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1. INTRODUCTION 

IT is now some sixteen years since Sir David Cox (1972) published his epoch 
making paper in which he incorporated regression type arguments into life-table 
analysis. Central to the method was the introduction of the multiplicative hazard 

λ (t, z) = λ *(t) exp ( β ' · z) 

with vector of covariates z, unknown regression parameters β, and so-called 
base-line hazard λ *(t) = λ (t, 0). Applications of the method, based on the 
conditional likelihood argument expounded by Cox in which the base-line 
hazard λ * is unknown, have proliferated in the intervening years, largely in the 
field of medical statistics. There have been relatively few applications in which the 
base-line hazard is assumed known at the outset. Specific cases include Breslow et 
al. (1983), Berry (1983) and Hill et al. (1985). 

Attempts to incorporate regression-like models into life-table analysis would 
appear to have gone largely untried by the British actuarial profession. 
Essentially this is because in life insurance, data bases are large and the 
establishment view is that such models are inappropriate when sampling 
variation is small. Also mortality is of less significance as a factor than economic 
variables like inflation and investment earnings. All the actuary needs to do is not 
understate the level of mortality rather than get it exactly right. 

The purpose of this paper is two-fold. Firstly we seek to draw attention to the 
considerable potential of these methods for actuaries when the data bases are 
relatively small and it is important to get the mortality factor right. Secondly we 
seek to illustrate this potential by reanalysing part of the Prudential impaired 
lives data previously reported and discussed at length in the pages of this Journal 
(Preston & Clarke (1965), Clarke (1978)). Somewhat prophetically, Professor 
Bernard Benjamin predicted the potential of these methods for investigating the 
mortality of special groups, such as those with impairments, in the discussion on 
Cox’s 1972 paper. 

By way of motivation § 2 contains a brief description of relevant aspects of the 
impaired-lives data set. The underlying methodology described in § 3 is 
supported by a Technical Appendix. Sections 4 and 5 deal with peripheral 
necessities to set the analysis in motion. The results obtained from a reanalysis of 
aspects of the impaired-lives data set are presented in § 6. 
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2. THE IMPAIRED LIVES DATA SET 

The data are extensive, comprising information derived from well in excess of 
half a million life insurance policies effected on impaired lives during the period 
January 1947 to December 1981. In fact the study is on-going with data 
extending beyond 1981 to the present day. The information on each impaired life 
includes details of medical status at entry, age next birthday at entry and date at 
entry, date and mode of exit. Classification by medical status involves nine broad 
categories, each of which is further subdivided. Full documentation is given in 
Preston & Clarke (1965) and need not be reproduced here. Entry and exit dates 
are known to the nearest month. 

Typically Figure 2.1 displays the information available for each medical status 
(here-hypertensive, overweight, specified blood pressure category). Calendar 
year (January 1947 to December 1981) is represented on the x-axis and age 
(upwards of 15 years) on the y-axis; with each oblique line or stroke within these 
bounds representing a single policy experience. The starting coordinates for each 
stroke, depicted by + are date of entry and age next birthday at entry (minus six 
months); while the length of each stroke is determined by the duration over which 
the policy is seen to be operative. The mode of exit may be due to death, depicted 
by the black spot , or through censorship for whatever reason, depicted by . 
Two distinctive features present are the anticipated heavy censoring unavoidably 
induced at the study boundary (December 1981) and the lighter censoring at age 
65 years (calendar period 1967 onwards) which presumably is induced by 
occupational retirement. Indeed many of the policies are endowment assurances 
maturing at age 65 for this reason. 

Insight into the strength of mortality present is provided, in part, by the entry 
and exit times to and from study of a batch of individuals. Entry times, , are 
defined when policies are issued on individual lives, while exit times, t, are 
brought about through either death ( = 1) or censorship ( = 0). Obviously < t 
while is a zero-one indicator variable. Censorship may be due either to a policy 
surrender or maturity, or may be induced by the outer temporal limits (on age 
and calendar year) of the study. 

