Minimum Reversion in Multivariate Time Series Application to Human Mortality Data

Torsten Kleinow
joint work with Michel Vellekoop

Heriot-Watt University, Edinburgh

Actuarial Research Centre, IFoA

Liverpool - 27 Nov 2018

Fitted log mortality rates at age 70

Aim: projection of mortality for all populations simultaneously

Scenario for projected log mortality rates at age 70

Projections based on multivariate random walk with common drift

Scenario for projected log mortality rates at age 70

Projections based on our model

Introduction

- There are a number of models for the mortality experience in multiple populations available
- Such models have typically population specific period effects in addition to some common period or age effects

Introduction

- There are a number of models for the mortality experience in multiple populations available
- Such models have typically population specific period effects in addition to some common period or age effects
- Focus of this talk is on a model for projecting mortality rates and generating mortality scenarios simultaneously for many countries
- multivariate time series model for period effects

Actuarial

Motivation

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol

Motivation

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol
- countries will tend to copy the most successful innovations from other countries

Actuarial
Research Centre Institute and Faculty
of Actuaries

Motivation

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol
- countries will tend to copy the most successful innovations from other countries
- if true, survival probabilities in any country will show a tendency to move towards those of the country with highest survival rates
- we include a term in our model to incorporate that tendency ...

Motivation

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol
- countries will tend to copy the most successful innovations from other countries
- if true, survival probabilities in any country will show a tendency to move towards those of the country with highest survival rates
- we include a term in our model to incorporate that tendency ...
- ... and investigate whether such a "'learning" ' effect is signifcant

Model

- The number of deaths, $D_{x t c}$, in population $c \in \mathcal{C}$ at age $x \in \mathcal{X}$ in calendar year $t \in \mathcal{T}$ has a Poisson distribution:

$$
D_{x t c} \sim \operatorname{Pois}\left(\mu_{x t c} E_{x t c}\right)
$$

- $\mu_{x t c}$ is the force of mortality
- $E_{x t c}$ refers to the central exposed to risk.

Common Age Effects

- Our model for the force of mortality is a modification, Kleinow (2015), of the Lee-Carter model:

$$
\begin{equation*}
\log \mu_{x t c}=\alpha_{x}+\beta_{x} \kappa_{t, c} \tag{1}
\end{equation*}
$$

- Common age effects, α_{x} and β_{x}, ensure that period effects are comparable across populations since they are all rescaled with the same (age-dependent) constant.

Common Age Effects

- Our model for the force of mortality is a modification, Kleinow (2015), of the Lee-Carter model:

$$
\begin{equation*}
\log \mu_{x t c}=\alpha_{x}+\beta_{x} \kappa_{t, c} \tag{1}
\end{equation*}
$$

- Common age effects, α_{x} and β_{x}, ensure that period effects are comparable across populations since they are all rescaled with the same (age-dependent) constant.
- The parameters in (1) are not identifiable
- impose constraints on α and β :

$$
\begin{equation*}
\alpha_{x_{r}}=0 \text { and } \beta_{x_{r}}=1 \tag{2}
\end{equation*}
$$

for a fixed reference age $x_{r} \in \mathcal{X}$.
That means, fitted \log mortality $\log \mu_{x t c}=\kappa_{t, c}$ for $x=x_{r}$ in every population $c \in \mathcal{C}$.

- In our empirical study we set $x_{r}=70$.
- mortality data for male populations in 20 countries: The Netherlands, Sweden, Denmark, Belgium, Finland, England \& Wales, France, Switzerland, Australia, Italy, Austria, Ireland, Norway, Japan, Canada, New Zealand, Portugal, Spain, USA, Iceland
- ages: 20-95 ($\mathcal{X}=\{20,21, \ldots, 95\})$,
- years 1951-2011 $(\mathcal{T}=\{1951, \ldots, 2011\})$
- source: Human Mortality Database

Common Age Effects - Empirical Results - alpha

$$
\log \mu_{x t c}=\alpha_{x}+\beta_{x} \kappa_{t, c}
$$

Common Age Effects - Empirical Results - beta

$$
\log \mu_{x t c}=\alpha_{x}+\beta_{x} \kappa_{t, c}
$$

Common Age Effects - Empirical Results - kappa

$$
\log \mu_{x t c}=\alpha_{x}+\beta_{x} \kappa_{t, c}
$$

Time Series Model for Period Effects

We propose the following model for the dynamics of the period effects κ_{c} for any population $c \in \mathcal{C}$:

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\mu_{c}+\zeta_{c}\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c} \\
Z_{t, c} & =\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c} \quad\left(\operatorname{Corr}\left(Z_{t, c_{1}}, Z_{t, c_{2}}\right)=\rho_{c_{1}} \rho_{c_{2}}\right)
\end{aligned}
$$

where $\zeta_{c}, \rho_{c} \in(-1,1), \lambda_{c} \in[0,1), \sigma_{c}>0$ and $\left\{W_{t}, W_{t, c}\right\}_{c \in \mathcal{C}, t \in \mathcal{T}}$ are independent and identically distributed random variables with a standard normal distribution.

