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ABSTRACT 

In this paper we present an approach to the graduation of select mortality data and we illustrate this 
approach by graduating the CMIB’s data for Female Permanent Assurances 1979-1982. The 
difference between our approach and that of the CMIB is that we graduate simultaneously by 
attained age and duration since selection. 
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1. INTRODUCTION 

The Continuous Mortality Investigation Bureau (CMIB) published in CMIR 
9 (1988) graduations of many sets of data relating to the years 1979-1982. The 
purpose of this paper is to present a different approach to the graduation of select 
mortality data, illustrating the method by graduating just one of the CMIB’s sets 
of data, Permanent Assurances, Females. Our approach to the graduation of 
select mortality data is to graduate simultaneously by (attained) age and duration 
since selection, rather than to graduate by age separately for each duration. There 
are two reasons why we consider this exercise to be interesting and useful: 

(a) it makes more efficient use of the available data than the traditional method 
of graduation, since it allows us to infer information about ages and 
durations where we have little data, from other ages and durations where we 
have more data, and 

(b) by modelling the effect of duration since selection, we ought to gain more 
insight into the nature of selection. 

It should be stressed that it was not our purpose to produce a ‘law’ of (select) 
mortality in the spirit of, say, Gompertz’ law of mortality, or of Tenenbein & 
Vanderhoof (1980). It has been our purpose merely to smooth the data, though 
by fitting a (two-dimensional) surface rather than a series of (one-dimensional) 
curves. Some recent work by Panjer & Russo (1990) has a similar objective to 
ours, though their data and their approach arc somewhat different to ours. The 
comments by Lyons (1990) on the work of the CMIB endorse the view that our 
objective is a reasonable, and perhaps even an obvious, one. 

In Section 2 we give a description of the data available to us, and in Section 3 
We give a brief summary of the CMIB’s graduations of these data. Our own 
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method of graduation is described in Section 4 and the results arc given in Section 
5. (The graduation in Section 5 is the last of a long list of graduations which were 
tried and (apart from the final one) rejected. This process took a not 
inconsiderable amount of time, during which our already high regard for the 
work of the CMIB increased considerably!) The graduation in Section 5 required 
some ‘hand smoothing’ to make it acceptable when extrapolated beyond the 
ranges of the data, and these adjustments are described in Section 6. In Section 7 
we make some comments about the effect on the force of mortality of duration 
since selection and in Section 8 we make some comparisons between our 
graduation and those of the CMIB. We make a few concluding remarks in 
Section 9. 

We are grateful to the CMIB for making data available to us, and also to 
individual members of the CMIB, in particular our colleagues John McCutcheon 
and David Wilkie, for help and advice throughout the course of this project. The 
research for the paper was partly supported by The Royal Society and The 
Carnegie Trust for the Universities of Scotland and the first author gratefully 
acknowledges this financial support which allowed a preliminary version of the 
paper to be presented to the 24th ARCH Conference in 1989; the paper greatly 
benefited from some comments made by Gary Venter at the conference. We arc 
grateful to an anonymous referee for some helpful comments on an earlier draft 
of this paper. 

2. THE DATA 

The data used for our graduation are the CMIB’s data for Permanent 
Assurances, Females, in the years 1979-1982. These include lives who have not 
been medically examined as well as those who have, but only include lives 
accepted at normal premium rates. 

The data supplied to us by the CMIB consisted of values of: 

θ (d,x) 

E(d,x) 

θ (5+,x) 

E(5+,x) 

m1 and m2 

for x=10, 11, . . . , 108 and d = 0, l, . . . , 4, where θ (d,x)is the 
number of deaths at (attained) age x nearest birthday and curtate 
duration d, 
the central exposure corresponding to θ (d,x), 

for x = 10, 11, . . . , 108, 

for x = 10, 11, . . . , 108, 

first and second moments about zero, respectively, of the number of 
policies per individual life for each age x, x = 20, 21, . . . , 110, 
separately for durations 0, 1, 2, 3, 4, 5+ . 
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Note that for each attained age x, the variance ratio, denoted rx, is calculated as: 

rx = m2/m1. 

The role of the variance ratio is explained fully by Forfar, McCutcheon & Wilkie 
(1988). After examining the data on duplicate policies, which are the results of an 
investigation based on deaths rather than on policies, we came to the conclusion 
that there was little evidence of duplicate policies for single durations, though 
there was evidence of duplicate policies in the duration 5+ data. See the 
comment in the final paragraph of Section 6.1 of CMIR 9 (1988). 

Some statistics relating to these data are given in CMIR 9 (1988, Section 6.1) 
from which it is clear that for durations less than 5 years there are relatively few 
data, in terms of the number of deaths, outside the age range 45-60 (see comment 
(a) in our Section 1). Table 1 shows the deaths and exposures for each duration 
summed, for convenience, into 5-year age groups from 20 to 90. Table 2 shows, 
for selected ages, the average number of policies for an individual life, m1, and the 
variance ratio, rx, for the duration 5 + data. A noticeable feature of Table 2 is the 
very high value of r85. (This was in fact the highest value of rx in the data.) We 
used the values of rx, in particular the value of r85, without making any attempt at 
smoothing, for two reasons. First, the rx values were estimated by the CMIB 
using a very large sample, and second, the rx values do not affect the point 
estimates of the force of mortality, but only the weights to be attached to these 
estimates. 

