Minimum Reversion in Multivariate Time Series -Application to Human Mortality Data

Torsten Kleinow joint work with Michel Vellekoop

Heriot-Watt University, Edinburgh

Actuarial Research Centre, IFoA

Liverpool - 27 Nov 2018

Fitted log mortality rates at age 70

Aim: projection of mortality for all populations simultaneously

Scenario for projected log mortality rates at age 70

Projections based on multivariate random walk with common drift

Scenario for projected log mortality rates at age 70

Projections based on our model

- There are a number of models for the mortality experience in multiple populations available
- Such models have typically population specific period effects in addition to some common period or age effects

- There are a number of models for the mortality experience in multiple populations available
- Such models have typically population specific period effects in addition to some common period or age effects
- Focus of this talk is on a model for projecting mortality rates and generating mortality scenarios simultaneously for many countries
- multivariate time series model for period effects

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol
- countries will tend to copy the most successful innovations from other countries

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol
- countries will tend to copy the most successful innovations from other countries
- if true, survival probabilities in any country will show a tendency to move towards those of the country with highest survival rates
- we include a term in our model to incorporate that tendency ...

- improvements in survival probabilities are driven by similar changes that do not stop at the border
- medical innovations: reduced death rates from cardio-vascular diseases, ...
- life style factors: smoking ban, sugar tax, minimum price per unit of alcohol
- countries will tend to copy the most successful innovations from other countries
- if true, survival probabilities in any country will show a tendency to move towards those of the country with highest survival rates
- we include a term in our model to incorporate that tendency ...
- ... and investigate whether such a "'learning"' effect is signifcant

• The number of deaths, D_{xtc} , in population $c \in C$ at age $x \in X$ in calendar year $t \in T$ has a Poisson distribution:

$$D_{xtc} \sim \mathsf{Pois}(\mu_{xtc} E_{xtc})$$

- μ_{xtc} is the force of mortality
- *E_{xtc}* refers to the central exposed to risk.

Common Age Effects

• Our model for the force of mortality is a modification, Kleinow (2015), of the Lee-Carter model:

$$\log \mu_{xtc} = \alpha_x + \beta_x \kappa_{t,c} \tag{1}$$

 Common age effects, α_x and β_x, ensure that period effects are comparable across populations since they are all rescaled with the same (age-dependent) constant.

Common Age Effects

• Our model for the force of mortality is a modification, Kleinow (2015), of the Lee-Carter model:

$$\log \mu_{xtc} = \alpha_x + \beta_x \kappa_{t,c} \tag{1}$$

- Common age effects, α_x and β_x, ensure that period effects are comparable across populations since they are all rescaled with the same (age-dependent) constant.
- The parameters in (1) are not identifiable
- impose constraints on α and β :

$$\alpha_{x_r} = 0 \text{ and } \beta_{x_r} = 1 \tag{2}$$

for a fixed reference age $x_r \in \mathcal{X}$. That means, fitted log mortality $\log \mu_{xtc} = \kappa_{t,c}$ for $x = x_r$ in every population $c \in C$.

• In our empirical study we set $x_r = 70$.

Kleinow & Vellekoop: Minimum Reversion in Time Series

 mortality data for male populations in 20 countries: The Netherlands, Sweden, Denmark, Belgium, Finland, England & Wales, France, Switzerland, Australia, Italy, Austria, Ireland, Norway, Japan, Canada, New Zealand, Portugal, Spain, USA, Iceland

• ages: 20 - 95 (
$$\mathcal{X} = \{20, 21, \dots, 95\}$$
),

• years 1951 - 2011 (
$$\mathcal{T} = \{1951, \dots, 2011\}$$
)

• source: Human Mortality Database

Common Age Effects - Empirical Results - alpha

Common Age Effects - Empirical Results - beta

Common Age Effects - Empirical Results - kappa

 $\log \mu_{xtc} = \alpha_x + \beta_x \kappa_{t.c}$

We propose the following model for the dynamics of the period effects κ_c for any population $c \in C$:

$$\kappa_{t+1,c} - \kappa_{t,c} = \mu_c + \zeta_c (\kappa_{t,c} - \kappa_{t-1,c}) + \lambda_c (m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c}$$

$$Z_{t,c} = \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \qquad \left(Corr(Z_{t,c_1}, Z_{t,c_2}) = \rho_{c_1} \rho_{c_2} \right)$$

where $\zeta_c, \rho_c \in (-1, 1)$, $\lambda_c \in [0, 1)$, $\sigma_c > 0$ and $\{W_t, W_{t,c}\}_{c \in C, t \in T}$ are independent and identically distributed random variables with a standard normal distribution.

