MODELLING MULTI-POPULATION MORTALITY WITH COHORT EFFECTS

Andrew Cairns

Heriot-Watt University, Scotland

and

The Maxwell Institute, Edinburgh

Joint work with

David Blake, Kevin Dowd, Guy Couglan and Marwa Khalaf-Allah

Plan

- Aims
- Period & cohort effects: stylised facts
- 2-population APC model plus MCMC
- Case studies
 - England and Wales versus CMI assured lives
 - Males
 - Females

Aims

- Principles underpinning 2-populations modelling
- Method for dealing with
 - small sub-populations
 - missing data
- short- and medium-term assessment of basis risk
 - ⇒ e.g. compare bespoke longevity swap versus
 - index-based hedge

Motivation for two-population modelling

A: Risk assessment

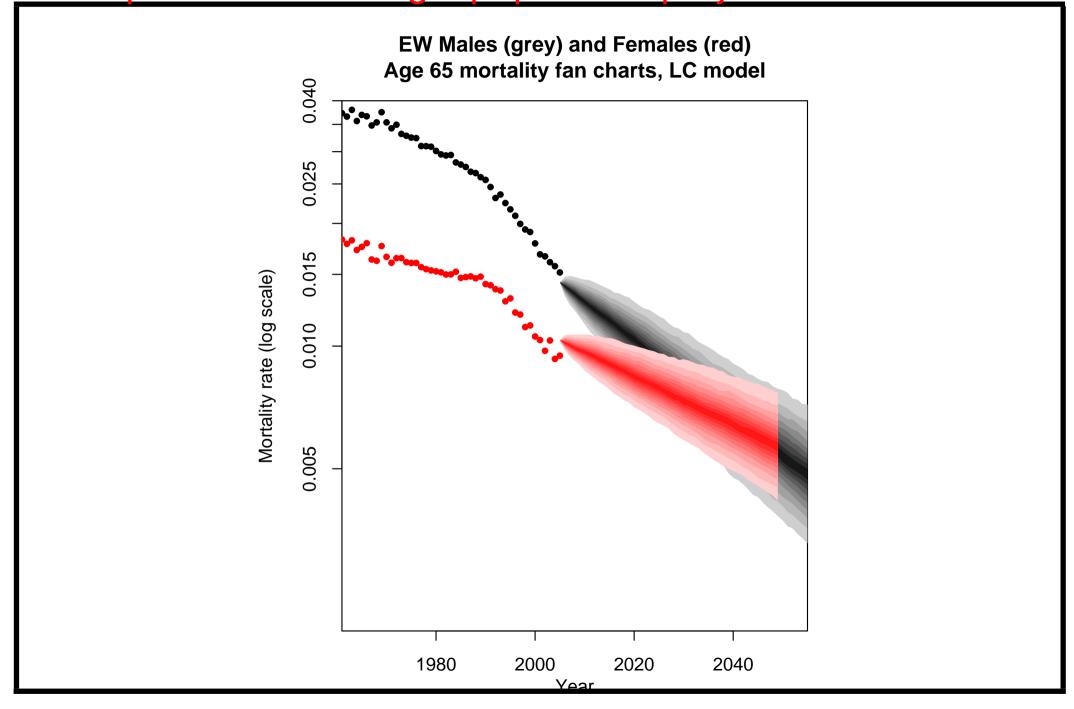
- Males/Females (e.g. consistent demographic projections)
- Blue/White collar (socio-economic)
- Smokers/Non-smokers
- UK/Europe (e.g. consistent demographic projections)
- Annuities/Life insurance
- Limited data ⇒ learn from other populations

Motivation for two-population modelling

B: Risk management for pension plans and insurers

- Retain systematic mortality risk; versus:
- 'Over-the-counter' deals (e.g. longevity swap)
 - own experience ⇒ 100% risk reduction
 - expensive
- Standardised mortality-linked securities
 - linked to national mortality index
 - < 100% risk reduction
 - less expensive