It was inconvenient for our purposes to have, for each age x, the data for 
durations 5 and above summed into single values for θ (5+,x) and E(5,x). We 
would have preferred to have values of θ (d,x) and E(d,x) for d= 5,6, . . . , but 
these were not available to us, and we were unable to estimate them. What we 
were able to estimate was a function D(X), which represents for attained age x the 
average duration of policy for those policies whose duration exceeds 5 years. The 
details of our method for estimating D(x) are given in the Appendix and values of 
D(x) are shown in Figure 1. The estimation of D(x) involves a number of 
assumptions and approximations, but the results, as shown in Figure 1, are not, 
in our opinion, unreasonable. For example, apart from a marked drop just after 
age 60, the average duration increases with age; at age 50 the average duration 
(for policies which have been in force at least 5 years) is about 10 years. The drop 
in the average duration between ages 59 and 63 could be caused by a large 
number of females effecting, at a young age, policies which mature at or around 
their 60th birthday. 

3. THE CMIB’S GRADUATIONS 

The CMIB’s general approach to the graduation of select mortality data is to 
graduate separately each of the curtate durations since selection 0, 1, 2, 3, 4 and 
5+ years, with the possibility that some of the durations could be combined to 
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Age 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 
85-90 
Total 

Age 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 
85-90 
Total 

Table 1. The data summed into 5-year age groups 
Curtate Duration 

0 1 2 
Exposures Deaths Exposures Deaths Exposures Deaths 

120276 18 105301 30 82547 17 
116589 29 109487 28 96635 31 
120652 28 114904 34 102733 31 
96696 39 93893 56 86006 45 
73863 37 71023 53 65275 46 
59871 49 57706 75 53902 19 
43419 88 44167 99 42961 102 
21001 47 22126 90 23070 108 
9640 27 8938 46 8764 57 
4190 20 3877 39 3583 34 
1812 22 1495 27 1269 11 
480 1 558 13 499 5 
71 1 84 1 91 1 
6 0 9 0 11 1 

668563 406 633565 591 567345 568 

Exposures 
64394 
84640 
89745 
76613 
58937 
48857 
40297 
23258 

3 
Deaths 

13 
28 
28 
33 
50 
73 
95 
93 

Exposures 
44759 
71921 
76367 
65334 
50937 
42825 
35948 
22653 

4 5+ 
Deaths Exposures Deaths 

10 54323 16 
24 187983 68 
25 295413 128 
39 290985 189 
41 240867 266 
73 228286 404 
92 223775 756 

103 194852 951 
8860 59 9137 41 93376 653 
3334 38 3057 25 27005 271 
1150 6 1166 19 12111 258 
448 6 390 10 6135 205 
90 1 96 4 32.50 226 
15 0 15 1 1718 210 

500636 523 424602 513 1860077 4607 

give a graduation of, say, the data for durations 2+ years (-2, 3, 4 and 5+ 
years). 

The methodology used by the CMIB to graduate the 1979-1982 data sets is 
explained very fully in Forfar, McCutcheon & Wilkie (1988) and the results of the 
graduations are given in CMIR 9 (1988). Briefly, the method used was to 
graduate the force of mortality by mathematical formula, with the parameters 
fitted by maximum likelihood. The mathematical formula was chosen from two 
families of functions of which, for the Permanent Assurances, Females, 
graduations, the most generally accepted type of function for µx was of the form: 
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Table 2. Estimates of the average number 
of policies per life and of the variance 

inflation factor in duration 5+ data 
Average number, m1, Variance inflation 

Age of policies per life factor rx 
20 1 ·000 1·00 

457 

25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 

1·118 
1·083 
1·139 
1·032 
1·088 
1·085 
1·092 
1·094 
1·074 
1·057 
1·045 

1·21 
1·15 
1·39 
1·06 
1·16 
1·16 
1·21 
1·23 
1·14 
1·16 
1·09 

80 1·087 1·16 
85 1 ·333 3·25 
90 1·000 1·00 

Figure 1. The function D(x). 
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where x denotes attained age and a0, a1, b0 and b1 are parameters to be fitted, i.e. a 
GM(2,2) function in the notation of Forfar, McCutcheon & Wilkie (1988). 
This function has 4 parameters so that graduations of all 6 durations involve a 
total of 24 parameters, although a graduation of just the 0, 1 and 2+ durations 
would involve only 12 parameters. 

One problem with graduating the durations separately is that apparent 
anomalies can occur. Examples can be found in Table 6.2 of CMIR 9 (1988) 
where we see that the values of qx for ages 20, 30 and 70 and over arc higher for 
the duration 1 graduation than for the durations 2-4 graduation, in both cases 
taking the GM(2,2) graduation. It should be noted that there are very little data 
for these combinations of age and duration (see CMIR 9 (1988, Section 6.1) and 
comment (a) in our Section 1). 

Following discussions at the Faculty of Actuaries and the Institute of 
Actuaries, the CMIB has produced a final graduation of the Permanent 
Assurances, Females, 1979-1982 select mortality data. Their final graduation, to 
be known as the AF80 table, has a 2-year select period and is based on the 
GM(2,2) graduations of the durations 0, 1 and 2+ data given in CMIR 9 (1988), 
with some ‘hand smoothing’ at high and low ages. The AF80 table was published 
in CMIR 10 (1 990) and we are grateful to the CMIB for permission to see and use 
their results before their publication. 

