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Overview

A “spooky” observation

The dangers of over-complexity

Statistical techniques for model selection
— Akaike

— Bayes Factors

Example of choice of copula in small data sets

* Model averaging and Model uncertainty
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A “spooky” observation

« Example drawn from real P&C internal models
* Gross non-cat claims, 100 lines of business

« Different loss ratio distribution parameters & premium volumes for
each line

« Gaussian copula used

— 4,950 pairwise correlation parameters

» Each parameter estimated through expert judgment, documented and
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An Experiment

* What do all these parameters do?
« What are the important parameters, for, say, capital?

* An experiment:

— What if the correlation matrix was scrambled up, so that each pair of lines of
business has the “wrong” correlation?

— Obviously the resulting aggregate claim distribution will be completely wrong...
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A “spooky” observation

* The experiments indicate the most important features seem to be:
— The type of copula

— The overall “average” level of dependence

* Individual pairwise correlation coefficients seem less important (for the
aggregate risk profile)

— Similar observation in operational risk literature [Brunel, 2014]
* But how much effort goes in to thinking about the first two points?

* Has the model been over-complicated, at the expense of missing the bigger
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The dangers of over-complexity
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A quote

Since all models are wrong the scientist cannot obtain a "correct" one by
excessive elaboration. On the contrary following William of Occam he
should seek an economical description of natural phenomena. Just as
the ability to devise simple but evocative models is the signature of the
great scientist so overelaboration and overparameterization is often the
mark of mediocrity.

George E. P. Box
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A more catchy quote

...all models are wrong, but some are useful.

George E. P. Box
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The “best” model is not the “true” model
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Statistical Methods for Model Selection
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Statistical Methods for Model Selection

* There are several well known statistical methods for comparing
models

« Simplicity/complexity play a key part in most of these

* We will look at two of the most common:

— Akaike Information Criterion

— Bayesian Model Comparison
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Akaike Information Criterion

+ Akaike compared the “closeness” of the density of a fitted model f5(y) to
“truth” g(y)

* “Closeness” measured by Kullback-Leibler information
n(9(2)/£;0) )|

* An asymptotically unbiased estimator of expected KL information loss is
—InL(B; x) + K + const

D(f'g) = Eg

— Kiis no. of estimated parameters

- InL(8; x) is maximised log-likelihood of fitted model, given observed data x

— const is independent of model 3,%@;
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AlIC

AIC; = =2InL(6; x, M;) + 2K;

Model Fit Complexity
* Model with smallest AIC is expected to have lower predictive error

« Akaike also suggested a weighting scheme to “blend” models:

1
o ZAIC

i 1AIC
Y .e 27"
j e

« w; are “Akaike weights” — interpreted as a relative weight of evidence for the model,
compared to the other candidate models
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Bayesian Model Comparison

* Model structure treated as random with prior distribution updated after data observed
* Bayes factor is the ratio of the marginal likelihood of two models
_ L(x; M;)
27 L My)
* By, relates prior odds of two models to the posterior odds
p(Milx) _  p(My)
p(Mz]) " p(My)
* By, can be considered the relative weight of evidence in favour of model 1 over model 2
in the data

* By combining the Bayes factor with prior model probabilities, we can obtainJ)osterior

gy . -}
probabilities of a model, given the data ;\%é} Institute
BN | recuey
30 October 2014 22

11



30/10/2014

Marginal Likelihood

+ Key quantity is the marginal likelihood of model given data

L(Mi,'X) = fL(H,x,Ml)nl(B)dO

» Can be computed through Monte-Carlo simulation

Depends on prior 1;(0) - think carefully

* More complex models generate more complex data, but must spread
out their probability mass more widely

© i i %gk; ] nstitute
Bayes factors tend to penalise model complexity i E;‘PE 5 | mstre
s | of Actuaries
30 October 2014 23

Example —which copula?

-
m@i’?&m

£S5

(S

Institute
and Faculty
of Actuaries

30 October 2014 24

12



02 06

02 06

Historic Loss Ratio Data

240% A

220% A

200% A

180% -

160% -

30/10/2014

" Data[ME,]
4 Data]MC,*]
*  Data]MXL,*]

© Data[MH,*]

S 140% -
©
'-'; 120% 1 v Data[PB,*]
E 100% 1 "  Data[PDF,"]
80%% 4 Data[PCXL,*]
60%
40%
20%
0% - T T T T T T
1 2 4 5 6 7 9 10 1
Accident Year
30 October 2014 25
ME 0.76 0.26 0.44 0.12 0.13 0.54 i Ran k_Scatter plot matrlx and
sample Spearman’s rank
MC 0.42 0.42 0.25 0.055 0.71 corre | atl on
. Quite a variety of estimated
MXL 0.32 0.90 0.48 003 [° .
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Which Copula?

