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1 Introduction

There has been increasing interest in recent years in explaining and projecting mor-
tality in closely related populations, such as those of neighbouring countries or
sub-groups of a national population for which there is sufficient heterogeneity in the
mortality experience of the sub-groups to justify modelling them separately. Multi-
population stochastic mortality models have been developed which help us under-
stand historical differences in the mortality of different populations and ensure that
we obtain plausible projections of mortality improvements. Such projections will
satisfy the following five criteria:

• Generate a projected trend that is consistent with the historical trend in mor-
tality improvements.

• Produce levels of variability consistent with that observed in the historical
data.

• Preserve sub-group rankings, where these seem justified.

• Generate coherent projections across sub-groups, discussed in more detail be-
low.

• Produce plausible forward correlations between sub-groups over different ages
and future horizons (see Appendix A for a definition and analysis of forward
correlations).

For discussion of these criteria, see Hyndman et al. (2013), Villegas et al. (2017)
and the references therein.

A key problem that is frequently encountered is that some of the populations of
interest can be quite small and hence involve significant sampling variation. In some
cases, it is possible to circumvent this problem by using the mortality experience
of a larger (e.g., the national) population to help inform and improve projections
of the smaller (e.g., a sub-) population of interest. To illustrate, the mortality
experience in an annuity provider’s book of business can be modelled jointly with
that of the national population. For examples, see Coughlan et al. (2011), Villegas
et al. (2017), and Cairns and El Boukfaoui (2017). In other cases, we might be
interested in subdividing the national population into a large number of smaller
populations on the basis of certain criteria. A prominent current example is socio-
economic differences in mortality experience. The challenge is to extract underlying
death rates from the noisy sub-population data.

Our paper addresses this challenge. Specifically, we wish to:

• Exploit information contained in a national population database of histori-
cal mortality rates to construct sub-group data that exhibits a strong and
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consistent degree of heterogeneity in those mortality rates (i.e., maintains a
consistent ranking of mortality rates) on the basis of the selected criteria.

• Develop a stochastic multi-population mortality model that fits the data well.

• Use Bayesian estimation methods to dampen the impact of sampling variation
in the sub-group data.

• Use the resulting multi-population mortality model to make mortality pro-
jections that link sub-group-specific mortality improvements to the national
trend through a gravity effect which prevents the former deviating too far from
the latter.

Our specific purpose is to model socio-economic differences in mortality. We have ac-
cess to a comprehensive national database maintained by Statistics Denmark which
allows us to model and project the socio-economic mortality of older Danish males
using the above four-part modelling approach. This database also allows us to
construct a new affluence index that can be used to divide up the Danish male
population into distinct socio-economic sub-groups. We find that this index is a suf-
ficiently strong predictor of high or low mortality to allow subdivision of the national
population into 10 sub-groups. In addition, the use of Bayesian methods enables
us to separate the population into a larger number of sub-groups than would nor-
mally be advisable (for a population the size of Denmark) using more conventional
likelihood-based techniques common in mortality modelling. The results achieved
using the affluence index have greater precision than those using alternative predic-
tive variables (or covariates), such as income or wealth alone.

Our approach:

• Fits the historical data well.

• Dampens sampling variation whilst still preserving the main features of the
data (e.g., the shape of the underlying mortality curves by age in each group,
the gaps between groups at all ages and in all years, and the idiosyncracies
of the underlying time trends). In doing so, it also generates a clear ordering
(i.e., avoids cross-overs) of the death rates for the 10 deciles at all ages from
55 to 94 and in all years.

• Generates coherent (in the sense of Hyndman et al., 2013, and discussed
later) projections of future death rates that are both biologically and socio-
economically reasonable over all ages and time horizons considered. Biological
reasonableness was introduced in Cairns et al. (2006) and is defined as a
method of reasoning used to establish a causal association (or relationship)
between two factors that is consistent with existing medical knowledge. Socio-
economic reasonableness implies that someone of a given age from a specific
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socio-economic group has a lower probability of dying than someone of the
same age and gender from a lower socio-economic group over the next and
subsequent years.

• Produces a plausible forward correlation term structure between the mortality
rates of different groups (see Appendix A). Knowledge of this correlation term
structure is important in some financial applications where risk management
strategies depend on reliable correlation estimates (see Section 6).

It is important to note that our modelling framework does not impose any specific
group ordering, since neither the prior distributions nor the likelihood function con-
tain any assumption about the ordering of the groups. It therefore follows that,
while multiple cross-overs of the different groups are perfectly possible in our frame-
work, this would be a sure indication that the affluence index was a poor covariate
for discriminating between the different social classes.