4. THE STATISTICAL MODELS 

The key element in our attempt to graduate select mortality data simulta- 
neously for age and duration is our treatment of the 5+ data. As mentioned 
briefly in Section 2 we estimated, for each attained age x, the average duration of 
policy for those policies whose duration exceeded 5 years. We now assume that 
we can consider all the deaths and all the exposure for attained age x and 
durations in excess of 5 years to be concentrated at this average duration, D(x). It 
is helpful to think of a point estimate of mortality occurring at age nearest 
birthday x and exact duration D(x) and equal to θ (5+,x)/E((5+,x). Our method 
smooths these ‘new data points’ along with the original data for durations 0, 1, 2, 
3 and 4. 

We shall denote by µx,d the force of mortality at exact attained age x and exact 
duration since selection d, both measured in years. We wanted our model for µx,d: 

(i) to be monotonic increasing in age for fixed duration, except possibly at the 
younger ages; 

(ii) to be monotonic increasing in duration for fixed age, the duration effect 
tending to a finite limit as 

(iii) to have a simple interaction term (if required); and 
(iv) to allow the log link in a generalised linear model. 
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We considered models of the following form: 

(4.1) 
where the functions f*1, f*2 and f*3 satisfied the following conditions: 

(a) The age term, exp {f*1(x)}, was of the form GM (0, s), i.e.f*1 (x)=p(x) where 
p(x) is a polynomial of degree (s- 1) in x. For technical reasons, the effect of 
age was actually fitted using a transformed value z of x, where: 

This is the same transformation of age as used by the CMIB. 
(b) The duration term was of the form exp{f*2(d)}, where f:(d)= q(d) was a 

polynomial of degree t in 1 /(d+ k) and k was further parameter introduced to 
improve the behaviour of f*2(d) for small d. 

(c) The interaction term, f*3(x,d), was of a simple form. 

The function (4.1) is used to describe the underlying systematic relationship 
between the force of mortality, µx,d, and age, x, and duration, d. We will make 
some comments on this choice of function when we have described the random 
component of our model for the observed number of deaths. The observed 
variation about µx,d, is accounted for by an extension of a Poisson model which we 
describe next. 

Let θ denote the number of deaths between exact ages x and (x+ l), and at 
curtate duration d, and let E denote the corresponding central exposed to risk. 
Then, ignoring for the moment the problem of duplicates, we assume that the 
force of mortality is constant over the rectangle [x,x+ 1) x [d,d+ 1) and equal to 
µ, say. We can suppose that θ has a Poisson distribution with mean Eµ and write 
θ ~P(Eµ). We can summarise our approach in the following way: 

θ ~P(Eµ), where µ (=µx + ½,d +½) is given by (4.1) (4.2) 

It is worth noting that the approach of the CMIB can be thought of as fitting 
separate functions µ = µx of the form GM (r,s) for each duration for some values, 
possibly different for each duration, of r and s. 

We suppose for the moment that k in (b) above is known. Then, still ignoring 
the problem of duplicates, the model defined in (4.1) and (4.2) belongs to the class 
of models known as generalised linear models (see Nelder & Wedderburn (1972) 
and McCullagh & Nelder (1989); see also Currie (1990) and Renshaw (1991)). 
These models are extremely simple to fit using packages such as GLIM and 
GENSTAT; indeed, the computations for this project were all conducted using 
GENSTAT 5 (Genstat 5 Committee (1987)). The non-linear parameter k was 
estimated using a simple grid search over a range of values of k. 

We now turn to the problem of duplicates. The CMIB offered two solutions to 
this problem. The first solution was to use the normal approximation to the 
Poisson distribution for the number of deaths; this approach may run into 
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difficulties when the number of deaths is small and the normal approximation is 
poor. The second solution was to use minimum x2; this approach allows the 
estimation of the parameters but not of their standard errors. We took a third 
option and used the method ofquasi-likelihood (McCullagh & Nelder, Chapter 9 
(1989)). We know that without duplicates inference for the model in (4.1) and 
(4.2) can be expressed in terms of a Poisson log-likelihood; in the presence of 
duplicates we know both the mean and variance of the number of deaths. The 
method of quasi-likelihood allows us to combine both of these pieces of 
information in a single unified model for all durations. 

In the simple Poisson case, if Y-P(A) then f(y) = . The log-likelihood 
is: 

This Poisson log-likelihood can be extended to a quasi-likelihood by taking: 

where w is a weight function to be chosen. Clearly, if w= 1 WC have the usual 
Poisson likelihood, while if w ≠ 1 we have a variable with mean λ. and variance 
λ /w. The appropriate weight function is w= 1/r, where r is the variance inflation 
factor for the age in question. Let θ, E and r be the number of claims, the central 
exposure and the variance inflation factor respectively, then the contribution to 
the log-likelihood at this age and duration is: 

(4.3) 

This gives = θ /E with estimated variance q r θ /E2. Asymptotically, this is the same 
solution as that obtained using a normal approximation or a minimum x2 
approach, while if w = 1 the exact log-likelihood is used. From the computational 
point of view this approach has one major advantage: the resulting model is still a 
generalised linear model and can be fitted in a straightforward way. 

