decimal places. Each of those columns will be presently referred to, and their enunciation in Professor Tetens' work briefly noticed. They are as follows :-

1st.-Column D of modern notation, $=l_{a} \cdot v^{a}$, being column C of Tetens' first Table T (1) -

95	-	-02408978
94	-	$\cdot 05010674$
93	-	$\cdot 07816651$
92	-	-10839089
91	-	$\cdot 14090815$
90	-	'17585337

2nd.-Column N of modern notation $=D_{a}+D_{a+1}+\cdots$ correspending with N_{a-1} of the usual form of arrangement before described, and being column E of Tetens' first Table T (1)-

$$
\begin{aligned}
& 95-.02408978 \\
& 94-.07419652 \\
& 93-.15236303 \\
& 92 \\
& 91 \\
& 90
\end{aligned}-.40163920
$$

3rd.-Column S of modern notation $=N_{a}+N_{a+1}+\cdots$ corresponding with S_{a-1} of the usual form, and being column E of Tetens' Second Table T(2)

95		-02408978
94	-	-09828630
93	-	-25064933
92	-	-51140325
91	-	-91306532
90	-	1-49058076

4th.-Column C of modern notation $=d_{a} \cdot v^{a}$ and being also the suggested $\mathrm{T}_{\text {able }} \mathbf{C}$ of Tetens (see page 7), the reversion being considered as receivable at decease of the "cestuy qui vie."
$95-.02408978$
$94-.02505337$
$93-02605550$
$92-.02709772$
$91-02818163$
$90-.02930890$

5th.-Column M of modern notation $=\mathrm{C}_{a}+\mathrm{C}_{a+1}+\cdots$ corresponding exactly with the usual form, and being the suggested Table S of Tetens (see page 8)
$95-{ }^{95}-02408978$
94
93
92
92
91
90
90
-07914315
-1029865
.15947800

6th.-Column R, of modern notation $=M_{a}+M_{a+1}+\cdots \cdot$
$95-$
$94-02408978$
$93-$
$92-14823293$
$91-$
$90-$
90
90

Note No. 7, (See page 8).
Table XXI. is the one Tetens here refers to. In expressing a discounted value he always gives the elementary symbol $\frac{s}{r}$ equivalent in present notation to $\frac{s}{(1+i)^{n}}$ where i is the rate of interest and n, the number of years. By r, alone, in Tetens' work, is to be understood the amount of 1 at the end of 1 year at the given rate of interest. The C column which Tetens has just described is precisely the C column of modern notation for sums receivable at decease, and the column which Tetens calls S (id, est., the summation of C) is column M of the modern system.

As Tetens has not given an illustration in numbers, let his rule be applied to the following example :-

Required the value of 1, payable at decease of a person aged 90, taking the rate of Mortality from Sussmilch's Table and Interest at 4 per cent.

From the 5th column of the preceding note, Tetens' column S, at 90 would be 1597869 . The initial number A, at age a, is the number of living at age of $90=6$ (see Table T (1)). Then, by the Rule,

$$
\frac{6) \cdot 1597869}{\cdot 02663115}=\frac{1}{A}\left(\frac{\Delta \mathrm{~A}}{r}+\frac{\Delta \frac{1}{2} \mathrm{~A}}{r^{2}}++\frac{\Delta \frac{x}{\mathrm{~A}} \mathrm{~A}}{r^{x}}\right)
$$

On referring to 'Table XXI of Tetens' work the value at age of 90 is given at 9086 , the decimals not being carried further.

It is evidents therefore, that his formula for the youngest or any other life in the Table, viz.-

$$
\mathrm{T}=\frac{1}{\mathrm{~A}} \cdot\left(\frac{\Delta \mathrm{~A}}{r}+\frac{\Delta^{\frac{1}{-} \mathrm{A}}}{r^{2}}++\frac{\Delta^{\frac{x}{\mathrm{~A}}} \mathrm{~A}}{r^{x}}\right) \cdot r^{a}
$$

is equivalent in modern notation to

or

$$
\frac{\mathrm{C}_{a}+\mathrm{C}_{a+1}++\mathrm{C}_{a+x}}{l_{a} \cdot v^{a}}=\frac{\mathrm{M}}{\mathrm{D}}
$$

which will present a second proof of its aecuracy, for $\frac{M_{90}}{D_{90}}$ is by the extended columns Nos. 5 and 1 in preceding note $=\frac{\cdot 15978690}{\cdot 17585337}=\cdot 908637$, as before.