The heterogeneous nature of the collective data set, due to the different 
(combined) levels of covariates such as medical status, age at entry, policy 
duration, calendar year of entry is accommodated by partitioning the study data 
into relatively homogeneous batches or cohorts indexed by j . Often j will take 
the form of a vector suffix with one component for each covariate. Collectively 
such suffices form a so-called product set. Obviously, it is necessary to ensure that 
the amount of experience for each such cohort is sufficient to make the 
construction of the traditional actuarial mortality ratios meaningful. 

Denoting the age next birthday at entry by the letter a, the information offered 
by each policy is 
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in which k ranges over the members within a particular cohort j. Thus, we have 
available 

τ jk—entry time 

tjk—exit time 

ajk—age next birthday at entry 

δ jk—mode of exit; 

together with information on medical status. 

3. METHOD OF ANALYSIS 

We focus attention on mortality through the age-specific force of mortality (µx 
in actuarial literature) or hazard function (t, z) where t denotes time and z the 
appropriate vector of covariates. A standard or base-line hazard *(t) = (t, 0) is 
constructed for normal life insurance business (z = 0), by suitably transforming 
the representative A1967–70 life-table, adjusted to allow for secular trend in 
mortality (see §4). This is used as a yard-stick against which the excess mortality 
of impaired groups (with covariates zj) is assessed. It is achieved through Cox’s 
identity 

(3.1) 

in which the multiplicative factor, exp ( β 'zj), with unknown regression para- 
meters β ', may be perceived as adjusting the standard hazard by the amount of 
excess mortality attributable to the specific impairments present in the study 
groups or cohorts j . It is proposed therefore to investigate the potential for 
using the exp ( β ' zj)’s as measures of excess mortality. 

Three major questions arise: (1) How are the mortality factors to be computed? 
(2) What relationship, if any, do they bear to the traditional actuarial mortality 
ratios computed by Clarke? (3) What advantages, if any, accrue from this 
approach? We address each of these questions in turn. 

3.1 To compute the exp (ß' zj)’s we require estimators for the unknown 
regression parameters ß'. These are obtained by maximum likelihood methods, 
the theory for which is developed in the Technical Appendix. 

Recall the classic linear model (LM) in which the response variables Yj are 
assumed to be independent normal variables yj ~ IN(µj, 2) with means µj = β ' zj 
and constant variance 2. Specifically if β ' = ( α , β ) and z'j = (1, xj) so that 
µj = α + β xj we get straight line regression and so on. Such models are generalized 
by allowing other distributions, typically the Poisson distribution, so that 
Yj ~ IPoi (µj); and also by linking the means µj to the linear predictor β ' zj through 
the introduction of a monotonic link-function, g, where 

g (µj) = β ' zj (3.2) 
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We establish in the Technical Appendix that the likelihood function, based solely 
on the Cox identity (3.1) and data of the type described in § 2, is identical to that 
for the generalized linear model (GLM) in which the numbers of deaths per 
cohort, dj, are independent Poisson response variables dj ~ IPoi (µj) with means 

log-link function 

µj = mj exp(ß' zj), 

log µj = log mj + ß' zj 

and where 

(3.4) 

(3.3) 

mj is the ‘accumulated integrated base-line hazard’ and we discuss how to 
compute the mj terms in §5. Notice that they are closely related to the expected 
number of deaths used to form the denominator in the construction of traditional 
actuarial mortality ratios as discussed by Haberman (1988). Indeed, the two 
quantities become identical when we integrate over the standard life-table rather 
than the standard hazard *. 

The practical aspect of generalized linear interactive modelling (GLIM) is 
conducted using the specially designed computer package bearing this name. It 
offers the user a wide choice of modelling distributions, link functions and 
covariate model structures. See Haberman & Renshaw (1988). In particular, 
model fitting is by maximum likelihood providing the necessary parameter 
estimates with which to compute the exp ( ' z)’s. 