5. THE FITTED MODEL 

In this section we report on the results of fitting the models, with systematic 
part given by (4.1) and random part given by the quasi-likelihood of (4.3). The 
models were fitted using data with ages 20 through 90 and curtate durations 0, 1, 
2, 3, 4, 5+; duration 5+ used estimated mean durations for each age. We 
omitted the data for ages less than 20 years and greater than 90 years; in the case 
of ages less than 20 years there were too little data while the data for high ages 
were felt to be too unreliable. 

The generalised linear model form of (4.1) and (4.3) made experimenting with 
the model straightforward. For example, the model allowed us to include an 
interaction between age and duration. We were aware that a weakness of our 
method of allocating all the data for duration 5+ to a single (estimated) duration 
may have made it less likely that an interaction would be found. There were three 
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methods used to investigate the presence of an interaction between age and 
duration: 

(a) informal methods based on grouping of data by age within duration and 
plotting the resulting raw death rates, 

(b) inclusion of simple interaction terms via f*3 (x,d) in the model defined by (4.1) 
and (4.3), and 

(c) fitting separate GM(0,s) models for each duration, and comparing the results 
with the model with the same age effect for all durations (see (5.2)). 

The informal methods in (a) suggested that any interaction was weak, although it 
is possible that the evidence was diluted by the grouping. In the investigation of 
(b) we tried the following forms for f*3(x,d): 

(5.1) 

for suitably chosen k. None of these functions gave a significant improvement on 
the overall fit nor made any obvious improvement to the residual plots. We 
concluded that any interaction was not of the simple mixed polynomial type of 
(5.1). It is not easy to see what other continuous form for the interaction could be 
considered. The results for(c), which are discussed later in the section, confirmed 
the conclusion that any interaction was not of the simple form (5.1). The 
conclusion that we came to was that we could drop the interaction term f*3(x,d), 
and, more importantly, that a model without interaction could be found that 
gave an acceptable fit. 

We were left with a multiplicative model for µx,d that consisted of two factors: 
one factor, f*1(x), accounted for the dependence of µx,d on x, and the other factor, 
F*2(d), accounted for the dependence of µx,d on d An important property of this 
model is that the ratio of the forces ofmortality at any age x does not depend on 
x, i.e. 

is free of x. 

Before reporting our results in detail we comment briefly on the choice of the 
form of the function f*2(d). Recall that we wanted a function that was monotonic 
increasing in d and tended to a finite limit as d → ∞. One possibility was to use a 
polynomial in l/d. We did try this approach, and while the model gave 
satisfactory results for large values of d it was very unstable for small d We found 
that using a polynomial in 1/(d+ k), where k was a further parameter, stabilised 
the fit. 

Our final fitted model used polynomials of degree 6 in x and degree 3 in 
l/(d+1·28). The fitted parameter values, together with standard errors and 
r-values are given in Table 3. The fitted model gives a deviance (-2 x log- 
likelihood ratio) of 465·2 with 406 degrees of freedom, and thus a mean deviance 
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Table 3. Estimated coeffcients, 
standard errors and t-dues 

Standard 
Coefficient error t-value 

a0 -3·7990 0·09 -40·1 
a1 4·6043 0·19 24·6 
a2 5·1782 1·10 4·7 
a3 9·7293 2·17 4·5 
a4 -22·8717 6·61 - 3·5 
a5 - 58,652 I 13·30 - 4·4 
a6 - 30·6477 7·28 - 4·2 
b0 - 6·7280 1·47 - 4·6 
b1 21·9475 5·81 3·8 
b2 - 23·9322 6·32 - 3·8 
k 1·28 1·5 0·8 

Figure 2. Residual plot for duration 0. 
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Figure 3. Residual plot for duration I. 

of 1·15. At first sight this figure may seem rather high (if the model is exactly true 
the mean deviance should be about 1). One possible explanation is that the 
estimates of the variance ratios are generally too low; this would certainly have 
the effect of inflating the residual variance. Another explanation is that the data 
are collected from a large number of different companies with different mixes of 
business and policyholders; the resulting heterogeneity in the data could also 
result in inflating the variance. 

The deviance is a measure ofover-all fit. A more detailed examination of the fit 
of the model can be made using the residuals, and Figures 2- 7 give the residual 
plots for each duration separately. Examination of these plots does not reveal 
any obvious departure from the model; it is more that the residuals are generally 
rather large. However, one apparently unsatisfactory feature of the residual plots 
does stand out. For durations 0, 1,2, 3 and 4 there is an obvious pattern to the 
residuals at high ages. Nearly all the residuals are negative and show a definite 
rising pattern. Examination of the original data reveals that these negative 
residuals result from very low exposures at these ages which give rise to zero 
deaths; the fitted number of deaths is, of course, positive. 

Table 4 gives the deviances (asymptotically equivalent to the x2 values quoted 
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Figure 4. Residual plot for duration 2 

by the CMIB) for four different models and allows a general comparison between 
models to be made. Model 1 is a GM(2,2) model fitted separately for each 
duration. Thus 24 parameters are used in total. The overall fit is rather poor, 
mainly because the model fails to fit the duration 5 + data at all well. (The CMIB 
gives a x2 value for the GM(1, 5) model of 76·2.) Our joint model, Model 3, for 
age and duration defined by (4·1), (4·3) with coefficients in Table 3, gives very 
similar deviances to Model 1 with the exception of duration 5+. The total 
number of parameters fitted is 11. We were reassured that our joint model was 
doing as well as, if not better than, the CMIB’s ‘best-buy’ model. 

