
IN Todhunter’s Compound Interest (4th edition, chapters 8 and 9) 

several methods are given for the approximate determination of the 

rate of interest involved in a given transaction. In these methods 

there is no adequate treatment of the errors contained in the 

results. No simple means are given whereby the computer can tell 

to how many significant figures the results can be trusted. 
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A METHOD OF DETERMIING THE RATE OF INTEREST 
INVOLVED IN A GIVEN TRANSACTION 
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The purpose of this paper is to explain a simple method 

applicable to many practical problems by which (a) we approach 

more and more closely the true rate of interest sought, and (b) at 

each stage we obtain limits between which we are sure that the true 

rate lies. The method depends on (i) ordinary inverse interpola- 

tion, and (ii) a knowledge of the signs of the successive derivatives 

of the function involved. lncidentally, the method has applications. 

to problems other than those of compound interest. 

Let f(x) be monotonic within the range X o <x <xi. That is, 
f' (x) cannot change sign within this range. Either f’ (x) o and 

f(x) is not decreasing, or and f(x) is not increasing. If 

f’(x) = o at any point, then we have a point of inflexion there and 

not a turning point. we exclude the ease where f'(x) = o at all 

points within the range; i.e. where f (x) is a constant. 

Then if c lies between f (x0) and f (xi) in value, the equation 

f(x) = c has one root, p say, within the given range, There will be 

no loss of generality if we suppose the scale of x chosen so that 

We then have that f’ (x) does not change sign 

within the interval o < x < I and that the required root p lies within 

this interval. 
In what follows we shall refer to the unique polynomial of degree 

n - I whose graph passes through the n points 

as “ the polynomial through 
Now f(x) can be expanded by difference formulae in various 

ways. For example 

and

.......(1)
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where lies between the greatest and least of the numbers o, I 
and That is, f (x) is expressed as the linear 
function through f (0) and f(I) plus a remainder term. 

Also ..... (2) 

where lies between the greatest and least of the numbers I, 2 
and x. Here, f(x) is expressed as the linear function through 
f(I) and f(2) Plus a remainder term. Ignoring the remainder 
terms we get two linear equations 

......(3) 

.....(4) 

whose solutions x1 and X2, are approximations to the required 
root 
Now let f”(x) have a constant sign over the interval o < x < 2 ; 

for example suppose it to be positive. Then in (I) the remainder 

term is negative over the interval o < X< I. Hence, 

the line passing through f (0) and f (I) lies above 
the curve y =f (x) within this interval. On the other hand, in (2) the 

remainder term is positive over the interval 

o < x < I. Hence, the line passing through 

f(1) and f( 2) lies below the curve y =f (x') within this interval. 
Next let and have the same sign; for example, 

suppose that they are positive. Then, as is clear from Fig. I, we 
have The reader can easily verify that there are three 
other useful cases, viz. 

f”(x) negative, and positive, 

f”(x) positive, and negative, 

f”(x) negative, and negative, 

In practice it may be found that the limits of uncertainty obtained 
by the above method are inconveniently large. If so, the method 
can be immediately extended. 

AJ 14 
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For example, 

..... (5) 

where lies between the greatest and the least of the numbers o, 2 
and x. Here f(x) is expressed as the quadratic function through 
f(o), f(1) and f(2) plus a remainder term. 

Fig. I. (a) Curve y =f (x). (b) Straight line through f (0) and f (I). 
(c) Straight line through f (I) and f (2). 

Also 

..... (6) 

where lies between the greatest and the least of the numbers 
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- 1, 1 and x. That is, f(x) is expressed as the quadratic function 

through f (-1), f (0) and f(1) plus a remainder term. Ignoring 

the remainder terms we get two quadratic equations 

.....(7) 

..... (8) 

Now, the function 

has the value f (0) -c at x=o and the value f(I) - c at x=I. Since 

these quantities are of opposite sign, equation (7) has one root, x3 

say, in the interval. 0 < x < I. Similarly equation (8) has one root, 

x4 say, in this interval. These two quantities are approximations 

to the required root p. It will be shown in the examples given later 

that they can be conveniently obtained by iteration(2). 