Comparison of expressions (3.2) and (3.3) reveals the extra log mj terms which 
have to be subtracted from the log µj terms when fitting the model. Such terms are 
called offsets. They may be perceived as part of the linear predictor ß' z, being an 
extra term with known regression coefficient, having value equal to unity. The 
GLIM computer package offers this facility. 

3.2 The relationship between mortality factors and the traditional mortality 
ratios, as well as the method of computation, is illustrated by results taken from 
Table 1 on page 33 of Preston and Clarke (1965). These refer to hypertensives 
with two covariates, A, denoting weight status with two levels (1—stan- 
dard + 19%, 2—standard + 20% or over) and, B, denoting age at entry with three 
levels (1—16 to 39 years, 2—40 to 59 years, 3—60 or more years). The results are 
reproduced in the first five columns of Table 3.1 in which two suffices (i, j) are 
required to accommodate the combined crossed levels of the two covariates A 
and B. 

As already indicated, the mij’s here are based on a standard life-table rather 
than on the corresponding standard hazard, a minimal change which, for all 
practical purposes, can be ignored. Fitting the GLM with independent Poisson 
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Table 3.1. Mortality data for hypertensives, 
1947–63 

A(i) B(j) dij mij dij/mij ß' zij 
1 1 64 25·13 2·55 ·9348 
1 2 480 251·11 1·91 ·6473 
1 3 264 217·22 1·22 ·1950 
2 1 21 7·66 2·74 1·0085 
2 2 86 43·63 1·97 ·6786 
2 3 29 23·46 1·24 ·2120 

responses, log-link, offsets log mij and fully interactive structure, denoted by A*B, 
and with parametric representation 

ß' zij = µ + i + ßj + ( ß)ij 

yields the following parametric estimates 

(3.5) 

i = 1 

i = 2 

j 

j = 1 

0 

0 

0 

j = 2 

0 

–·0430 

–·2869 

j = 3 

0 

–·0567 

–·7389 

i 

0 

·0737 

·9348 = 

The ( )ij terms are presented in the body of the table. The linear predictors 
ß' zij are computed using (3.5) and are tabulated in the final column of Table 3.1. 
Exponentiation yields the mortality factors exp ( ' · zij). These are identical to the 
traditional mortality ratios of the preceding column which the reader may readily 
verify. 

Suppose next we decide to ignore one of the two factors, say B, and just fit A. 
Columns 3 and 4 of Table 3.1 are modified by summation over j to yield the first 
three columns of Table 3.2, from which column 4 is constructed. 

Fitting model A only with parametric form 

yields estimates 

= ·4931, 1 = 0, 2 = ·1050 

from which column 5 of Table 3.2 is constructed. Again exponentiation reveals 
that the mortality factors are identical to the traditional mortality ratios of the 
preceding column. An identical situation occurs on fitting B and ignoring A. 

Table 3.2. Condensed mortality 
data for hypertensives, 1947–63 

A(i) di+ mi+ di+/mi+ ß' zi 
1 808 493·46 1·64 ·4931 
2 136 74·75 1·82 ·5981 
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Subject to the marginal switch from standard life-table to standard hazard 
function, we have demonstrated that the proposed method of analysis repro- 
duces traditional actuarial mortality ratios, as a special case, by fitting either 
single covariates or two (or more) fully interactive covariates. 

3.3 In addition to providing measures of excess mortality the method also 
enables us to conduct a comprehensive statistical analysis of the association 
between covariates, their interactions, and excess mortality. 

The analysis is based on a model goodness of fit statistic called the deviance. 
This is based in turn on the likelihood ratio principle rather than the possibly 
more familiar Pearson goodness of fit statistic. It is essential that inferences 
should be based on differences between model deviances as their absolute values 
are conditional on the total number of covariates under simultaneous investiga- 
tion. These differences may be referred to the chi-square distribution with the 
appropriate degrees of freedom—an approximate result. 