Our Model 3 can be regarded as a GM(0,7) model in age with adjustments 
depending on duration. We discuss two further GM (0,7) age effect models. We 
have included for reference the deviances for the GM (0,7) function (Model 4) 
fitted separately for each duration. The deviance of this model is 52·2 lower than 
our model, which has 31 fewer parameters. The remaining model included in 
Table 4 is what we loosely refer to as a factor model (Model 2). Model 2 is defined 
by: 

for d=0, 1, 2, 3, 4 and 5 + (5.2) 
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Figure 5. Residual plot for duration 3 

where p(x) is a polynomial of degree 6 (in this case) and fd are constants with 
f0=0. Model 2 can be interpreted as a GM (0,7) model with no interaction fitted 
to all durations simultaneously. Model 2 is nested in (i.e. is a sub-model of) 
Model 4 and hence we can carry out a test for interaction between age and 
duration, as indicated in (c) above. The difference in deviance between Model 2 
and Model 4 is 55·3 with 30 degrees of freedom, which is significant at ½%. There 
is thus some evidence of interaction (see our comments at the beginning of this 
section). We make three comments on this finding. First, the interaction is not 
picked up by the product terms of (5. I). Second, the difference in deviance of 55·3 
is partly explained by the fact that, unlike the CMIB, we have not grouped the 
data when small expected values occur. Third, the overall fit of Model 3, 
compared to the CMIB Model 1, as measured by the deviance of 465·2 and on the 
evidence of the residual plots, is quite good. 

Our final comment on the fit of our model arises by comparing Model 2 and 
Model 3. Both these models describe the effect of duration by multiplying the 
duration 0 (base-line) mortality by a constant. Table 5 gives the factors by which 
mortality is inflated using the factor model and using the joint age and duration 
model. It is readily seen that there is good agreement between the two sets of 



466 On Modelling Select Mortality 

Figure 6. Residual plot for duration 4. 

figures. The absence of an entry for duration 5+ under Model 3 underlines the 
difference between our approach and the other three approaches. Models 1, 2 
and 4 treat the 5+ data as a single duration; in Model 3 we have attempted to 
treat duration in 5+ as a continuous variable. One possible way of filling the 
blank in Table 5 is to ask, under Model 3, what duration d gives a mortality ratio 
of 1·936. We easily find that d is about 10 since exp{ƒ*2(10) – ƒ*2(0·5)} = 1·926. 

The multiplicative form of the model enables us to assess how well it fits the 
data separately for age and for duration since selection. Consider first a 
particular curtate duration, d. Let x be any (integer) age which satisfies the 
condition: 

(5.3) 

(This condition ensures that the age/duration combination being considered has 
sufficient data for the normal approximation to the Poisson distribution to be 
reasonable. This in turn implies that point estimates will be approximately 
symmetrically distributed about their mean values.) Hence, approximately: 
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Figure 7. Residual plot for duration 5+. 

from which we have: 

-- 

and finally: 

(5.4) 

where the summation is over all ages x satisfying (5.3) for the given duration d, 
and m is the number of ages included in each summation. Figure 8 shows a graph 
of exp(ƒ*2(d)} for ½ d 50, together with point estimates: 
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t 

Table 5. The ratios for 
d = 1, 2, 3, 4 and 5+ 

Duration Model 2 Model 3 
1 1·495 1·495 
2 1·495 1·495 
3 I ·495 I·538 
4 1·615 I·592 
5+ 1·936 — 

Figure 8. The effect of selection,ƒ*2(d). 

(5.5) 

of exp{ ƒ*2(d + 0.5)} for d = 0, 1,2, . . . , 22. Figure 9 gives a close-up of the graph 
of exp{ƒ*2(d)} together with standard deviations above and below the point 
estimates given by (5.4); in detail, Figure 9 gives the graph of exp{f*2(d)} for 
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Duration 

Figure 9. The effect of selection, ƒ*2(d). 

½ d 23, the point estimates of exp {f*2 (d+ 0·5)} and the 2 standard deviation 
bounds for these point estimates given by: 

It can be seen from Figure 9 that the function exp{f*2(d)} fits the data very well; 
for all 23 durations the function is within 2 standard deviations of the point 
estimate. The graphs of exp{ƒ*2(d)} illustrate the effect on the force of mortality 
of duration since selection. This effect will be discussed further in Section 7. 

For any given (integer) age x, the expression corresponding to (5.4) is: 

(5.6) 
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Figure 10. The effect of age, f*1(x). 

where the summations are now over all curtate durations d satisfying condition 
(5.3) for this particular x, and n is the number of terms in each summation. 
Figures 10 and 11 show the graphs of exp{f*1(x)} for 20 x 90 and 
20 x 55, respectively, together with the values of: 

for integer values of x, which, from (5·6), can be regarded as a point estimate of 
exp{f*1(x)}. In this case we have shown separately the graph of exp{f*1 (x)} 
together with the point estimates for 20 x 55, (i.e. Figure 11), in order to 
show more clearly what is happening in this age range. It would have been 
possible, using (5·6), to show in Figures 10 and 11 the point estimates ±2 
standard deviations, as we did in Figure 9. We have not done so because we did 
not wish to obscure the more important points in these Figures. However, it can 
be seen from Figures 10 and 11 that the function exp{f*1(x)} fits the point 
estimates very well. In fact, there are only six ages, out of a total of the 68 for 
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Figure 11. The effect of age, f*1(x). 

which we have data, where the graduated value of exp{f*1(x)} is more than 2 
standard deviations away from the corresponding point estimate. (Two of these 
are adjacent ages, 85 and 86, where the point estimates are above and below the 
graduated value of exp {f*1(x)}, respectively.) It can be seen from Figure 10 that 
exp{f*1(x)} is decreasing for x > 89. This point will be discussed further in the 
following section. 