Time Series Model for Period Effects

We propose the following model for the dynamics of the period effects κ_{c} for any population $c \in \mathcal{C}$:

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\mu_{c}+\zeta_{c}\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c} \\
Z_{t, c} & =\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c} \quad\left(\operatorname{Corr}\left(Z_{t, c_{1}}, Z_{t, c_{2}}\right)=\rho_{c_{1}} \rho_{c_{2}}\right)
\end{aligned}
$$

where $\zeta_{c}, \rho_{c} \in(-1,1), \lambda_{c} \in[0,1), \sigma_{c}>0$ and $\left\{W_{t}, W_{t, c}\right\}_{c \in \mathcal{C}, t \in \mathcal{T}}$ are independent and identically distributed random variables with a standard normal distribution.
"Reversion" is to the minimum period effect at time $t \in \mathcal{T}$ as

$$
m_{t}:=\min _{c \in \mathcal{C}} \kappa_{t, c}
$$

Time Series Model for Period Effects

Special case, $\mu_{c}, \zeta_{c}, \rho_{c}=0$

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c} \\
m_{t} & :=\min _{c \in \mathcal{C}} \kappa_{t, c}
\end{aligned}
$$

with $Z_{t, c}$ iid normal.

Time Series Model for Period Effects

Special case, $\mu_{c}, \zeta_{c}, \rho_{c}=0$

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c} \\
m_{t} & :=\min _{c \in \mathcal{C}} \kappa_{t, c}
\end{aligned}
$$

with $Z_{t, c}$ iid normal.

- The minimum process m_{t}, and therefore, all $\kappa_{t, c}$ processes have a downward drift (despite $\mu_{c}=0$):

$$
\mathbb{P}\left(m_{t+1} \leq a \mid\left\{\kappa_{t, c}\right\}_{c \in \mathcal{C}}\right)=1-\prod_{c \in \mathcal{C}} \Phi\left(\frac{\left(1-\lambda_{c}\right) \kappa_{t, c}-a+\lambda_{c} m_{t}}{\sigma_{c}}\right)
$$

Time Series Model for Period Effects

Special case, $\mu_{c}, \zeta_{c}, \rho_{c}=0$

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c} \\
m_{t} & :=\min _{c \in \mathcal{C}} \kappa_{t, c}
\end{aligned}
$$

with $Z_{t, c}$ iid normal.

- The minimum process m_{t}, and therefore, all $\kappa_{t, c}$ processes have a downward drift (despite $\mu_{c}=0$):

$$
\mathbb{P}\left(m_{t+1} \leq a \mid\left\{\kappa_{t, c}\right\}_{c \in \mathcal{C}}\right)=1-\prod_{c \in \mathcal{C}} \Phi\left(\frac{\left(1-\lambda_{c}\right) \kappa_{t, c}-a+\lambda_{c} m_{t}}{\sigma_{c}}\right)
$$

- Setting $a=m_{t}$ we obtain

$$
\mathbb{P}\left(m_{t+1} \leq m_{t} \mid\left\{\kappa_{t, c}\right\}_{c \in \mathcal{C}}\right)=1-\prod_{c \in \mathcal{C}} \Phi\left(\frac{\left(1-\lambda_{c}\right)\left(\kappa_{t, c}-m_{t}\right)}{\sigma_{c}}\right)>\frac{1}{2}
$$

Φ is the $N(0,1)$ distribution function.

Time Series Model for Period Effects

- Conditional probability for the minimum to decrease

$$
\mathbb{P}\left(m_{t+1} \leq m_{t} \mid\left\{\kappa_{t, c}\right\}_{c \in \mathcal{C}}\right)=1-\prod_{c \in \mathcal{C}} \Phi\left(\frac{\left(1-\lambda_{c}\right)\left(\kappa_{t, c}-m_{t}\right)}{\sigma_{c}}\right)>\frac{1}{2}
$$

Φ is the $N(0,1)$ distribution function.