The analysis of deviances for the data presented in Table 3.1 is based on the 
values tabulated in Table 3.3. 

The differences in model deviances and corresponding degrees of freedom (in 
brackets) are displayed on the lattice diagram (Figure 3.1). 

Table 3.3. Model deviances, mortality data for 
hypertensives, 1947–63 

Model Linear predictor ß' zij Dev. D.F. 

null H0 µ 51·57 1 
weight A µ+ i 56·31 2 
age B µ+ßj ·16 3 
log-additive A + B µ+ i+ßj ·03 4 
fully interactive A * B µ+ i+ßj+( ß)ij 0 6 

Figure 3.1. Lattice of hypotheses, mortality data for hypertensive, 1947–63 
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Notice that the lattice deviances (and degrees of freedom) are additive in the 
sense of moving from one model or hypothesis to another by two different paths, 
where this is possible (e.g. A * B to A, A * B to H0 etc.) The GLIM computer 
package also offers the Pearson goodness of fit statistics as alternatives to the 
likelihood ratio deviances (same degrees of freedom), but these do not possess 
this appealing additive property. Examination of the branches connecting the 
null hypothesis H0 to A, B to A * B, B to A + B, all indicate that factor A, weight 
status, is statistically non-significant; while factor B, age at entry, is highly 
significant. The branch from A * B to A + B tests for interaction. 

4. THE BASE-LINE HAZARD MATRIX 

The A 1967–70 table with its four year calendar year span and two-year select 
period was employed to construct a base-line hazard matrix * as follows. 
Papaconstantinou (1987) using linear techniques has extrapolated the A 1967–70 
Table both forward and backward in time in four yearly steps. Then, using linear 
interpolation, he has computed probabilities of death q(x, d, c) for calendar years 
c = 47, 48, . . . , 81; durations d = 1, 2, > 2; and ages x = 16, 17, . . . , 79 (d = l, 2), 
x=16, 17, . . . , 100 (d>2). The matrix q(x, d, c) was felt to be unnecessarily 
detailed and consequently condensed into seven synchronized calendar year 
periods by averaging over consecutive five yearly intervals, commencing with 
1947–5 1 (c = 1) and ending in 1977–81 (c = 7). Then the base-line hazard matrix 
*(x, d, c) was computed using 

* (x, d, c) = –log (1 — q (x, d, c)). 

5. COMPUTING THE Mj’S 

A Fortran 77 program was written to compute the accumulated integrated 
base-line hazard terms 

Briefly the essence of the program is as follows. 
First define the cohorts j . A product set A × C × D × M with at least four 

component sets is needed to accommodate the traditional actuarial factors of age 
at entry (A), calendar year of entry (C) and duration (D) along with medical 
status (M) as model covariates; the set of medical states, M, being sometimes a 
product set itself. The factors A with either 3 or 4 levels (typically 16–39, 40–49, 
50–59, 60–79), C with 7 levels (47–, 52–, 57–, . . . , 77–) and D with 6 levels (0–2, 
2–5, 5–10, 10–15, 15–20, 20–) were used in all analyses in conjunction with 
medical status M (often with the original codes modified). 

Next condition in turn on each of the combined levels of A × C × M (but not D 
notice) and compute the contribution of each datum to the different levels of D by 
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integrating over the appropriate length of time for which the policy is operative. 
Thus, if C = 7 say (1977–81) then the datum contributes only to the first two levels 
of D at most, and so on. 