Next, suppose that f”’ (x) has a constant sign over the interval 
- I < x < 2. For example suppose that it is positive. Then in (5) 

the remainder term is positive within the interval 

o < x < I. Hence, the parabola 

passing through f (o), f (I) and f(2), lies below the curve y =f (x) 

within this interval. Similarly in (6) the remainder term 

is negative within the interval o < x < I. Hence, the parabola 

passing through f ( - I), f (0) and f (I), lies above the curve y=f (x) 

within this interval. Fig. 2 shows this case for positive. It is 

14-2 
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clear that x4< p < x3. The reader will find that the remaining three 
cases are 

f” (x) negative, positive, x3 < p < x4, 

f” (x) positive, negative, x3 < p < x4, 

f ''' (x) negative, negative, x4 < p < x3. 

Fig. 2. (a) Curve y =f (x). (b) Parabola through f ( - I), f (0) and f (I). 
(c) Parabola through f (o), f (I) and f (2). 

It will be found in many cases that the uncertainty in the value of p 
has been considerably reduced, due to the quadratic interpolation 
polynomials lying closer to the curve y =f (x) than did the linear 
interpolation polynomials used in the first attempt. 
In general, suppose that f(x) is tabulated for the n + I values 

where these values are written in ascending order, 
but need not be equidistant, and n > 2. Suppose also that c lies 
between f (xk) and f(xk+I) in value where 2<k<n and that 
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ƒ’ (x) does not change sign within the interval xk < x < xk+1, so that 
the equation f (x) = c has one root within this interval. 
f(x) can be expanded in the form(1) 

. . . ...(9) 

where P1 (x) is the polynomial of degree n- I passing through 
f (x1)ƒ (x2) . ..f (xn),and ,l lies be ween the greatest and least of the 
numbers x, , x,, and x. 
It can also be expanded in the form 

 . . ..(IO) 

where P2 (x) is the polynomial of degree n - I passing through 
lies between the greatest and least of 

Ignoring the remainder terms we get two equations 

. . . . ..(II)

and . . . . ..(12) 

Since P, (xk) =f (xk) and P1, (xk+1) =ƒ (xk+1), equation (I I) has at least 
one root in the interval xk < x < xk+1. Similarly equation (12) has at 
least one root in this interval. In many practical cases it will be 
found that each equation can have but one root within the interval. 
We shall consider this case only and call the two roots x’ and x” 
respectively. 
Next suppose that f(n) (x) oes not change sign over the interval d 

x1,<x<xn+1. Then it is easily seen that the remainder terms in 
(9) and (IO) have opposite signs within the interval xk < x < xk+1 
Thus one interpolation polynomial will lie above y =f (x) within 
this interval; the other polynomial will lie below it and p will lie 
between x’ and x” in value (cf. Fig. 2). We can expect in most 
cases that as n is increased the interpolation polynomials will 
approach the curve y =f ( x more and more closely, and x’ will ) 
approach x” in value. Admittedly, cases can be found where this 
will not be true(3). When dealing with the usual case of equi- 
distant values of x, it will be advisable to arrange matters so that 
the interval xk to xk+1 lies as near the middle of the range x1 to xn+1 
as possible, since the effect of this will usually be to minimize the 

and

 the numbers a n d
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differences between the true curve and the interpolation poly- 
nomials (4). 
This establishes a method of solving equations, designed to be 

of use when (a) values of the function can readily be obtained from 
tables for certain values of the variable, but are difficult to calculate 
for-intermediate values, and (b) the first and the nth derivatives of 
the function are known to be of constant sign over suitable ranges. 
It must be emphasized that a knowledge of the differences 

alone is not sufficient. Thus though ƒ (0) may be positive, this 
by itself does not preclude f’ (x) from changing sign many times 
between x=o and x= I. 

In compound interest problems, we often have to solve equations 
of the form f (i) = c, where f (i) is one of the two following types : 

where ar > o for all values of r, and i > o. 
That is, f(i) is the present value of certain future payments. 

Then 

ect 

So we obtain an infinite number of derivatives and all those of odd 
order are negative, while all those of even order are positive. 