The approach has a number of potentially useful applications:

• It allows government agencies to generate more accurate estimates of the cost
and projected increases in the cost of state pension benefits in different pop-
ulation segments.

• It helps corporate pension plans improve estimates of their liabilities, given
information about the socio-economic mix of their plan members.

• It allows annuity providers to price annuities more accurately on a socio-
economic basis.

• It allows for the improved design of hedges for mortality-linked financial prod-
ucts.

In short, the use of a powerful predictive variable, such as the affluence index, allows
life insurers, for example, to identify the different life expectancies of different socio-
economic groups more accurately, which, in turn, leads to more reliable risk rating
of customers, improved premium setting, more accurate reserving calculations, and
more effective hedging.

The outline of the paper is as follows. The next section introduces and explains the
Danish national mortality dataset. It also discusses the approach used to process
the data using the affluence index. Following that, we set out the proposed multi-
population gravity model that is used to explain both mortality by socio-economic
grouping and how the parameters of the model are estimated. We then consider
the model fit over a range of years and ages and confirm that our approach fits
the data well, smoothing out the effects of sampling variation, while still preserving
the essential characteristics of the crude sub-group mortality data (such as the trend
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change around 1995, the mortality and life-expectancy gaps between different groups
at different ages, and the changing levels of inequality between groups over time).
The section following analyses properties of projected mortality: central trends,
uncertainty and correlations between sub-groups. We finish with some applications,
extensions and conclusions.

2 Data

2.1 The Statistics Denmark database

The analysis in this paper makes use of a high quality database from Statistics Den-
mark (SD), derived from administrative records. Since every individual in Denmark
is given a central personal register (CPR) number either at birth or when given
residence permission in the country, we are able to uniquely identify each individual
across all components of the public register system. For each individual, we have
information on their date of birth, education, income, wealth, and, ultimately, their
date of death. We can also identify the same information for an individual’s spouse
or partner, thereby enabling us to allocate income and wealth within households.

The database also allows us to identify three financial indicators for each individual
and couple, all rebased to year 2000 real values: gross individual annual income,
total net household income, and net household wealth. All financial measures are
derived from calculations made by the tax authorities which are linked to the CPR.
See Appendix B for further details.

Data are available for calendar years 1980 to 2012. However, as the quality of
both the income and wealth data (especially for married couples) is regarded as
less reliable at the beginning of the period, we disregard the first four years of the
available data. In addition, since our methodology for allocating individuals into
sub-groups requires data for the previous calendar year, we calculate exposures and
deaths data for each sub-group for the 1985-2012 period only.

One of the key objectives is to identify variables derived from information available
on the SD database that have a strong predictive power in explaining the mortality
of different individuals in the population. More specifically, we wish to subdivide
the population at each age and in each year into a number, N , of approximately
equal-sized sub-groups, with a clear and unchanging ordering between sub-groups in
terms of mortality rates at all ages: that is, Group 1 should ideally have the highest
mortality at all ages and Group N the lowest. From the outset, we aimed for a larger
number of sub-groups than has typically been the case in other studies (Brønnum-
Hansen and Baadsgaard (2012), for example, subdivide the Danish population into
N = 4 income-based quartiles), settling on N = 10 deciles, giving us the flexibility
to aggregate sub-groups should this be desirable or necessary in the modelling work.
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For a subsample of the US population (over 50 times bigger than Denmark), Wal-
dron (2013) is able to achieve statistically meaningful results using deciles based on
lifetime earnings covering a more limited range of ages (63-71) than in this paper
(55-94). Chetty et al. (2016) report similar results for the US over ages 40-76 using
taxable income.

For Denmark, we show that separation into deciles also gives meaningful results, but
requires greater effort to filter out or smooth the effects of sampling variation. We
also found that the use of deciles revealed weaknesses in some previously considered
covariates that would not be so readily apparent if we were to use, say, N = 3 or 4
sub-groups. Extensive experimentation helped not only to identify these weaknesses
(see, e.g., Figure 5 below), but also led us to identify a new and, in our view,
superior predictive variable, namely affluence with lockdown (i.e., fixing sub-group
membership) at a certain age (67 in the case of Danish data).

In this study, we aim to identify a single composite index derived from personal
financial data that is a strong predictor of mortality. Our reasons for choosing to
focus on financial variables from the outset are twofold. First, income and wealth
are well known to be strong predictors of mortality (e.g., Waldron, 2013, Brønnum-
Hansen and Baadsgaard, 2012, and Chetty et al., 2016). Second, we seek to develop
a modelling framework that could be applied to other countries and sub-populations
where some measure of income and/or wealth is available.