6. ADJUSTMENTS AT HIGH AGES AND SHORT DURATIONS 

It was shown in the previous section that the model for µx,d fitted the data very 
well within the ranges of age and duration represented in the data. However, 
when this model is extrapolated beyond those ranges it does not give acceptable 
values. In particular: 

(a) for x > 89 the function f*1(x) is decreasing, and 
(b) lim f*2(d) is too small. 

d-·0+ 
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We have corrected these two features by ‘manually adjusting’ f*1 (x) and f*2 (d). 
Note that the multiplicative form of the model makes it relatively simple to do 
this. (Another problem is that for x < 20, f*1 (x) gives values which are too small. 
We have not attempted to correct this feature.) 

The adjustment at high ages was made as follows: 

for some suitably high age x0 (the value eventually chosen was x0 = 86), define: 

f1(x) = f*1(x) for x < x0 

f1(x) = α + ßx for x x0 
(6·1) 

where α and ß are chosen so that f1 (x) is continuous and has a continuous first 
derivative at x0. Trials with various values for x0 showed that x0 = 86 gave the 
best extrapolated values of f1 (x) for x up to age 110 and also gave the smoothest 
‘splice’ at age x0. Note that for x x0, exp{ f1 (x)} is just a Gompertz formula. 

The problem at short durations was that, although exp{f*1(x) + f*2(½)} fitted 
the estimates θ x,0/Ex,0 reasonably well, the values of: 

1 - exp 

did not fit the crude estimates of q[x], i.e. θ x,0 / (Ex,0 + ½ θ x,0), at all well, the latter 
generally being higher than the former. This problem was corrected as follows: 

f2(d) = f*2(d) for d > 1/2 

f2(d) = γ + δ /(d + k) for d 1/2 
(6.2) 

with γ and δ chosen so that f2(d) is continuous and has a continuous first 
derivative at d = ½. 

Hence, our final fitted model, which we regard as acceptable over the ranges 
20 x 110 and 0 d < ∞, is as follows: 

µx,d = exp{ f1 (x) + f2 (d)} 
where for x 86 

f1(x) = - 3·7990 + 4·6043z + 5·1782z2 + 9·7293z3 
- 22·871 7z4 - 58·6521z5 - 30·6477z6 

and where for x > 86 

f1(x) = - 3·2956 + 4·2173z 

where z = (x - 70)/50, and where for d ½ 

f2(d) = 

(6.3) 
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f2(d) = 1·5600 – 

7. SOME COMMENTS ON THE EFFECT OF DURATION SINCE SELECTION 

For any attained age, exp{f2(d2) - f2(d1)} represents the ratio of the forces of 
mortality at durations d2 and d1. Hence the graph of exp{f2(d)} shown (for d ½) 
in Figure 8 provides us with an indication of the effect on mortality of the 
duration since selection. In broad terms this graph confirms our not unreason- 
able preconceptions concerning this effect, namely that, for any attained age: 

(a) the force of mortality increases with duration since selection, and 
(b) the effect of selection becomes less as duration since selection increases, at 

least for durations in excess of about 5 years. 

(Norberg (1988) gives a very succinct summary of our preconceptions 
concerning selection, and also gives a simple probabilistic model to explain 
them.) 

However, some features of the function exp{f2(d)} call for comment. The first 
is the ‘kink’ at the short durations. As a result of the CMIB’s grouping of 
durations, this feature manifests itself in the original data as duration 0 having 
significantly lower, and duration 5 + having significantly higher mortality than 
durations 1, 2, 3 and 4, with no significant differences between these latter 4 
durations (see the comments in CMIR 9 (1988, Section 6.2) and also Table 5). 
This feature seems to occur frequently in assured lives data; see, for example, the 
comments in CMIR 9 (1988, Section 3.3) concerning the 1979 -l 982 Permanent 
Assurances, Males, data and comments by the Joint Mortality Investigation 
Committee (1974, §3.4) concerning the 1967-70 Assured Lives data. This last 
reference also includes the statement, “The same features appeared in the 1949- 
1952 data and in earlier investigations . . .". 

Another feature of the function exp{f2(d)} apparent from Figure 8 and calling 
for comment, is the extrapolation of the function beyond about duration 20, 
which is where our data end. Figure 8 shows that although the effect of selection 
gradually wears off, as it is constrained to do from the choice of function for 
f2(d), it takes a very long time to do so! For example: 

exp{f2(30) -f2(20)} = 1·055 

so that for any attained age an individual selected 30 years ago is expected to have 
a force of mortality higher by 5½% than an individual selected 20 years ago. This 
seems somewhat uncomfortable in the U.K. where we arc used to having a select 
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period of 2 or at most 5 years! However, two points can be made in support of our 
graduation: 

(i) Assured lives data in the U.S.A. and Canada are collected and graduated 
with a 15-year select period (see, for example, the report of the Committee 
on Mortality under Ordinary Insurance and Annuities (1973) and Jones & 
Aitken (1990)). 