(II) 

where a, > o for all values of r, and i > o. 
That is, f(i) is e amount of certain past payments. Then th 

f 

etc. 

So the first n derivatives are positive and subsequent ones are all 
zero. 
The technique described above is applicable to these functions 

and we proceed to discuss some examples. 
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Example I (see Todhunter, pp. 174-227). The equation to be 
solved is 

We shall employ the following difference table of the function 
involved : 

i x f(x) ∆ f(x) ∆ 2(x) ∆ 3 f(x) 

.0200 

.0225 

.0250 

.0275 

.0300 

-2 127.2830 

-1 118.2045 

0 110’0000 

I 102.5758 

2 95.8486 

- 9.0785 

- 8.2045 

- 7.4242 

- 6.7272 

+ .8740 

+ .7803 

+ .6970 

- .0937 

- .0833 

This table is much more extensive than will be required in most 
practical cases. 
The cubic through ƒ( - 2),ƒ( - 1),ƒ(o) and ƒ (1) can be written (5) 

110.0000-8.2045x+.39015 (x + 1) x -.01562 (x + 1) x(x - 1) 

= P5 (x), say. 

Omitting the last term gives the quadratic through ƒ ( - 1), ƒ (0) and 
ƒ(1); call it P3 (x). Omitting the last two terms gives the linear 
function through f (-1) and f (0) ; call it P1 (x). Similarly the 
cubic through f ( - 1), f (0), f (1) and ƒ (2) can be written 

= P6 (x), say. 

Omitting the last term gives the quadratic through f (o), f (I) and 
ƒ (2) ; call it P4 (x). Omitting the last two terms gives the linear 
function through f (0) and f ( 1); call it P2 (x). 
The six equations Pr (x) = 105 where r = 1 to 6 all have one root 

within the interval o < x < 1, and the required root off (x) = 105 will 
lie between the roots of each pair of equations of the same degree. 
The solutions of P1 (x) = 105 and P2 (x) = 105 are X= .60942 

and x= .67347 respectively, or in terms of i, i = .0265236 and 
i= .0266837. So if p be the true rate of interest, the first 
attempt gives 
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and this result could be obtained by the above method using the 
three tabulated values ƒ ( - 1), ƒ (0) and ƒ (1) to five significant figures. 
Next, the equation P3 (x) = 105 can be written in the form 

which is a convenient one for solution by iteration, Choosing the 
initial trial value of the root as X0 = .66, the solution runs 

That is, the value of the root which lies between o and 1 is x = .66170, 
to five places. The corresponding value of i is .02665425. 
Similarly, the equation P4 (x)= 105 can be written in the form 

By iteration we can readily show that the root that lies between 0 
and I has a value x = .66298. The corresponding value of i is 
-02665723. 
So the second attempt gives 

This result could be obtained by the above methods using the four 
tabulated values ƒ( - 1), ƒ(0), ƒ(1) and ƒ(2) to six significant figures, 
as given in Todhunter, p. 226. In all, thirteen estimates of p are 
given in Todhunter. Already we have obtained limits within 
which only four of these thirteen values lie (see p. 181 formula (7a), 
p. 183 formula (8a), p. 190 formula (14) and p. 227 formula (18)). 
These four are perhaps the most difficult to compute. 
Continuing, the equation P5 (x) = 105 can be written 

Choosing the initial trial value of the required root as x0= .6623 
the solution runs 
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So the value of the root that lies between o and I is x = .66250. The 
corresponding value of i is .026656250. 
Similarly P6 (x)= 105 can be written 

for which the required root is x = .66241, when i= .026656025. 
Thus .0266560 < p < .0266563. This fixes p with an uncertainty of 
3 in the seventh decimal place and confirms the “true” value of p 
quoted in Todhunter for purposes of comparison, which has been 
obtained by some more complicated process than any illustrated in 
the text. 
Seven figures were employed in the tabulation off(x) to ensure 

that no complications arose due to “rounding off”. Some readers 
may consider that six figures would have been sufficient. The 
arithmetic is readily done with the aid of an arithmometer. Clearly, 
the method can be extended if the value of the root is required 
more accurately. 