The candidate covariates considered were income, individual wealth, household
wealth, and, as discussed below, linear combinations of these.

Educational attainment has long been used as a predictive variable (see, for example,
Kitagawa and Hauser, 1968). As a measure of social status, it has recently received
considerable attention in the study of the relationship between social groups and life
expectancy (for a recent example, see Olshansky et al., 2012). These authors iden-
tify significant and often widening differences in life expectancy between education
groups. However, for most developed countries, there has been a sustained trend
towards higher levels of educational attainment over many decades. A likely con-
sequence is that the least educated group will contain an increasing concentration
of the most deprived in society. Thus, we are comparing a different, shrinking, and
increasingly vulnerable segment of the population each year (Bound et al., 2015),
making inferences about the impact of education more complex and less convincing
than the affluence index that we discuss in detail below. We deliberately, therefore,
avoid using educational attainment as an indicator for socio-economic sub-grouping
in this study.
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2.2 The affluence index: construction and allocation of in-
dividuals to sub-groups

In this section, we show how the affluence index is constructed and then how it is
used to allocate individuals to sub-groups.

The affluence index, A(i, t, x), for individual i, in year t at age x (at the start of the
year) is defined as the individual’s wealth plus K times their income in the preceding
year, that is:

A(i, t, x) = W (i, t− 1, x− 1) +K × Y (i, t− 1, x− 1) (1)

where W (i, t − 1, x − 1) is the (physical and financial) net wealth for individual i,
at age x− 1 in year t− 1 and Y (i, t− 1, x− 1) is the income of individual i, at age
x− 1 in year t− 1. K is a constant across the whole population. We interpret K as
a capitalisation factor for retirement income. We chose K = 15 to reflect the idea
that, around the age of retirement, 15×income is a rough estimate of the present
value of an individual’s future retirement income. This follows because, in a low
interest-rate environment, K is approximately equal to national life expectancy at
retirement age (see Figure 2). Although income and wealth are highly correlated,
we found that the variables combine to create a more effective index that produces
consistent results between all 10 groups across all years and ages.

Representative values for the affluence index are given in Table 1 for ages 55 and 65
in 1990 and 2010. The values shown are the boundaries between adjacent groups.
From Table 1 we can see that: in real terms, there has been modest growth in
affluence (0.5% to 1% per annum depending on age and group); and, in relative
terms, there has been a slight widening of the gap between Groups 1 and 10 (0.3%
to 0.4% per annum).

Individuals not resident in Denmark for the entirety of the previous year are excluded
(a small proportion – about 5% – of the full population). The affluence index is then
used to allocate all remaining individuals to specific sub-groups. Based on the value
of the index, A(i, t, x), each individual, i, in year t at age x is ranked from 1, 2, ..., n,
where n is the number of individuals at age x in year t. The rank of the individuals
is given by R(i, t, x). This rank is normalised by U(i, t, x) = R(i, t, x)/(n+ 1), so it
is evenly spread between 0 and 1. Then, if U(i, t, x) lies between 0 and 1/10, the
individual is allocated to Group 1, and so on. This procedure implies that 10% of
the total population is assigned to each sub-group, based on data that are available
at the start of the year. Individuals can therefore transition between affluence sub-
groups over time (until an individual reaches age 67). These transitions could be
modelled formally using a multi-state model (see, e.g., Kwon and Jones, 2008). We
comment briefly on the potential impact of these transitions in Section 2.3, but leave
a formal analysis of this for future work.

The ranking and allocation is repeated every year and age until an individual reaches
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Year: 1990 Year: 2010
Group Boundary Age 55 Age 65 Age 55 Age 65

1→ 2 2324 1803 2521 2026
2→ 3 3141 2184 3492 2451
3→ 4 3588 2518 4056 2898
4→ 5 3970 2842 4542 3354
5→ 6 4361 3218 5038 3866
6→ 7 4836 3655 5568 4474
7→ 8 5428 4219 6245 5224
8→ 9 6335 5094 7261 6317
9→ 10 8139 6855 9421 8356

Table 1: Boundaries (in ’000s of Danish krone) between the 10 affluence groups for
ages 55 and 65 and in years 1990 and 2010; e.g., individuals aged 65 on 1 January
2010 will be assigned to affluence Group 3 if their affluence index for 2009 lies
between 2,451,000 DKK and 2,898,000 DKK. Amounts are rebased to year 2000
values. 1000DKK≈156USD (31/10/2017).

their 67th year, the main state pension age for most of the period. (The state pension
age was reduced from 67 in 2004 to 65, although it will increase to 67 between 2024
and 2027, with further increases after 2027 linked to increases in life expectancy.)
From age 67 onwards, each individual is assumed to remain in the same sub-group
that they were allocated to at age 66. We call this procedure lockdown.

