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LEE CARTER STRUCTURE

= age effect + (age effect) x (time 
effect) 

predictor 

= predictor + error log (mortality rate)

x x t

with identifiability constraints t 0, x 1

Note wide acceptance and use of Lee Carter framework 
e.g. benchmark model used by US Bureau of Census

FITTING

Singular Value Decomposition

Iteration based on weighted least squares

Maximum likelihood with Poisson errors

with adjustments to      so that 

(observed deaths)t =  (predicted deaths)x

t



GOODNESS OF FIT

Residuals analysis
Model enhancements to improve fit

Second order terms
Cohort effects (see later).

FORECASTING

Time series (ARIMA) models fitted to         and then 

projected 
t

n n n nx,t s x,t x t s tm m exp{ ( )}, s 0

COHORT VERSION 

Predictor = age effect + (age effect) x (cohort effect) + 

(age effect) x (time effect)

(0) (1)
x x t-x x t

x

There is a problem because cohort = (period age).

And so we require a two-stage fitting strategy, in which 

is estimated first, as in the basic Lee Carter Model.

(Data requirements: single year of age data).



UK FEMALE MORTALITY EXPERIENCE (LC) 
RESIDUAL PLOTS 

LOG (MORTALITY RATES): PROJECTIONS 

UK FEMALE POPULATION: MODEL M 
PARAMETERS



COMMENT ON LEE CARTER AND P SPLINES 

Eilers et al (2006): In Lee Carter methods fitting the data and 

extrapolating past trends are kept separate In the authors opinion,

this is an advantage for actuarial applications, since it allows for more

flexibility.

Note: Eilers is one of the original advocates of the P Splines

methodology. 

a) What to do next?

b) Use Lee Carter and P Splines.

Bayesian Models

Advantages:

Includes estimation error and process error

Can incorporate model error

Enables particular portfolio or risk to be studied

Flexibility

Bayesian Lee-Carter
Use the Poisson bilinear model:

, expx t x x t

Non-informative prior distributions for          and 

with
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Case A: England and Wales Male Mortality Experience, 
1950-1998, inclusive, with a age grouped and classified as 
{<1, 1-4, 5-9, 10-14, ., 80-84, 85+}.

Case B: UK mortality experience, 1961-2003 inclusive, with 
age classified by individual year, 0-103 inclusive.

Case C:  CMI data for female life office pensioners, 1983-
1996 inclusive, with age classified by individual year, 60-95 
inclusive.
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Kappa - Case B
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Annuity value
It is possible to look at a wide range of random 
variables, such as a single life, a portfolio of lives, etc.

Consider a single female life aged 60, IA 6%
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