Note 8, page 9.
Tetens has not given an example of this method, in numbers, but as it may be said of numerical, as well as of pictorial illustrations, that
" Segniùs irritant animos demissa per aurem
Quam ques sunt oculis subjecta fidelibus,"
it will be of use to apply it to the same question as in the preceding note, viz, to find the value of a Reversion to 1 receivable at the decease of a person aged 90, in which case the discounted differences will be as follows:-

Sum of discounted differences $=\overline{{ }^{02316325}}$ Multiply the above by the amount of 1 in 90 years
$=34.11933$$\quad 33911 \cdot 43$ 6948975 926530 23163

Let the last product be represented as in the rule by \mathbf{N}; it has then to be subtracted from $\Delta \mathrm{A}$ or the first decrement at the age of $\mathrm{A} ; \therefore$ in the present case

$$
\begin{aligned}
\Delta \mathrm{A} & \equiv 1 \\
\mathrm{~N} & =0.7903144 \\
\text { remainder } & =\frac{.2096856}{}
\end{aligned}
$$

which has to be multiplied by $\frac{r p}{A}$ (or in modern notation,

$$
\begin{aligned}
& \left.\frac{(1+i) \times p}{l_{m}}\right)=\frac{1.04 \times 25^{*}}{6}= \\
& \frac{20^{*}}{6}=4.3333
\end{aligned}
$$

2096856
$33333 \cdot 4$
838742
62906
6291
629
63
6

$T=908637$ which is the value of the reversion, as before; and to obtain the value of the annutity at age of 90 , using the formula $p(1-T)=\lambda a$, we have $25(1-908637)=25 \times \cdot 091363=2.284075$ -(See Tetens' 16th Table, page 571, the value to 4 places being there 2.2841).

Note 9. (See page 9.)
Let the last example of the preceding note, viz, the computation of the value of an Annuity of 1, at age of 90 , per Sussmilch's Mortality and Interest at 4 per cent., be golved by Tetens' fifth method.

$$
\begin{aligned}
& \Delta^{1} \mathrm{~A} \times \int^{\frac{1}{r}}=1 \times 0.9615385=0.9616385 \\
& \Delta^{2} \mathrm{~A} \times \mathrm{A}_{\gamma^{2}}^{\frac{1}{2}}=1 \times 1.8860947=1.8860947 \\
& \Delta^{3} \mathrm{~A} \times \int_{\underset{r}{2}}^{\frac{1}{s}} \quad=1 \times 27750910=2.7760910 \\
& \Delta^{\frac{4}{A}} \times \int \frac{1}{r^{4}}=1 \times 3.6298952=3.6298952 \\
& \binom{\Delta^{\frac{5}{-}} \times \int^{\frac{1}{r^{5}}}}{=\Delta^{\frac{x-1}{-1}} \times \int_{t^{x-1}}^{\frac{1}{x-1}}}=1 \times 4.4518223=4.4518223
\end{aligned}
$$

This last sum is equal to $A \lambda \bar{a}$ of Tetens formula, A being the number of living, which at the age of 90 is $=6$, we have therefore for $\lambda \vec{a}$ or the value of the Annuity $\frac{13 \cdot 70444}{6}=2 \cdot 28407$. Were it not that the subject has already taken so much space, it could be shown how the interesting formula just exemplified would clearly suggest a continuous arrangement similar to that of Mr. Thompson, described in the Post Magazine of 12th May, 1849, the only difference being, that in Tetens' formula the decrements and not the numbers living, form the element of operation.

Note 10. (See page 13.)
This formula of Tetens', viz., $\frac{\mathbf{E}_{a+1} \text { (of Table T(2)) }}{\mathrm{C} \text { (of Table T (1)) }}$ is precisely $\frac{\mathrm{S}_{a}}{\mathrm{D}_{a}}$ of the modern system of notation, the E_{a+1} of Table $T(2)$ being equivalent to S_{a} of the usual form.

Note B. (See Page 4).
Some notice of the authors cited by Tetens may be useful, as this passage will doubtless come under the eye of some readers who have not paid much attention to the works of foreign writers on the subject ; and Tetens' mention of them is apt to mislead, as implying at first sight, that they were all German ; that such is not the case will presently be seen, and our impression is, that in alluding to those writers, Tetens leading idea was to distinguish them as continental writers, for it would not be fair to suppose that he considered the fact of their having written in the transactions of German learned academies as constituting a nationality.