(ii) The extrapolation of exp{f2(d)} beyond duration 20 years, as shown in 
Figure 8, does not appear at all unreasonable. 

A final point which should be made is that our data for high durations (d > 13), 
are based solely on the data for high ages (x > 70) and our data for lower 
durations (5 < d< 8) is based solely on data for young ages (x < 40) (see Figure 
1). For this reason it is not easy to distinguish between the effects of ‘temporary 
initial selection’, i.e. selection as a result of passing a medical examination, and 
‘time selection’, i.e. the effect of the mortality rate at any given age changing over 
time (see Benjamin & Pollard (1980, pp. 215-19)). 

8. COMPARISONS WITH THE CMIB’S GRADUATIONS 

It is of some interest to compare our graduation of the 1979- 1982 Permanent 
Assurances, Females, data with the graduation of the same data by the CMIB. 
For this purpose we have taken the CMIB’s graduation to be the AF80 table 
published in CMIR 10 (1990) (see Section 3 above). We shall denote the CMIB’s 
graduations by x,0, x,2+ and x,2+ in an obvious notation. 

Table 6 shows ratios of the values of µ given by our graduation to the values 
given by the CMIB. More precisely, for each attained age x, i.e. for each row in 
the table, the figures shown are: 

Table 6. Comparison of µ 
values: ratio of our values 

to the CMIB’s 
Duration 

Age 0·5 1·5 2+ 
20 0·590 0·749 0·790 
30 1·010 1·074 1·115 
40 0·906 0·989 0·988 
50 1·011 1·059 1·134 
60 1·065 0·980 1·065 
70 1·083 0·831 0·849 
80 1·463 1·014 1·135 
90 1·627 1·127 1·212 
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Table 7. Comparison of q values: 

Attained age 
X0+d 

20 
30 
40 
50 
60 
70 
80 
90 

100 
110 

20 
0·614 
1·205 
1·226 
1·453 
1·376 
1·159 
1·367 
1·371 
1·163 
1·017 

30 

0·966 
1·042 
1·349 
1·320 
1·129 
1·343 
1·354 
1·153 
1·012 

ratios of our values to the CMIB’s 
Entry age x0 
40 50 60 70 

0·877 
1·147 0·984 
1·226 1·043 1 ·026 
1·083 1·006 0·856 1·055 
1·309 1·256 1·169 0·998 
1·331 1·299 1·250 1·168 
1·141 1·124 1·100 1·063 
1·006 0·998 0·987 0·972 

Table 8. Comparison of premium rates: ratio of our values 
to the CMIB’s 

Term Policy 25 
10 Endowment Assurance 1·000 

Temporary Assurance 1·040 
20 Endowment Assurance 0·999 

Temporary Assurance 1·099 
30 Endowment Assurance 1·007 

Temporary Assurance 1·211 
Whole Life Assurance 1·170 

Entry age 
35 45 

0·999 0·999 
0·922 0·993 
1·001 1 ·004 
1·102 1·074 
1·015 1·017 
1·169 1·067 
1·123 1·077 

55 
0·996 
0·909 
0·984 
0·935 
0·984 
1·015 
1·012 

Table 6 does not reveal any consistent pattern for these ratios being greater than 
or less than 1. Where the data are most numerous, i.e. durations 2 + (all ages) 
and ages 50 and 60 (select durations), the ratios are generally very close to 1. 

Table 7 shows ratios of values of q[x0] + d g iven by our graduation to the values 
given by the CMIB for various entry ages x0, and various attained ages [x0] + d. 
Compared to Table 6, Table 7 shows a much higher proportion of ratios greater 
than 1 and also some relatively high individual ratios, e.g. q[20] + 30/ [ 20] + 30. The 
high value for this particular ratio may seem surprising, especially when from 
Table 6 we see that µ50, (50)/ 50,2 + = 1·134. However, it should be recalled that 
D(50) = 10·17 and that exp{f2(30) - f2(10·17)} = 1·275. 

Table 8 shows ratios of net premium rates given by our graduation to those 
given by the CMIB’s graduations. The policies are endowment assurances and 
term assurances for terms up to 30 years, together with whole life assurances, all 
for various entry ages up to age 55. In all cases the rate of interest is 8% p.a., the 
sum assured is payable immediately on death (or survival to the end of the term) 
and premiums are payable continuously at a level rate throughout the term of the 
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policy. Perhaps not surprisingly, the ratios in Table 8 age generally closer to 1 
than those in Table 7. 

9. CONCLUDING REMARKS 

Our purpose in this paper has been to present an approach to the graduation of 
select mortality data jointly by age and duration, and to illustrate this approach 
by graduating the data for 1979-82, Permanent Assurances, Females. In doing so 
we encountered a number of difficulties. The most notable of these have been: 

(i) Having to estimate the function D(x), i.e. the average duration for policies 
whose duration exceeds 5 years. The estimation of D(x) has been a key 
element in our graduation and it was unfortunate that a more precise 
method for its estimation than the method detailed in our Appendix was not 
available. Nevertheless, we regard our estimates of D(x) as not unreason- 
able. 