The problem with single population projections



Two populations

- Linked in some way
- But not identical
- Desire for consistent forecasts
 - distributions
 - individual future scenarios

Measures of mortality

Crude death rate

$$m(t,x) = \frac{\text{\# deaths in } [t,t+1) \text{ age } x \text{ last birthday}}{\text{avg. population in } [t,t+1) \text{ age } x \text{ last birthday}}$$

Age-Period-Cohort model (APC)

$$\log m(t,x) = \beta_x^{(1)} + \kappa_t^{(2)} + \gamma_{t-x}^{(3)}$$

- N=3 components
- Origins in medical statistics
- $\beta_x^{(1)}$ age effect
- ullet $\kappa_t^{(2)}$ single random period effect
- $\gamma_{t-x}^{(3)}$ single random cohort effect

Key hypothesis

- $m_1(t,x) = \text{pop. 1}$ death rate in year t at age x
- $m_2(t,x) = \text{pop.}$ 2 death rate in year t at age x
- Hypothesis (e.g. Li and Lee, 2005):

For each age x, $\frac{m_1(t,x)}{m_2(t,x)}$ does not diverge over time

Age-Period-Cohort model (APC)

 $m_k(t,x) =$ population k death rate

 $n_a =$ number of age groups

$$\log m_{\mathbf{k}}(t,x) = \beta^{(1\mathbf{k})}(x) + n_a^{-1} \kappa^{(2\mathbf{k})}(t) + n_a^{-1} \gamma^{(3\mathbf{k})}(t-x)$$

Hypothesis \Rightarrow

- $\bullet \ \kappa^{(21)}(t) \kappa^{(22)}(t)$ mean reverting
- \bullet $\gamma^{(31)}(t-x)-\gamma^{(32)}(t-x)$ mean reverting

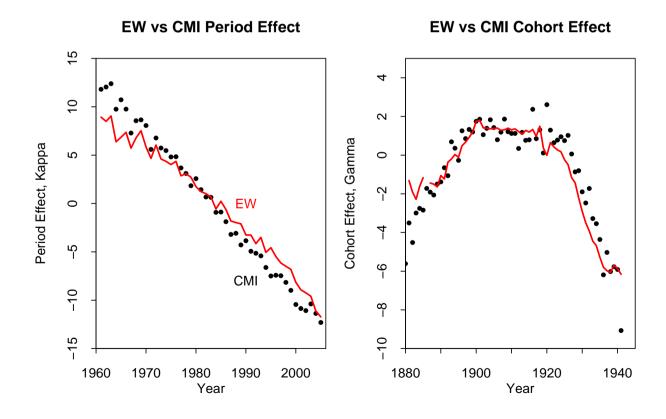
EW versus CMI (assured lives) males



Source: Output from LifeMetrics software

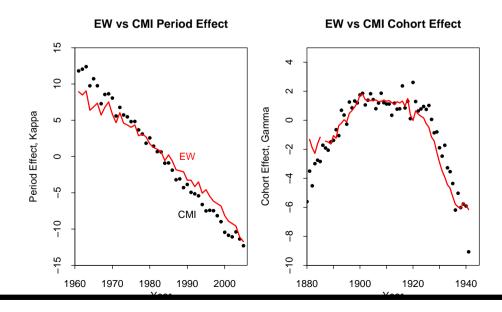
Stylised facts: period effects

- \bullet Annual innovations in $\kappa^{(21)}(t)$ and $\kappa^{(22)}(t)$: moderate correlation
- Limited data ⇒ proving mean reversion difficult



Stylised facts: cohort effects

- \bullet Annual innovations in $\gamma^{(31)}(c)$ and $\gamma^{(32)}(c)$ NOT highly correlated
- \bullet Longer-term shapes of $\gamma^{(31)}(c)$ and $\gamma^{(32)}(c)$ very similar
- ullet Small population 2 $\Rightarrow \gamma^{(32)}(c)$ noisy