The celebrated Leonard Euler, was born and educated in Switzerland, and resided the greater part of his life in Russia Christian Huygens was a Dutchman. (Notice of their treatises on the subject of Life Annuities and Probabilities will be found in the Essay on Probability, by Sir William Lubbock, and J. D. Bethune). John Henry Lambert was a Swiss, but resided some time in Berlin, his treatise on Annuities appeared in the Beytrage, lst part, and in the Leipsic Magazine for 1780. He was justly considered one of the most learned men of the 18th century. The following extract from one of his biographers will not be out of place:-
"La formule par laquelle il remplaca la table de Mortalité construite sur les registres de Londres, \&e., sont des exemples mémorables de cette aptitude qu'il avait acquise, comme ille dit lui même, en pratiquant fréquemment la construction géométríque des résultats que lui donnait l'analyse; en sorte que l'inspection des formes gévmétriques lui rappelait sans effort les formules correspondantes, et que, par conséquent, les tables ou séries de faits une fois construites, il avait tout prête une combinaison de culculs propres à les représenter tres approximativement."

John Peter Sussmilch was born at Berlin in 1708, studied theology at the Universities of Halle and Jena, was an army chaplain during Frederick William's Silesian campaign, and afterwards obtained church patronage, at Berlin. The work upon which his fame rests was the "Göttliche Ordnung," being a treatise "On the Divine decree in the variations of the human race, with regard to births, deaths, \&e." This work is frequently quoted by Malthus, Price, Milne, Tetens, and others; it was the result of much study and sound judgment, and seems to have been well patronized. The first edition appeared at Berlin, 1742; the second in 2 vols. 8 vo., with additions, 1761 ; a third edition in 1765 ; and a fourth edition in 1775, after his death. This last edition contains the Table quoted by Tetens, and comprises a third volume, the whole edited by Baumann.

Lous was Professor of Mathematics and Navigation at the Academy of Sea Cadets at Copenhagen, and Bugge was Professor of Astronomy in the University of the same place. Both were Fellows of the Royal Danish Academy of Sciences. Some notice of their labours may be seen in Dr. Price's 2nd volume (page 439, 6th edition).

Carl Chassot de Florencourt was author of the "Abhandlungen aus der juristischen und politischen Rechenkunst." Altenberg, 1781, in 4to. Price notices him as the ingenious author of a mathematical treatise on political arithmetic, published in Germany in 1781."

Oeder, of Oldenburg, was apparently Dr. Price's mentor in all that concerns that part of the latter's work, which refers to German authors or Provident Institutions. Some mention of Oeder's own writings will also be found there.

With respect to Kritter, we have before us the titles of three works by him on the subject of Widows' Funds, printed at Gottingen and Hamburg, in 1767, and 1768.
Nicholas von Fuss (an author also quoted by Milne in his first volume) was born at Basle in 1755, and resided for the greater part of his life at Petersburg,
as Professor of Mathematics in the Marine corps. He was named a Counsellor of State in 1800, and died in 1826.

Tetens himself, although from writing in the German language he claims to belong to German literature, may still be more correctly considered as a DanoGerman, having been born in Schleswig, and having resided either in that duchy or in Copenhagen, during the whole of his life. As six years elapsed between the publication of his work, and the date of Dr. Price's death, it is very likely that Tetens (regard being had to his express desire to instruct the British public in some measure) may, through Mr. Oeder or otherwise, have taken means to communicate his researches to Dr. Price. From Morgan's Biography of the latter it will be perceived that he had not only a superfluity of occupation in those years, but that he laboured under increasing ill health, which interrupted the publication of the fourth edition of his work, a matter he had much at heart, and for which he was constantly collecting materials. The consequence of his illness was that the second volume of the work (which would have contained any additional particulars on foreign subjects) was entrusted to the care of Mr. William Morgan. (See the latter's "Memoirs of Dr. Price," pp. 173 and 174).

Are Dr. Price's MS. collections yet extant? if so, they would perhaps clear up this point.

[^0]: * Since President of the Royal Astronomical Society.

[^1]: "Method of computing the average duration of the joint lives of two persons.
 " I will here insert the Auxiliary Table which I have already mentioned (chap. 1, §89). It serves to compute with facility the value of a Life Annuity, increasing according to the natural order of numbers, also the average duration of joint lives, and, in the following section, the values of Annuities on joint lives."