(ii) Interaction between age and duration since selection. As detailed in Section 
5, there was some evidence in the data of interaction between age and 
duration since selection which terms of the form (5.1) we were unable to 
model. 

(iii) Time selection. We have attempted to model temporary initial selection and 
our final model indicates that the effect of temporary initial selection could 
last a long (strictly speaking an infinite!) time. In these circumstances it is 
difficult, without carrying out a more detailed study, to separate the effects 
of temporary initial selection from time selection. However, we make no 
apologies for this difficulty since it is a consequence of the nature of the data 
available. Our method of graduation at least has the merit of highlighting 
rather than disguising the problem. 

Despite the problems mentioned above, we believe the present study to be 
interesting and useful for the reasons mentioned in Section 1. A final small, but 
interesting, point of comparison between our graduation and the CMIB’s is that 
if we consider an individual selected at age x0 and then consider the force of 
mortality at some duration d ( 0), our graduation gives a force of mortality, 
µx0 + d,d, which is a continuous (and differentiable) function of d, whereas the 
CMIB’s graduations give a force of mortality, x0 + d,0 for 0 d < 1, x0 + d,1 for 
1 d < 2, etc., which has points of discontinuity. 
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APPENDIX 

THE ESTIMATION OF D(x) 

In this Appendix we give details of the method we have used to estimate the 
function D(x), the average duration of policy for policyholders aged x nearest 
birthday who effected their policies 5 or more years ago. 

In outline, our method is to estimate for each age x and for d 5 the value of 
E(d,x). Then, noting that: 

E(5 + ,x) = E(d,x) (A.1) 

we can estimate D(x) from the formula: 

(A.2) 

(We have assumed that the individual terms in the summation in (A.1) do not 
contain duplicate policies, even though E(5 + ,x) does contain duplicates. The 
reason for this is that we assume that duplicates generally arise from policies 
affected at different times rather than at the same time. If this were not the case, 
we could have been expected to have found evidence of duplicates in the data for 
policies of the same duration with the duration less than 5 years, which we did not 
(see CMIR 9, Section 6.1).) 

Let us consider the estimation of E(d,x) for a given x and a given d 5. To do 
this we need some new notation. We denote by: 

E(k, y, m) the exposure from age (y - ½) to age (y + ½) and from duration k to 
duration (k + 1) if the observation period had been (1979 - m) to 
(1982 - m), i.e. if the observation period had been m years earlier 
than the actual observation period, 

W[y] + 1 the probability of withdrawing (i.e. of the policy lapsing or 
maturing) within 1 year for a policyholder aged (y + t) who 
effected her policy t years ago, 

g(y) the annual rate of increase in the number of policies effected at age y. 
(We assume g(y) is constant over time for each y.) 

We can now write down the following (approximate) relationships: 

(A.3) 

(A.4) 
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Loosely speaking, formula (A.3) says that the difference between 
E(4,x - d + 4,d - 4) and E(d,x) is that some policyholders who contribute to 
the former may die or withdraw before contributing to the latter. Formula (A.4) 
says that the difference between E(4,x - d + 4) and E(4,x - d + 4,d - 4) 
results from the increase in the number of policies issued at age (x - d - ½). 
Values of E(4,y) for y 10 are available to us, so the problem of estimating 
E(d,x) has become a problem of estimating q[x-d-½] + t + ½, w[x-d-½] + t + ½ and 
g(x - d - ½). For t 4 we have estimated q[x - d - ½] + t + ½ simply from the 
formula: 

Formula (A.5) gives a rather crude estimate of q[x - d - ½] + t+ ½. The estimates 
depend on attained age but are independent of duration since the policy was 
effected (for durations in excess of 4½ years). The relative error introduced here 
should be small, and the relative error in the estimate of (1 - q[x- d -½] + t + ½), 
which is the factor in which we are interested, should be even smaller since 
q[x - d- ½] + t + ½ itself is small. 

We have estimated g(y - ½) from the formulae: 

(A.6) 

(A.7) 

(A.8) 
Formula (A.8) corresponds to formula (A.3) and formula (A.7) corresponds to 
formula (A.4). We regard g*(y - ½) as a crude estimate of g(y - ½) and have 
calculated the latter from the former by taking a geometric mean of five 
consecutive values (formula (A.6)). 

We have estimated q[y - ½] + 3½ by: 

(A.9) 

The remaining step in the estimation of E(d,x), and hence of D(x), is the 
estimation of w[y - ½] + t + ½ for t 3. We have made the following assumption: 

w[y - ½] + t + ½ is a constant, independent of y and of t 3. (A.10) 

It is easily seen that the actual value of this constant does not affect the estimated 
value of E(d,x). 

In practice, the estimated values of E(d,x) for d 5 will not sum exactly to 
(the known value of) E(5 +,x). In general, we found that the summation 
exceeded the value of E(5 + ,x). In such cases, we truncated the summation at the 
duration d(x) where: 

E(5 + ,x) = E(d,x) (A.1 1) 
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(taking only that part of E(d(x),x) necessary to give equality in (A.1 1)) and then 
estimated D(x) using: 

D(x) (A.12) 

Our justification for this procedure is that we have more confidence in our 
method for estimating E(d,x) for lower values of d. In cases where the 
summation in (A. 1) gave a value less than E(5 + ,x), which occurred for a few of 
the higher ages, we estimated D(x) using: 