We propose the following model for the dynamics of the period effects κ_c for any population $c \in C$:

$$\kappa_{t+1,c} - \kappa_{t,c} = \mu_c + \zeta_c (\kappa_{t,c} - \kappa_{t-1,c}) + \lambda_c (m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c}$$

$$Z_{t,c} = \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \qquad \left(Corr(Z_{t,c_1}, Z_{t,c_2}) = \rho_{c_1} \rho_{c_2} \right)$$

where $\zeta_c, \rho_c \in (-1, 1)$, $\lambda_c \in [0, 1)$, $\sigma_c > 0$ and $\{W_t, W_{t,c}\}_{c \in C, t \in T}$ are independent and identically distributed random variables with a standard normal distribution.

"Reversion" is to the minimum period effect at time $t \in \mathcal{T}$ as

$$m_t := \min_{c \in \mathcal{C}} \kappa_{t,c}$$

Special case,
$$\mu_c, \zeta_c, \rho_c = 0$$

 $\kappa_{t+1,c} - \kappa_{t,c} = \lambda_c(m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c}$
 $m_t := \min_{c \in C} \kappa_{t,c}$

with $Z_{t,c}$ iid normal.

Special case, $\mu_c, \zeta_c, \rho_c = 0$

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \lambda_c (m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c} \\ m_t &:= \min_{c \in \mathcal{C}} \kappa_{t,c} \end{aligned}$$

with $Z_{t,c}$ iid normal.

• The minimum process m_t , and therefore, all $\kappa_{t,c}$ processes have a downward drift (despite $\mu_c = 0$):

۰

$$\mathbb{P}(m_{t+1} \leq a \mid \{\kappa_{t,c}\}_{c \in \mathcal{C}}) = 1 - \prod_{c \in \mathcal{C}} \Phi\left(\frac{(1 - \lambda_c)\kappa_{t,c} - a + \lambda_c m_t}{\sigma_c}\right)$$

Special case, $\mu_c, \zeta_c, \rho_c = 0$

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \lambda_c (m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c} \\ m_t &:= \min_{c \in \mathcal{C}} \kappa_{t,c} \end{aligned}$$

with $Z_{t,c}$ iid normal.

• The minimum process m_t , and therefore, all $\kappa_{t,c}$ processes have a downward drift (despite $\mu_c = 0$):

٥

$$\mathbb{P}(m_{t+1} \leq a \mid \{\kappa_{t,c}\}_{c \in \mathcal{C}}) = 1 - \prod_{c \in \mathcal{C}} \Phi\left(\frac{(1-\lambda_c)\kappa_{t,c} - a + \lambda_c m_t}{\sigma_c}\right).$$

• Setting $a = m_t$ we obtain

$$\mathbb{P}(m_{t+1} \leq m_t \mid \{\kappa_{t,c}\}_{c \in \mathcal{C}}) = 1 - \prod_{c \in \mathcal{C}} \Phi\left(\frac{(1 - \lambda_c)(\kappa_{t,c} - m_t)}{\sigma_c}\right) > \frac{1}{2}$$

 Φ is the N(0,1) distribution function.

• Conditional probability for the minimum to decrease

$$\mathbb{P}(m_{t+1} \leq m_t \mid \{\kappa_{t,c}\}_{c \in \mathcal{C}}) = 1 - \prod_{c \in \mathcal{C}} \Phi\left(\frac{(1 - \lambda_c)(\kappa_{t,c} - m_t)}{\sigma_c}\right) > \frac{1}{2}$$

 Φ is the N(0,1) distribution function.

• The larger σ_c the larger the probability of m_t decreasing

• Conditional probability for the minimum to decrease

$$\mathbb{P}(m_{t+1} \leq m_t \mid \{\kappa_{t,c}\}_{c \in \mathcal{C}}) = 1 - \prod_{c \in \mathcal{C}} \Phi\left(\frac{(1 - \lambda_c)(\kappa_{t,c} - m_t)}{\sigma_c}\right) > \frac{1}{2}$$

 Φ is the N(0,1) distribution function.