Recall that each datum comprises 

where: 
( jk, tjk, ajk, jk) 

τ jk—entry time 

in months (origin 1/47) 

tjk—exit time 

ajk—age next birthday at entry (in years) 

δ jk—mode of exit 

together with information on medical status. This latter information along with 
the values of jk and ajk is used to sort and classify each datum according to the 
different levels of A × C × M. Then the information ( jk, ajk) locates the starting 
element *(ajk, 1, cjk) in the base-line hazard matrix of the previous section, while 
it is necessary to assume an exact entry age (exact, that is, to the nearest month 
and taken to be age next birthday at entry minus 6 months for each datum) in 
order to commence integrating the step-like base-line hazard matrix. This 
proceeds in unit steps of one month. The number of deaths per cohort, dj = j+, 
are accumulated as a by product. 

The SPSS-X statistical package was used initially to select, sort and edit the 
relevant data into a form suitable for feeding into the Fortran 77 program. It was 
deemed expedient to run the latter program for each medical state A4 separately 
because of potential problems with the limitations on array size. A typical piece 
of output comprises six (or more) columns listing factor levels A, C, D and M 
together with the values of dj and mj. This is now ideal for inputting into the 
GLIM computer package for statistical analysis. 

6. ANALYSIS OF HYPERTENSIVES 

Some 25,220 policies were issued on lives diagnosed as hypertensives at entry 
in the study period 1947–81 (codes 110–168: Preston & Clarke (1965)). The effect 
on mortality of medical factors: 

B—Blood pressure at entry, 7 levels, with codes 
DAP 

below average above 

below 7 
S 
A average 1 3 5 
P 

above 2 4 6 
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E—Weight with 2 levels (1—standard + 19%, 2—standard + 20%) or over) along 
with factors 

A—Age at entry, 4 levels 
C—Calendar year of entry, 7 levels 
D—Duration, 6 levels 

each defined in §5 above was investigated. So, in the set notation of §5, medical 
status M = B × E. 

Ignoring all factors and treating the data collectively as a single cohort, the null 
model or hypothesis H0, gives rise to the mortality ratio 1·54 implying an excess 
mortality of + 54% for all hypertensives. Fitting each of the five factors 
separately gives rise to Table 6.1 in which the tabulated model deviance 
differences give an indication of the strength of association between excess 
mortality and each factor in turn. On this basis, the weight factor E is not 
significant statistically and is subsequently dropped from further analysis of 
these data. This is in agreement with Clarke’s findings in his analysis for the 
period 1964–73 and would appear to be consistent with Preston & Clarke’s 
somewhat limited analysis for the period 1947–63. Parameter estimates for 
model E (Table 6.2) indicate a slight increase in mortality for the overweights 
(+64% as opposed to +53%). 

The mortality ratios for all five factors fitted separately are given in Table 6.2 
together with the observed numbers of deaths. Notice first the pattern of excess 
mortality with blood pressure, with excess mortality increasing with increasing 
blood pressure ratings. Clarke observed a similar pattern in his restricted analysis 
for the period 1964–73, of which more shortly. Secondly, there is a marked 
decline in excess mortality at the higher ages of entry. Because high blood 
pressure is very unusual among the young, this higher excess mortality for 
hypertensives is to be expected at young ages at entry. Conversely, at the oldest 
ages at entry, all lives are likely to have some level of raised blood pressure so 
hypertension is not that exceptional. Hence the excess mortality is lower. 

Next, examine the variation in excess mortality with duration, an effect which 
Clarke felt unable to investigate by his methods. Excess mortality is lowest for 

Table 6.1. Testing for main 
effects, hypertensives 1947—81 

Model dev. d.f. difference 
H0 1867 1664 dev. d.f. 