Gumbel

Clayton

09
08 08
07 07
06 06
> 05 05
04 04

< 4 k
i 00

00 01 02 03 04 05 06 07 08 09 10
00 01 02 03 04 05 06 07 08 09 10

0 Gaussian
N L
g

u
Independence

ke

00

00 01 02 03 04 05 06 07 08 09 10
u

00
00 01 02 03 04 05 06 07 08 09 10
u

30 October 2014

Which copula?

* Use gamma distributions for margins

« Compare four models for the copula

Gumbel

Clayton

Gaussian

Independence

* Firstly, try pairwise
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AIC Pairwise results

 Independence has highest relative Akaike weight in most pairs

- 2 pairs have highest weight for Gumbel

 Other pairs have relatively even weight between models

* Not really enough data

30 October 2014 20

15



30/10/2014

Multivariate joint density

» Rather than model pairwise, consider the joint likelihood of the full multivariate
model

* Use the following 7-dimensional multivariate copulas
* Gumbel (1 parameter)
* Clayton (1 parameter)
« Multivariate Gaussian (21 parameters)

* Independence (0 parameters)

* + 14 parameters for margins
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Akaike Weights for Multivariate Dependence

Multivariate AIC Analysis
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Multivariate AIC Results

log- AlC
Copula Model likelihood K AlC AAIC weights
Gumbel -6.32 15 57.3 . 98.8%
Clayton -10.72 15 66.1 8.8 1.2%
MV Gaussian 7.31 35 685.4 628.1 4 x 10137
Independence -14.91 14 70.65 13.34 0.1%

* Gumbel copula is preferred — strong weight indicates substantial support

. . =
 Gaussian copula has essentially no support %5 | Institute
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Have we been unfair?

* The Gaussian copula is heavily penalised through having more
parameters

— More parameters->More estimation error->Worse predictive performance

« Gumbel and Clayton have one parameter to model entire multivariate
dependence

— Have 21 times as much data per parameter

» But we want to compare shape as well

and Faculty
of Actuaries

« Compare a simpler version of the Gaussian copula, with a %j%gle,
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With single parameter Gaussian...

Multivariate AIC Analysis
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AIC Results

log- AlIC
Copula Model likelihood K AIC AAIC. weights
Gumbel -6.32 15 57.32 - 93.2%
Clayton -10.72 15 66.12 8.80 1.1%
Gaussian — Single Parameter -9.13 15 62.94 5.62 5.6%
Gaussian — Correlation Matrix 7.31 35 685.37 628.05 4x10-137
Independence -14.91 14 70.65 13.34 0.1%
X
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Bayes Factor Calculation

* Use uninformative priors on parameters

— Uniform [0,1] prior on Kendall's t for Gumbel, Clayton and single parameter
Gaussian copulas

— Jointly uniform [-1,1] prior on pairwise Kendall’s 1 for Gaussian copula with
correlation matrix

* Restricted to space of PSD correlation matrices

— Uniform priors on marginal parameters
» Can use informative priors if prior information is available

* Uninformative (equal) prior model probabilities
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Bayesian Model Comparison Results

Bayes
Copula Model p(M) Factor* P(M|D)
Gumbel 20% 1 82.9%
Clayton 20% 0.022 1.8%
Gaussian - Single Parameter 20% 0.18 14.7%
Gaussian - Correlation Matrix 20% 0.0004 0.04%
Independence 20% 0.006 0.5%
*Bayes factors relative to the model with Gumbel copula (i‘%\ %’5{ tft%i'ig
30 October 2014 38
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What is driving this?
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Summary Results

* Both AIC and Bayesian results show similar qualitative picture
« Little support for fully parameterised Gaussian copula

* There is, however, information in the data to support and discriminate
between simpler models

» A reasonably strong weight of evidence for the Gumbel copula,
compared to the others

* There could be other models which are better

» Useful information. To do with as you see fit. LB | Institute
BRI |t
30 October 2014 41

Model Averaging and Model Uncertainty

* “Model uncertainty” — additional uncertainty in forecast distribution due to
uncertainty about model structure

* Model uncertainty can never be completely eliminated, but can be
reduced by blending the results of several models (see e.g. [Bignozzi and
Tsanakas 2013])

* “Model averaging” often gives superior predictive results to any of the
individual models

+ Bayesian approach allows simultaneous quantification of model and
parameter uncertainty

Bignozzi, V. and Tsanakas, A. 2013, “Model Uncertainty in Risk and Capital Measurement” %F?’%g* Institute
Available at SSRN 2334797 I‘ \.‘\ and Faculty
?{@pi of Actuaries
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Example - Stop Loss

* 25% xs 125% ULR stop loss reinsurance contract
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Summary and Conclusions

* Include complexity where necessary and justified by evidence

» “Simple” does not mean less sophisticated

« Statistical techniques exist for comparing relative evidence for models
» They can be applied successfully to the problem of copula selection

« There is a surprising amount of information even in small data sets

* Blending models is useful and model uncertainty can be (at least
partially) quantified
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Expressions of individual views by members of the Institute and Faculty of
Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.
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