- The larger σ_c the larger the probability of m_t decreasing
- The smaller the differences between countries the larger the probability of m_t decreasing

• Conditional probability for the minimum to decrease

$$\mathbb{P}(m_{t+1} \leq m_t \mid \{\kappa_{t,c}\}_{c \in \mathcal{C}}) = 1 - \prod_{c \in \mathcal{C}} \Phi\left(\frac{(1 - \lambda_c)(\kappa_{t,c} - m_t)}{\sigma_c}\right) > \frac{1}{2}$$

 Φ is the N(0,1) distribution function.

- The larger σ_c the larger the probability of m_t decreasing
- The smaller the differences between countries the larger the probability of m_t decreasing
- The more countries the larger the probability of m_t decreasing

$$\kappa_{t+1,c} - \kappa_{t,c} = \mu_c + \zeta_c (\kappa_{t,c} - \kappa_{t-1,c}) + \lambda_c (m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c}$$

Individual components $\kappa_{t,c}$ are not stationary but they turn out to be co-integrated.

If all processes $\kappa_{t,c}$ (for all c) have a common minimum reversion parameter λ and a common drift μ and there is no autoregressive term, so $\mu_c = \mu$, $\lambda_c = \lambda > 0$ and $\zeta_c = 0$ for all $c \in C$, then the processes $\{\kappa_{\cdot,c}\}_{c\in C}$ are co-integrated.

Time Series Model for Period Effect - Co-integration, proof

$$\begin{split} \kappa_{t+1,c} - \kappa_{t,c} &= \mu_c + \zeta_c(\kappa_{t,c} - \kappa_{t-1,c}) + \lambda_c(m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c} \\ \text{Fix a } c^* \in \mathcal{C} \text{ and define } \tilde{\kappa}_{t,c} &:= \kappa_{t,c} - \kappa_{t,c^*} \text{ for any } c \in \mathcal{C}. \end{split}$$
 We then find for any $c \neq c^*$

$$\begin{aligned} \tilde{\kappa}_{t,c} &= (1-\lambda)(\kappa_{t-1,c} - \kappa_{t-1,c^*}) + \tilde{Z}_t \\ &= (1-\lambda)\tilde{\kappa}_{t-1,c} + \tilde{Z}_t, \qquad \qquad \tilde{Z}_t = \sigma_c Z_{t,c} - \sigma_{c^*} Z_{t,c^*}. \end{aligned}$$

Since $0 < \lambda \leq 1$ we obtain that $\tilde{\kappa}_{t,c}$ is a stationary AR(1) process for all $c \neq c^*$.

Time Series Model for Period Effect - Co-integration, proof

$$\begin{split} \kappa_{t+1,c} - \kappa_{t,c} &= \mu_c + \zeta_c(\kappa_{t,c} - \kappa_{t-1,c}) + \lambda_c(m_t - \kappa_{t,c}) + \sigma_c Z_{t+1,c} \\ \text{Fix a } c^* \in \mathcal{C} \text{ and define } \tilde{\kappa}_{t,c} &:= \kappa_{t,c} - \kappa_{t,c^*} \text{ for any } c \in \mathcal{C}. \end{split}$$
 We then find for any $c \neq c^*$

$$\begin{split} \tilde{\kappa}_{t,c} &= (1-\lambda)(\kappa_{t-1,c} - \kappa_{t-1,c^*}) + \tilde{Z}_t \\ &= (1-\lambda)\tilde{\kappa}_{t-1,c} + \tilde{Z}_t, \qquad \qquad \tilde{Z}_t = \sigma_c Z_{t,c} - \sigma_{c^*} Z_{t,c^*}. \end{split}$$

Since $0 < \lambda \leq 1$ we obtain that $\tilde{\kappa}_{t,c}$ is a stationary AR(1) process for all $c \neq c^*$.

Furthermore, we find that $m_{t} = \min_{c \in \mathcal{C}} (\kappa_{t,c^{*}} + \tilde{\kappa}_{t,c}) = \kappa_{t,c^{*}} + \min_{c \in \mathcal{C}} \tilde{\kappa}_{t,c} \text{and therefore}$ $\Delta \kappa_{t+1,c^{*}} := \kappa_{t+1,c^{*}} - \kappa_{t,c^{*}} = \mu_{c^{*}} + \lambda(m_{t} - \kappa_{t,c^{*}}) + \sigma_{c^{*}} Z_{t+1,c^{*}}$ $= \lambda \min_{c \in \mathcal{C}} \tilde{\kappa}_{t,c} + \mu_{c^{*}} + \sigma_{c^{*}} Z_{t+1,c^{*}}.$

The first term in the last expression is a minimum over stationary processes and the other terms are stationary too, hence $\Delta \kappa_{t,c^*}$ is stationary.