A 1723 1661 144 3 
B 1754 1658 113 6 
C 1831 1658 36 6 
D 1843 1659 24 5 
E 1865 1663 2 1 
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Table 6.2. Excess mortality factors, covariates fitted 
separately. Hypertensives 1947–81. (Numbers of deaths in 

parentheses) 

309 

Model Mortality ratio 

H0 1·52 (3019) 

A 16–39 40–49 50–59 60–79 

1·80 2·13 1·42 1·22 

(353) (882) (992) (792) 
B DAP 

below average above 

below — 1·42 

S 1(508) 
1·32 1·68 

A 
average 1·77 

(1087) (726) (104) 
P above 1·63 2·01 2·84 

(153) (243) (198) 

C 

D 

E 

47– 52– 57– 62– 67– 72– 77– 

1·40 1·45 1·55 1·74 2·05 1·73 1·41 
(681) (803) (615) (555) (217) (96) (52) 

0–2 2–5 5–10 10–15 15–20 20– 

1·32 1.36 1.60 1.72 1.55 1.49 
(223) (480) (1010) (713) (365) (228) 

Standard + 19% Standard + 20% or over 

1.53 1.64 

(2508) (511) 

short durations, perhaps reassuringly vindicating company underwriting pro- 
cedures before accepting business. It rises appreciably for medium duration 
before declining again at higher duration. 

Perhaps the most intriguing feature is the variation in excess mortality with 
calendar year at entry, with excess mortality peaking significantly for the 
calendar entry 1967–71. This naturally raises the spectre of whether it is a real 
effect, and, if so, what possible explanation exists. On the other hand, it is 
possible that the calendar time variation may be an artefact arising from the 
particular choice of base line hazard * and its construction, especially as the 
peak coincides exactly with the calendar period of the A1967–70 standard table 
used in the construction of *. Clearly further research, which is in progress, is 
needed here. 

The simplest model catering for all four factors A, B, C, D simultaneously has 
the GLIM additive structure A + B + C + D. This translates into multiplicative 
structure with exponentiation; having the parametric form 
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where the parameters , ß, , relates to factors A, B, C, D respectively. The 
mortality ratios obtained on fitting this model may be deduced from the 
information displayed in Table 6.3, on forming the product of the relevant 
entries. Clearly the entries are supportive of the features discussed above. 

A more detailed analysis is achieved with the inclusion of interaction terms 
whose relative significance may be assessed by referring to the differences in 
model deviances tabulated in Table 6.4. A detailed analysis of each model implies 
that the interaction terms B*D and A*D are noteworthy. 

Mortality ratios for the model B*D + A + C with parametric representation 

exp (µ + ßj + jl + (ß )jl) exp ( i) exp ( k) 

may be computed from the entries in Table 6.5 in which the blood pressure 
categories (j) are presented in the format outlined at the commencement of this 
section. Clarke (1978) quotes mortality ratios 

DAP 
below average above 

below 1·43 
S 
A average 1·26 1·60 2·03 
P 

above 2·06 2·36 2·93 

Table 6.3. Excess mortality, multiplicative main effects 

i 

exp i 

j 
exp ßj 

k 

exp k 

l 

exp l 

model. Hypertensives 1947–81 

exp µ= 1·32 

1 2 3 4 
1 1·14 ·75 67 

1 2 3 4 5 6 7 
1 1·28 1·18 1·50 1·14 1·91 ·93 

1 2 3 4 5 6 7 
1 1·03 1·07 1·14 1·31 1·14 1·06 

1 2 3 4 5 6 
1 1·06 1·26 1·28 1·14 1·20 

Table 6.4. Testing for 1st order interactions. 
Hypertensives 1947–81. (Tail areas = ob- 

served significance levels) 

Model dev. d.f. differences Tail 
A+B+C+D 920·7 852 dev. d.f. area 

A * B+C+D 899·5 834 21·2 18 27% 
A* C+B+D 901·0 834 19·7 18 35% 
A*D+B+C 900·2 837 20·5 15 14% 
B*C+A+D 892·7 816 28·0 36 81% 
B*D+A+C 878·8 822 41·9 30 7% 
C*D+A+B 912·1 832 8·6 20 99% 
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for the calendar period 1964-73 with entry age 40–59 years and a duration of 2 or 
more years. While exact comparisons are not possible here, the new correspond- 
ing mortality ratios derived from Table 6.5 compare well. 