- The larger σ_{c} the larger the probability of m_{t} decreasing

Time Series Model for Period Effects

- Conditional probability for the minimum to decrease

$$
\mathbb{P}\left(m_{t+1} \leq m_{t} \mid\left\{\kappa_{t, c}\right\}_{c \in \mathcal{C}}\right)=1-\prod_{c \in \mathcal{C}} \Phi\left(\frac{\left(1-\lambda_{c}\right)\left(\kappa_{t, c}-m_{t}\right)}{\sigma_{c}}\right)>\frac{1}{2}
$$

Φ is the $N(0,1)$ distribution function.

- The larger σ_{c} the larger the probability of m_{t} decreasing
- The smaller the differences between countries the larger the probability of m_{t} decreasing

Time Series Model for Period Effects

- Conditional probability for the minimum to decrease

$$
\mathbb{P}\left(m_{t+1} \leq m_{t} \mid\left\{\kappa_{t, c}\right\}_{c \in \mathcal{C}}\right)=1-\prod_{c \in \mathcal{C}} \Phi\left(\frac{\left(1-\lambda_{c}\right)\left(\kappa_{t, c}-m_{t}\right)}{\sigma_{c}}\right)>\frac{1}{2}
$$

Φ is the $N(0,1)$ distribution function.

- The larger σ_{c} the larger the probability of m_{t} decreasing
- The smaller the differences between countries the larger the probability of m_{t} decreasing
- The more countries the larger the probability of m_{t} decreasing

Time Series Model for Period Effect - Co-integration

$$
\kappa_{t+1, c}-\kappa_{t, c}=\mu_{c}+\zeta_{c}\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c}
$$

Individual components $\kappa_{t, c}$ are not stationary but they turn out to be co-integrated.

If all processes $\kappa_{t, c}$ (for all c) have a common minimum reversion parameter λ and a common drift μ and there is no autoregressive term, so $\mu_{c}=\mu, \lambda_{c}=\lambda>0$ and $\zeta_{c}=0$ for all $c \in \mathcal{C}$, then the processes $\left\{\kappa_{\kappa, c}\right\}_{c \in \mathcal{C}}$ are co-integrated.

Time Series Model for Period Effect - Co-integration, proof

$$
\kappa_{t+1, c}-\kappa_{t, c}=\mu_{c}+\zeta_{c}\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c}
$$

Fix a $c^{*} \in \mathcal{C}$ and define $\tilde{\kappa}_{t, c}:=\kappa_{t, c}-\kappa_{t, c^{*}}$ for any $c \in \mathcal{C}$. We then find for any $c \neq c^{*}$

$$
\begin{array}{rlr}
\tilde{\kappa}_{t, c} & =(1-\lambda)\left(\kappa_{t-1, c}-\kappa_{t-1, c^{*}}\right)+\tilde{Z}_{t} \\
& =(1-\lambda) \tilde{\kappa}_{t-1, c}+\tilde{Z}_{t}, \quad \tilde{Z}_{t}=\sigma_{c} Z_{t, c}-\sigma_{c^{*}} Z_{t, c^{*}} .
\end{array}
$$

Since $0<\lambda \leq 1$ we obtain that $\tilde{\kappa}_{t, c}$ is a stationary $\operatorname{AR}(1)$ process for all $c \neq c^{*}$.

Time Series Model for Period Effect - Co-integration, proof

$$
\kappa_{t+1, c}-\kappa_{t, c}=\mu_{c}+\zeta_{c}\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda_{c}\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t+1, c}
$$

Fix a $c^{*} \in \mathcal{C}$ and define $\tilde{\kappa}_{t, c}:=\kappa_{t, c}-\kappa_{t, c^{*}}$ for any $c \in \mathcal{C}$. We then find for any $c \neq c^{*}$

$$
\begin{array}{rlr}
\tilde{\kappa}_{t, c} & =(1-\lambda)\left(\kappa_{t-1, c}-\kappa_{t-1, c^{*}}\right)+\tilde{Z}_{t} \\
& =(1-\lambda) \tilde{\kappa}_{t-1, c}+\tilde{Z}_{t}, & \tilde{Z}_{t}=\sigma_{c} Z_{t, c}-\sigma_{c^{*}} Z_{t, c^{*}} .
\end{array}
$$