We take C = 2, $\lambda_1 = \lambda_2 := \lambda$, $\mu_1 = \mu_2 = \mu$ and $Corr(Z_{t+1,1}, Z_{t+1,2}) = \rho$. And we assume that there is no AR term, that is, $\zeta_1 = \zeta_2 = 0$

$$\kappa_{t+1,1} - \kappa_{t,1} = \lambda(\min_{c \in \{1,2\}} \kappa_{t,c} - \kappa_{t,1}) + \sigma_1 Z_{t+1,1} + \mu, \quad (3)$$

$$\kappa_{t+1,2} - \kappa_{t,2} = \lambda(\min_{c \in \{1,2\}} \kappa_{t,c} - \kappa_{t,2}) + \sigma_2 Z_{t+1,2} + \mu.$$
(4)

We define

$$m_t = \min_{c \in \{1,2\}} \kappa_{t,c}$$
 and $M_t = \max_{c \in \{1,2\}} \kappa_{t,c}$.

Time Series Model - two-dimensional model

$$\kappa_{t+1,1} - \kappa_{t,1} = \lambda(\min_{c \in \{1,2\}} \kappa_{t,c} - \kappa_{t,1}) + \sigma_1 Z_{t+1,1} + \mu,$$
 (5)

$$\kappa_{t+1,2} - \kappa_{t,2} = \lambda(\min_{c \in \{1,2\}} \kappa_{t,c} - \kappa_{t,2}) + \sigma_2 Z_{t+1,2} + \mu.$$
(6)

We then obtain

$$\lim_{t \to \infty} \mathbb{E}[M_{t+1} - M_t] = \lim_{t \to \infty} \mathbb{E}[m_{t+1} - m_t] = \mu - s \sqrt{\frac{\lambda}{2\pi(2-\lambda)}}$$
(7)
and
$$\lim_{t \to \infty} \mathbb{E}[M_t - m_t] = s \sqrt{\frac{2}{\lambda\pi(2-\lambda)}}$$
(8)

with
$$s = \sqrt{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}$$
.

Table: Generated drift for different minimum reversion parameters λ according to (7) (second column) and using 10⁵ simulations (third to last column), s = 1 and $\mu = 0$.

	Exact	Simulation				
λ	$ \mathcal{C} = 2$	$ \mathcal{C} = 2$	$ \mathcal{C} = 3$	$ \mathcal{C} = 4$	$ \mathcal{C} = 8$	$ \mathcal{C} =16$
0.0125	-0.0447	-0.0448	-0.0671	-0.0817	-0.1129	-0.1401
0.025	-0.0635	-0.0635	-0.0952	-0.1158	-0.1602	-0.1987
0.05	-0.0903	-0.0903	-0.1355	-0.1649	-0.2280	-0.2828
0.1	-0.1294	-0.1294	-0.1942	-0.2362	-0.3266	-0.4052
0.2	-0.1881	-0.1881	-0.2821	-0.3432	-0.4745	-0.5887
0.4	-0.2821	-0.2821	-0.4231	-0.5147	-0.7118	-0.8830

Table: Expectation of the stationary distribution for $M_t - m_t$ for different minimum reversion parameters λ according to (8) (second column) and using 10^5 simulations (third to last column).

	Exact	Simulation				
λ	$ \mathcal{C} = 2$	$ \mathcal{C} = 2$	$ \mathcal{C} = 3$	$ \mathcal{C} = 4$	$ \mathcal{C} = 8$	$ \mathcal{C} = 16$
0.0125	7.1589	7.1593	10.7386	13.0627	18.0644	22.4106
0.025	5.0781	5.0774	7.6185	9.2656	12.8138	15.8962
0.05	3.6137	3.6132	5.4202	6.5931	9.1178	11.3112
0.1	2.5887	2.5886	3.8831	4.7229	6.5316	8.1031
0.2	1.8806	1.8806	2.8209	3.4313	4.7454	5.8866
0.4	1.4105	1.4104	2.1156	2.5735	3.5591	4.415