Stylised facts: inferences

 \bullet "True" $\kappa^{(21)}(t)$ and $\kappa^{(22)}(t)$ incorporate significant correlated randomness

Stylised facts: inferences

- \bullet "True" $\gamma^{(31)}(c)$ and $\gamma^{(32)}(c)$:
 - Relatively smooth in the short term
 - * Accumulation over lifetime of environmental factors
 - * cohort-related lifestyle e.g. smoking
 - Stochastic trends
 - (+ hypothesis) Mean reverting spread
- ullet Estimated $\gamma^{(3k)}(c)$ affected by Poisson noise

A 2-population model (one large, one small)

- $\beta^{(11)}(x)$, $\beta^{(12)}(x)$: no model
- Large population 1
 - $-\kappa^{(21)}(t)$: random walk with drift
 - $-\gamma^{(31)}(c)$: AR(2) around linear drift (\rightarrow ARIMA(1,1,0))
- Spreads:
 - $-S_2(t) = \kappa^{(21)}(t) \kappa^{(22)}(t)$: AR(1)
 - $-S_3(c) = \gamma^{(31)}(c) \gamma^{(32)}(c)$: AR(2)

Small population

- Learn from large population dynamics
- Similar levels of variability
- Similar long-term trends

Bayesian Priors

Mostly weak uninformative priors

Enhanced priors for the cohort effect

Biological reasonableness $\Rightarrow \gamma^{(31)}(c)$ and $\gamma^{(32)}(c)$ have

- similar short term volatility
- similar long term variability

Markov chain Monte Carlo

- ullet θ = parameter vector
 - process parameters
 - latent processes

$$\beta^{(11)}(x), \beta^{(12)}(x), \kappa^{(21)}(t), \gamma^{(31)}(c), S_2(t), S_3(c)$$

- Metropolis-Hastings algorithm
- ullet update elements or blocks of heta
 - \Rightarrow Markov chain $\theta(u)$ with stationary dist'n =

posterior

Case Study: EW versus CMI males

• Data: 1961-2005

• Ages: 60-89

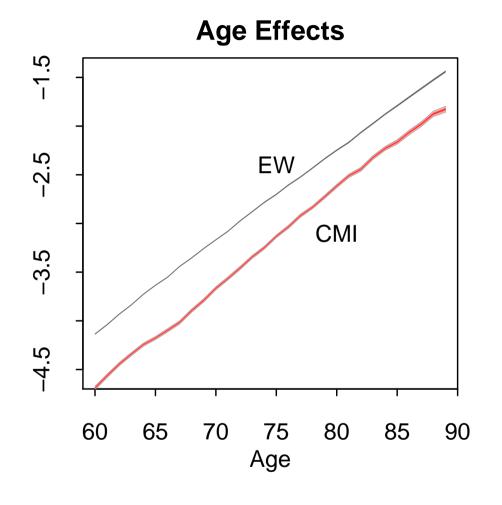
 \bullet CMI exposures $\sim 10\%$ of EW

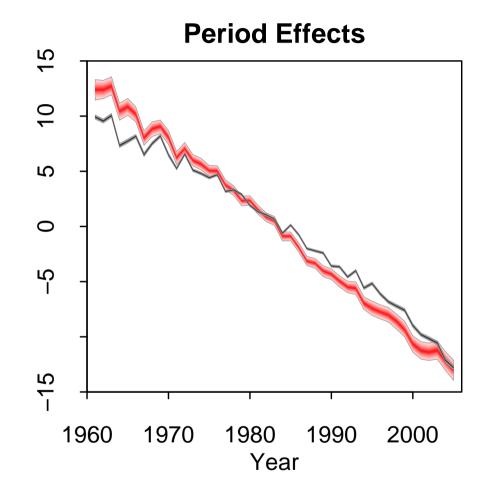
• EW missing data:

- 1886 cohort

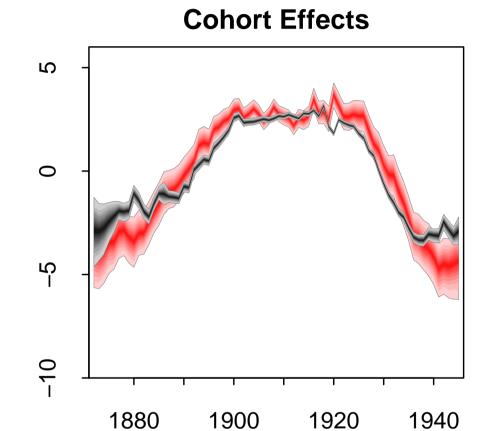
- 1961-1970, ages 85-89

EW (grey) and CMI (red) Age and Period Effects

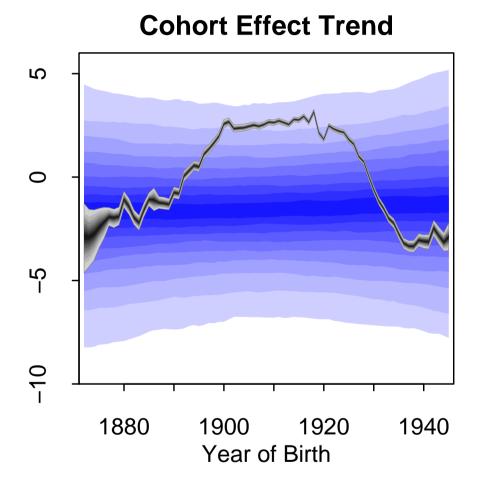




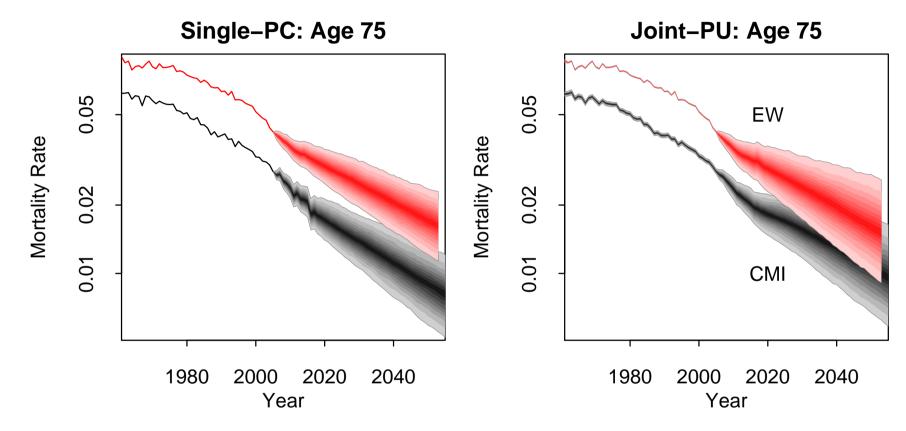
EW (grey) and CMI (red) Cohort Effects



Year of Birth

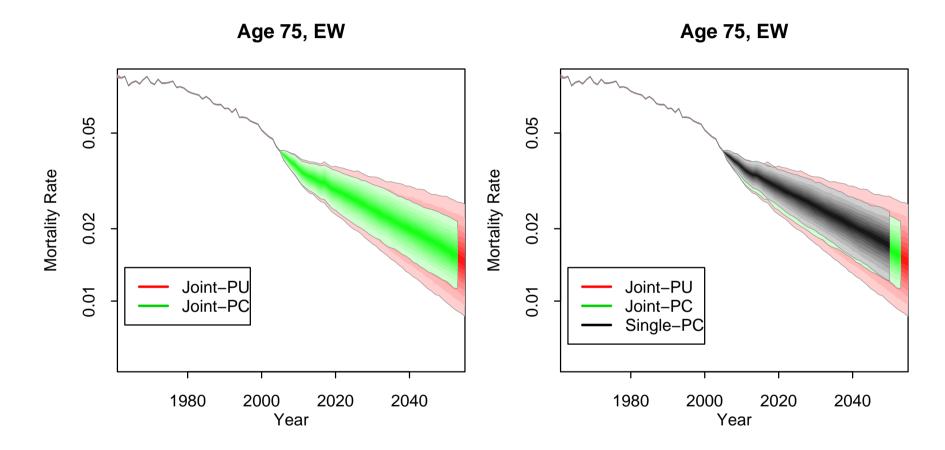


1-population forecasts versus 2-pop MCMC



- Joint-PU: uses the 2-population model with parameter uncertainty
- Single-PC: uses the 1-population model with no parameter uncertainty