Since $0<\lambda \leq 1$ we obtain that $\tilde{\kappa}_{t, c}$ is a stationary $\operatorname{AR}(1)$ process for all $c \neq c^{*}$.
Furthermore, we find that

$$
m_{t}=\min _{c \in \mathcal{C}}\left(\kappa_{t, c^{*}}+\tilde{\kappa}_{t, c}\right)=\kappa_{t, c^{*}}+\min _{c \in \mathcal{C}} \tilde{\kappa}_{t, c} \text { and therefore }
$$

$$
\begin{aligned}
\Delta \kappa_{t+1, c^{*}}:=\kappa_{t+1, c^{*}}-\kappa_{t, c^{*}} & =\mu_{c^{*}}+\lambda\left(m_{t}-\kappa_{t, c^{*}}\right)+\sigma_{c^{*}} Z_{t+1, c^{*}} \\
& =\lambda \min _{c \in \mathcal{C}} \tilde{\kappa}_{t, c}+\mu_{c^{*}}+\sigma_{c^{*}} Z_{t+1, c^{*}}
\end{aligned}
$$

The first term in the last expression is a minimum over stationary processes and the other terms are stationary too, hence $\Delta \kappa_{t, c^{*}}$ is stationary.

Time Series Model - two-dimensional model

We take $C=2, \lambda_{1}=\lambda_{2}:=\lambda, \mu_{1}=\mu_{2}=\mu$ and $\operatorname{Corr}\left(Z_{t+1,1}, Z_{t+1,2}\right)=\rho$. And we assume that there is no AR term, that is, $\zeta_{1}=\zeta_{2}=0$

$$
\begin{align*}
\kappa_{t+1,1}-\kappa_{t, 1} & =\lambda\left(\min _{c \in\{1,2\}} \kappa_{t, c}-\kappa_{t, 1}\right)+\sigma_{1} Z_{t+1,1}+\mu, \tag{3}\\
\kappa_{t+1,2}-\kappa_{t, 2} & =\lambda\left(\min _{c \in\{1,2\}} \kappa_{t, c}-\kappa_{t, 2}\right)+\sigma_{2} Z_{t+1,2}+\mu . \tag{4}
\end{align*}
$$

We define

$$
m_{t}=\min _{c \in\{1,2\}} \kappa_{t, c} \text { and } M_{t}=\max _{c \in\{1,2\}} \kappa_{t, c} .
$$

Time Series Model - two-dimensional model

$$
\begin{align*}
& \kappa_{t+1,1}-\kappa_{t, 1}=\lambda\left(\min _{c \in\{1,2\}} \kappa_{t, c}-\kappa_{t, 1}\right)+\sigma_{1} Z_{t+1,1}+\mu \tag{5}\\
& \kappa_{t+1,2}-\kappa_{t, 2}=\lambda\left(\min _{c \in\{1,2\}} \kappa_{t, c}-\kappa_{t, 2}\right)+\sigma_{2} Z_{t+1,2}+\mu \tag{6}
\end{align*}
$$

We then obtain

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{E}\left[M_{t+1}-M_{t}\right]=\lim _{t \rightarrow \infty} \mathbb{E}\left[m_{t+1}-m_{t}\right]=\mu-s \sqrt{\frac{\lambda}{2 \pi(2-\lambda)}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{E}\left[M_{t}-m_{t}\right]=s \sqrt{\frac{2}{\lambda \pi(2-\lambda)}} \tag{8}
\end{equation*}
$$

with $s=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}}$.

Time Series Model - Extra drift from minimum reversion

Table: Generated drift for different minimum reversion parameters λ according to (7) (second column) and using 10^{5} simulations (third to last column), $s=1$ and $\mu=0$.

Exact						Simulation
λ	$\|\mathcal{C}\|=2$	$\|\mathcal{C}\|=2$	$\|\mathcal{C}\|=3$	$\|\mathcal{C}\|=4$	$\|\mathcal{C}\|=8$	$\|\mathcal{C}\|=16$
0.0125	-0.0447	-0.0448	-0.0671	-0.0817	-0.1129	-0.1401
0.025	-0.0635	-0.0635	-0.0952	-0.1158	-0.1602	-0.1987
0.05	-0.0903	-0.0903	-0.1355	-0.1649	-0.2280	-0.2828
0.1	-0.1294	-0.1294	-0.1942	-0.2362	-0.3266	-0.4052
0.2	-0.1881	-0.1881	-0.2821	-0.3432	-0.4745	-0.5887
0.4	-0.2821	-0.2821	-0.4231	-0.5147	-0.7118	-0.8830

Time Series Model - Expected range

Table: Expectation of the stationary distribution for $M_{t}-m_{t}$ for different minimum reversion parameters λ according to (8) (second column) and using 10^{5} simulations (third to last column).