Fitting the model to kappa - just a reminder

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \mu + \zeta(\kappa_{t,c} - \kappa_{t-1,c}) + \lambda(m_t - \kappa_{t,c}) + \sigma_c Z_{t,c} \\ Z_{t,c} &= \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \end{aligned}$$

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \mu + \zeta(\kappa_{t,c} - \kappa_{t-1,c}) + \lambda(m_t - \kappa_{t,c}) + \sigma_c Z_{t,c} \\ Z_{t,c} &= \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \end{aligned}$$

	Log <i>L</i>	K	BIC	μ	λ	ζ	$\bar{\sigma}$
Drift + AR	3785.59	42	-7274.10	-0.0202	-	-0.3289	0.0334
KV + AR	3782.30	42	-7267.52	-	0.0355	-0.3263	0.0354

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \mu + \zeta(\kappa_{t,c} - \kappa_{t-1,c}) + \lambda(m_t - \kappa_{t,c}) + \sigma_c Z_{t,c} \\ Z_{t,c} &= \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \end{aligned}$$

	Log <i>L</i>	K	BIC	μ	λ	ζ	$\bar{\sigma}$
Drift + AR	3785.59	42	-7274.10	-0.0202	-	-0.3289	0.0334
KV + AR	3782.30	42	-7267.52	-	0.0355	-0.3263	0.0354
KV + Drift	3735.49	42	-7173.91	-0.0095	0.0187	-	0.0347

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \mu + \zeta (\kappa_{t,c} - \kappa_{t-1,c}) + \lambda (m_t - \kappa_{t,c}) + \sigma_c Z_{t,c} \\ Z_{t,c} &= \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \end{aligned}$$

BIC Log L Κ λ $\bar{\sigma}$ ζ μ Drift + AR3785.59 42 -7274.10-0.0202 -0.32890.0334 -KV + AR3782.30 42 -7267.52 0.0355 -0.3263 0.0354 _ KV + Drift3735.49 42 -7173.91 -0.0095 0.0187 0.0347 _ KV + Drift + AR3792.99 43 -7281.83 -0.0144 0.0201 -0.3290 0.0334 Summary statistics for males aged 20–95 in years 1951–2011, CAE. K is the number of parameters.

Projections - Random Walk

Projections - Random Walk + AR

$\label{eq:projections-Random Walk + AR + KV} Projections - Random Walk + AR + KV$

Projections - Random Walk

Projections - Random Walk + AR

Projections - Random Walk + AR + KV

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \mu + \zeta (\kappa_{t,c} - \kappa_{t-1,c}) + \lambda (m_t - \kappa_{t,c}) + \sigma_c Z_{t,c} \\ Z_{t,c} &= \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \end{aligned}$$

BIC Log L Κ λ $\bar{\sigma}$ ζ μ Drift + AR3605.35 30 -6996.87 -0.0234_ -0.3447 0.0425 KV + AR3566.37 30 -6918.91 0.0674 -0.2664 0.0439 _ KV + Drift3541.84 30 -6869.84 -0.0121 0.0391 0.0454 _ KV + Drift + AR = 3610.9531 -7000.94 0.0257 -0.3321 0.0422 -0.0194 Summary statistics for females aged 20-95 in years 1921-2011, CAE, 14 countries

Projections - Random Walk

Female population in 14 countries, aged 20 - 95, years 1921 - 2011

Projections - Random Walk + AR

Female population in 14 countries, aged 20 - 95, years 1921 - 2011

Projections - Random Walk + AR + KV

Female population in 14 countries, aged 20 - 95, years 1921 - 2011

$$\begin{aligned} \kappa_{t+1,c} - \kappa_{t,c} &= \mu + \zeta(\kappa_{t,c} - \kappa_{t-1,c}) + \lambda(m_t - \kappa_{t,c}) + \sigma_c Z_{t,c} \\ Z_{t,c} &= \rho_c W_t + \sqrt{1 - \rho_c^2} W_{t,c} \end{aligned}$$

- simultaneous projections of mortality in multiple populations
- changing improvement rates
- downward trend generated from random innovations
- learning (copying) from other populations
- better fit than model without KV term (for many datasets)
- improved scenario generation

paper on arXiv:

Kleinow, Vellekoop: Minimum reversion in multivariate time series