1-population forecasts versus 2-pop MCMC

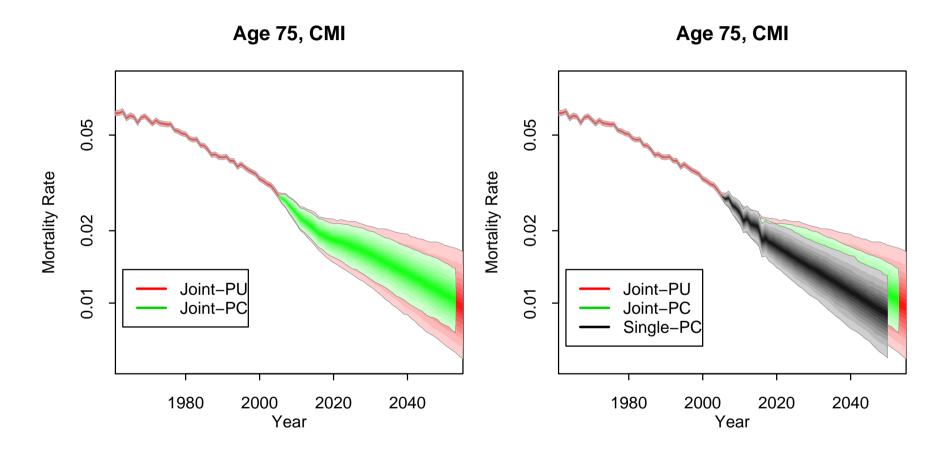


Single: uses the 1-population model

• Joint: uses the 2-population model

• PC: parameters certain PU: parameters uncertain

1-population forecasts versus 2-pop MCMC



Joint: uses the 2-population model

PU: parameters uncertain

Single: uses the 1-population model

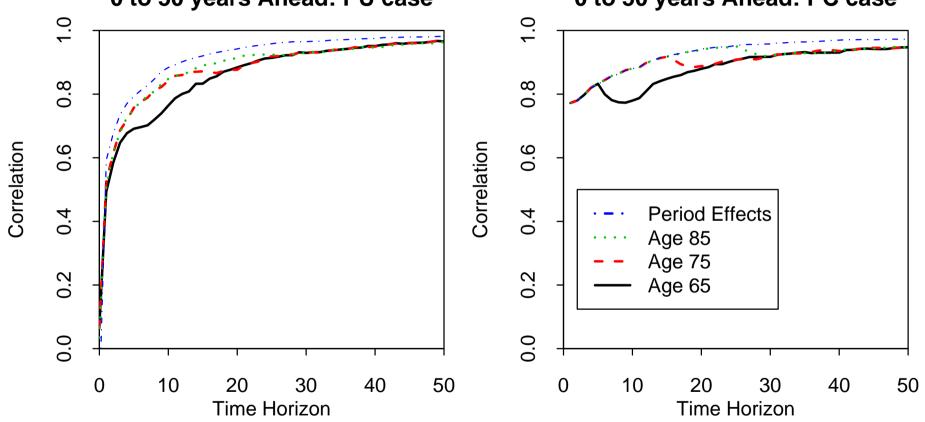
• PC: parameters certain

Improvement Factors

Population k, t years ahead from 2005

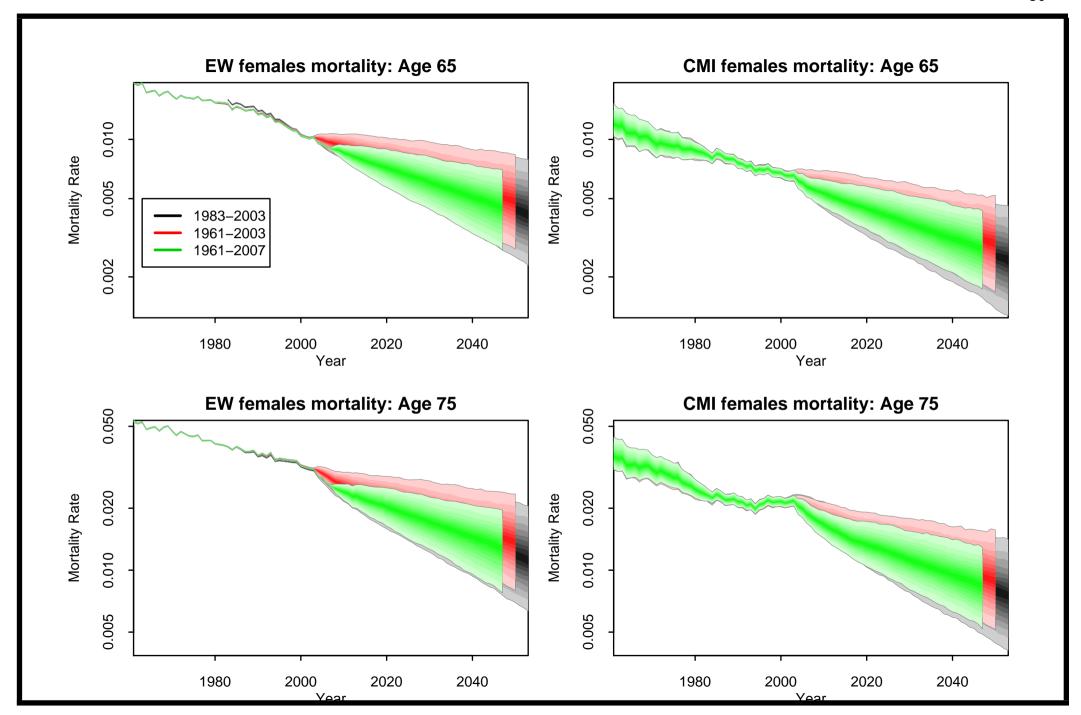
$$IF_k(t,x) = \frac{m_k(2005 + t,x)}{m_k(2005,x)}$$

Correlation between $IF_1(t,x)$ and $IF_2(t,x)$



Missing data: extra calendar years

- CMI females: data 1983-2003 (much lower exposures than males)
- EW females:
 - **-** 1983-2003
 - -1961-2003
 - **-** 1961-2007



FW females mortality: Age 85

CMI females mortality: Age 85

Missing data: extra calendar years

- Adding 1961-1982 EW data:
 - Small shift in both EW and CMI trend
 - Small changes in forecast uncertainty

- Adding 2004-2007 EW data:
 - EW now fans out from 2007 instead of 2003
 - EW generally narrower after 2007
 - CMI still fans out from 2003 (but less quickly)
 - CMI generally a bit narrower
 - EW and CMI small parallel shift in trajectory

Conclusions

- Synthesis of
 - Consistent 2-population projections
 - Bayesian approach
 - Ability to deal with small populations
 - Ability to deal with missing data
 - Full parameter uncertainty
- Full APC model to assess basis risk

Reference:

Bayesian Stochastic Mortality Modelling for Two Populations LifeMetrics Working Paper, available shortly!

E-mail: A.Cairns@ma.hw.ac.uk