Example 2 (see Todhunter, p. 199). The equation to be solved 
is 

The following difference table was employed : 

.0200 

.0225 

.0250 

.0275 

-1 

0 

1 

2 

113.622 

110.387 

107.261 

104.241 

-3.235 

-3.126 

-3.020 

+.109 

+ .106 

The use of the linear functions through ƒ ( - 1) and ƒ (0) and through 
ƒ (0) and ƒ(1) gave .02434 <p < .02441. The use of the quadratic 
functions through ƒ ( - 1), ƒ (0) and ƒ ( 1) and through ƒ (o), ƒ (1) and 
ƒ (2) gave 

Clearly, p= .02440 to four significant figures. Todhunter gives 
p = .02441. Th slip (which has no effect on the final answer) was e 
due to (i) employing the linear function through ƒ (0) and ƒ(1), 
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which gives too high an estimate, and (ii) slightly increasing this 
error by rounding off to five decimal places. 

Example 3 (see Todhunter, p. 199). The equation to be solved is 

The function was tabulated for i= .030, .035, .040 and .045. The 
use of two linear functions gave .03716 < p < .03729 and the use of 
two quadratic functions gave .037194 < p < .037196. 
Further accuracy could be obtained in both these examples by 

continuing the method. 

So far, when solving ƒ (i) = c, ƒ (i) has been of type (I) or type (II). 
In this section one or two functions of other types will be discussed. 
For example, instead of solving the equation we might 

take the equation (see Todhunter, pp. 178, 186 and 225). 
Or for a single debenture, instead of solving the equation 

we might write it in the form (see 
Todhunter, p. 204). 
In these the original equation ƒ (i) = c has been transformed into a 

new equation, say g (i) = d. In many cases we shall obtain more 
accuracy for about the same amount of work, when applying the 
methods of this paper to the transformed equation, if the ratios 

are smaller than the corresponding ratios 
But to assess the error in our solution we 

require that the derivatives of g (i) be of constant sign over suitable 
ranges. Difficulties often arise in connexion with this point. For 
example consider the successive derivatives of such simple func- 

tions as and 

We first note that since 

and 

where and
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Next 

and so is negative for i> o and D is positive for i > o. 

Then by quite elementary but very tedious means it can be 

proved that is positive and is negative for i > o. Hence, 

is positive and is negative. But the writer has dis- 

covered no means of dealing with the fourth and higher derivatives, 

beyond noting by an examination of the first four differences of that 

in general changes sign somewhere between i= o and i= -08 

and that the point of change varies for different values of n. 
So in the following examples it will be inadvisable to apply the 

methods of this paper beyond the first two stages. 

Example 4. The equation given in Example I can be trans- 
formed into 

Here, the first three derivatives of the function do not change sign 
for i > o. The following difference table was employed: 

.0225 -1 2.3074080 
+.2663015 

.0250 0 2.5737095 -.0002155 
+.2660860 

.0275 1 2.8397955 - .0002090 
+'2658770 

.0300 2 3.1056725 

The use of the two linear functions through g (- 1) and g (0) and 
through g (0) and g (I) gave .0266549 < p < .0266564. Note that 
only four of Todhunter’s thirteen estimates of p lie within these 
limits, which have been obtained by solving two linear equations. 
Only three values of the function, tabulated to six significant 
figures, are required. 
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The use of the two quadratic functions through g (- 1), g (0) and
g (1) and through g (o), g (I) and g (2) gave

thus determining p with an uncertainty of one in the eighth decimal
place.

The method cannot be carried further due to lack of knowledge of
the fourth derivative of the function.

Example 5. The equation given in Example 3 can be transformed
into

Again, the first three derivatives of the function do not change sign
for i > 0 The function was tabulated for i = .030, .035, .040 and
.045. The use of two linear functions gave .03714 < p < .03722 and
the use of two quadratic functions gave .0371947 < p  < .0371957.
No particular advantage arises in this case by transforming the
original equation, and the method cannot be carried further for
lack of knowledge of the fourth derivative.

After the reader’s attention has thus been drawn to cases where
practical difficulties arise, it is hoped that he will feel that a very
large field remains, in which the methods of this paper can be
easily and usefully applied.
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