	Exact	Simulation				
λ	$\|\mathcal{C}\|=2$	$\|\mathcal{C}\|=2$	$\|\mathcal{C}\|=3$	$\|\mathcal{C}\|=4$	$\|\mathcal{C}\|=8$	$\|\mathcal{C}\|=16$
0.0125	7.1589	7.1593	10.7386	13.0627	18.0644	22.4106
0.025	5.0781	5.0774	7.6185	9.2656	12.8138	15.8962
0.05	3.6137	3.6132	5.4202	6.5931	9.1178	11.3112
0.1	2.5887	2.5886	3.8831	4.7229	6.5316	8.1031
0.2	1.8806	1.8806	2.8209	3.4313	4.7454	5.8866
0.4	1.4105	1.4104	2.1156	2.5735	3.5591	4.415

Fitting the model to kappa - just a reminder

$$
\log \mu_{x t c}=\alpha_{x}+\beta_{x} \kappa_{t, c}
$$

Summary Statistics

$$
\begin{aligned}
& \kappa_{t+1, c}-\kappa_{t, c}=\mu+\zeta\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t, c} \\
& Z_{t, c}=\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c} \\
& \text { Drift + AR }
\end{aligned}
$$

Summary Statistics

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\mu+\zeta\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t, c} \\
Z_{t, c} & =\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c}
\end{aligned}
$$

Drift + AR
$K V+A R$

$\log L$	K	BIC	μ	λ	ζ	$\bar{\sigma}$
3785.59	42	-7274.10	-0.0202	-	-0.3289	0.0334
3782.30	42	-7267.52	-	0.0355	-0.3263	0.0354

Summary Statistics

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\mu+\zeta\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t, c} \\
Z_{t, c} & =\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c}
\end{aligned}
$$

Drift + AR
KV + AR
KV + Drift

$\log L$	K	BIC	μ	λ	ζ	$\bar{\sigma}$
3785.59	42	-7274.10	-0.0202	-	-0.3289	0.0334
3782.30	42	-7267.52	-	0.0355	-0.3263	0.0354
3735.49	42	-7173.91	-0.0095	0.0187	-	0.0347

Summary Statistics

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\mu+\zeta\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t, c} \\
Z_{t, c} & =\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c}
\end{aligned}
$$

	$\log L$	K	BIC	μ	λ	ζ	$\bar{\sigma}$
Drift + AR	3785.59	42	-7274.10	-0.0202	-	-0.3289	0.0334
KV + AR	3782.30	42	-7267.52	-	0.0355	-0.3263	0.0354
KV + Drift	3735.49	42	-7173.91	-0.0095	0.0187	-	0.0347
KV + Drift + AR	3792.99	43	-7281.83	-0.0144	0.0201	-0.3290	0.0334

Summary statistics for males aged 20-95 in years 1951-2011, CAE. K is the number of parameters.

Projections - Random Walk

Actuarial
Research Centre Institute and Faculty
of Actuarios

Projections - Random Walk + AR

Actuarial
Research Centre Institute and Faculty
of Actuarios

Projections - Random Walk + AR + KV

Projections - Random Walk

Projections - Random Walk + AR

Projections - Random Walk + AR + KV

Different dataset

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\mu+\zeta\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t, c} \\
Z_{t, c} & =\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c}
\end{aligned}
$$

Drift + AR	3605.35	30	-6996.87	-0.0234	-	-0.3447	0.0425
KV + AR	3566.37	30	-6918.91	-	0.0674	-0.2664	0.0439
KV + Drift	3541.84	30	-6869.84	-0.0121	0.0391	-	0.0454
KV + Drift + AR	3610.95	31	-7000.94	-0.0194	0.0257	-0.3321	0.0422

Summary statistics for females aged 20-95 in years 1921-2011, CAE, 14 countries

Projections - Random Walk

Female population in 14 countries, aged 20-95, years 1921-2011

Projections - Random Walk + AR

Female population in 14 countries, aged 20-95, years 1921-2011

Projections - Random Walk + AR + KV

Female population in 14 countries, aged 20-95, years 1921-2011

Conclusions

$$
\begin{aligned}
\kappa_{t+1, c}-\kappa_{t, c} & =\mu+\zeta\left(\kappa_{t, c}-\kappa_{t-1, c}\right)+\lambda\left(m_{t}-\kappa_{t, c}\right)+\sigma_{c} Z_{t, c} \\
Z_{t, c} & =\rho_{c} W_{t}+\sqrt{1-\rho_{c}^{2}} W_{t, c}
\end{aligned}
$$

- simultaneous projections of mortality in multiple populations
- changing improvement rates
- downward trend generated from random innovations
- learning (copying) from other populations
- better fit than model without KV term (for many datasets)
- improved scenario generation
paper on arXiv:
Kleinow, Vellekoop: Minimum reversion in multivariate time series