Rather than reproduce detailed tables for the other noteworthy interactive 
model A * D + B + C, the mortality ratios for the related model A * D are 
presented graphically in Figure 6.1 which highlights the main source of the 
interaction. 

Table 6.5. Excess mortality factors, main 
effects plus major interaction term. Hyperten- 

sive 1947-81 

exp (µ + β j + β jl + (βδ) jl) 
(j1) (j2) (j3) 

— 1·13 — 1·34 — 1·39 
1·15 1·65 ·90 1·51 1·46 1·70 1·74 1·98 2·19 
2·67 2·06 2·97 1·07 2·58 2·75 2·12 2·39 3·04 

(j4) (j5) (j6) 
— 1·79 — 1·55 — 1·20 
1·52 1·98 2·09 1·48 1·86 1·30 1·72 2·09 0·80 
2·69 2·43 3·45 1·92 2·01 1·75 1·75 1·37 4·91 

i 1 2 3 4 

exp α i 1 1·15 ·75 ·67 

k 1 2 3 4 5 6 7 

exp γ k 1 1·04 1·07 1·14 1·30 1·14 1·02 

Clearly more detailed models still involving complex interaction terms are 
open to scrutiny by this method subject to the upper limit on the number of 
model parameters within the GLIM environment and provided the data are 
sufficiently numerous to render the exercise meaningful. 

7. CONCLUSIONS 

I would suggest that the GLIM approach outlined here could pave the way for 
a completely new. scientifically- sound approach to life insurance underwriting. It 
offers a more dynamic means of model building that has hitherto been attempted 
in this field in which the relationship between individual factors and their 
interactions on excess mortality may be assessed. I would highlight the meagre 
assumptions on which the models are based, the comparative ease with which 
they can be fitted and compared using modern statistical packages, and the 
appealing connexion which these models have with the traditional actuarial 
standard mortality ratios. I envisage further work on these lines for other 
impairments, and am investigating further the influence of the specific base-line 
hazard function used in the analysis and its construction. 
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Figure 6.1. Mortality ratios vs. duration, by age at entry. Hypertensives 1947-81 
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TECHNICAL APPENDIX 

Let the survival time for members of a target population be a non-negative 
continuous random variable T with density f, hazard λ, survival function and 
integrated hazard so that 

(A.1) 

Recall that the entry and exit times to and from study are denoted by τ and t 
respectively, while δ denotes the mode of exit. 

A study batch of N individuals (i) partitioned according to the mode of exit 
into a set, of observed fatalities (δ i = 1) and a complementary set, of 
non-fatalities and therefore censored individuals (δ i = 0) gives rise to the 
following likelihood function 

(see e.g. Elandt-Johnson and Johnson (Chapter 13)). The vector of covariates, z, 
is needed to provide additional insight into the nature of T by catering for any 
real or suspected heterogeneity in the target population. Each observed fatality 
(δ = 1) contributes an amount 

on using (A.1), with each censored datum (δ = 0) contributing an amount 
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Again making use of identities (A.1), the log likelihood becomes 

(A.2) 

which is true under very general conditions. 
Trivially, the effect of introducing Cox’s multiplicative hazard function 

into (A.2) is to give the following result 

(A.3) 

where we identify specifically the dependence of log L on the unknown regression 
parameters, β Partitioning individuals i into cohorts j by writing i = (j, k) implies 
that (A.3) can be written as 

(A.4) 

where 

the number of observed fatalities in the jth cohort, and 

the accumulated integrated base-line hazard; the vector of covariates zi = zjk = zj 
being constant within cohorts. We remark that the first term 

in (A.4), being independent of the unknown regression parameters β is conjured 
out of the constant of proportionality in order to match the argument of the 
exponential terms in (A.4). Writing this argument as 

so that 

(A.5) 
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expression (A.4) reduces to 

the kernel of the log likelihood function of independent Poisson variables 
dj ~ IPoi (µ j) where µ j, is given by (A.5). 
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