There are two key benefits arising from this procedure. First, we found that the use
of the affluence index is a more effective covariate across all ages (from 55 to 94)
and in all years than income or wealth on their own. Second, lockdown at age 67
produces much better results (including improved separation between the 10 sub-
groups) than not locking down and allowing transitions between groups after age
67. An additional advantage of lockdown is that it restricts the potential for Group
1 to fill up after age 67 with individuals in severely declining health who have used
up most of their personal savings on long-term care. Allowing for such transitions
would artificially inflate Group 1 mortality at high ages and depress it in the more
affluent sub-groups.

Despite these benefits of using lockdown, the following counterpoints are worth
considering:

• Figure 4 (top left plot) shows that the differences in mortality are small at
older ages, suggesting that lockdown might not be necessary. However, Figure
5 (top left plot) reveals that without lockdown, it is possible for the curves
to remain far apart even at very high ages – in defiance of the compensation
law of mortality discussed later. In any event, our interest is in the relative
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differences between the 10 mortality curves and, in particular, preserving into
higher ages the rankings that we observe at age 67: we are much less interested
in the absolute differences between groups.

• Since affluence is a good predictor of future mortality, lockdown at 67 disre-
gards potentially valuable predictive information on affluence at higher ages.
To illustrate, individuals age 70 who have used up all personal savings could
subsequently experience mortality rates closer to those of Group 1 than those
of whatever group they were in at age 67. While accepting such possibilities,
we provide a couple of cases where lockdown at, say, 67 is necessary. The first
is where we are more interested in, say, the life expectancy of individuals at 67
than single-age mortality rates. Lockdown avoids the problem of individuals
changing groups and enables life expectancy to be calculated, assuming the
individual stays in the same group. There are many variants of this. Second,
from an actuarial perspective, we might wish to price an annuity at the time of
retirement. Since we have information about the individual at age 67 only, we
need to know what is the typical mortality trajectory of someone with those
characteristics at this age and this necessitates the use of lockdown. Further,
for reserving, once in payment, an insurance company is unlikely to receive ad-
ditional information about the health or affluence of an annuitant until they
die – again all it will know is the annuitant’s status at age 67 when the annuity
was purchased.

• Lockdown may produce better separation between the sub-groups, but it might
be a disadvantage when designing effective hedges for certain mortality-linked
products. While it would clearly be useful to be able to recalibrate a hedge in
the light of new information, as with the previous point, it depends on whether
or not information on those covered by the hedge is updated after they retire.

Finally, we note that the 10 sub-group allocations were not sensitive to the choice
of K, the capitalisation factor for retirement income, in the range 10 to 20. A more
sophisticated model would make K a function of age and interest rates. However,
the lack of sensitivity of the sub-group allocations to values of K across this wide
range suggests that such additional sophistication might not add much – at least in
the case of older Danish males – and instead might lead to an unjustified illusion of
precision. As a rule of thumb, we suggest that K could be set approximately equal
to the life expectancy at the lockdown age.

2.3 Deaths, exposures and age-specific death rates

We exploit the detailed nature of the database to calculate deaths and exposures
using individual records as follows:
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Figure 1: Contour plot of the exposures by year and age for Groups 1 and 10.

• D(i, t, x) = the number of individuals allocated to sub-group i at the start of
the year, born in calendar year t− 1− x (i.e., who: (a) are age x at the start
of calendar year t or (b) attain their x + 1th birthday during year t) who die
during calendar year t.

• EI(i, t, x) = the number of individuals allocated to sub-group i, born in cal-
endar year t− 1− x, and counted on the first of January in year t; EI(i, t, x)
is referred to by actuaries as the initial exposed to risk.

• E(i, t, x) is the corresponding central exposed to risk, and measures the average
size of the population during year t in sub-group i born in year t−1−x. Migra-
tion of people into and out of Denmark prevents us from calculating E(i, t, x)
exactly, so we have chosen to use the common approximation E(i, t, x) =
EI(i, t, x)−D(i, t, x)/2.

The age-specific death rate is then

m̂(i, t, x) = D(i, t, x)/E(i, t, x)

in sub-group i, calendar year t and age x at the last birthday at the beginning of the
year.
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Contour plots of the exposures over the period 1985 to 2012 and ages 55 to 94 for
Groups 1 and 10 are presented in Figure 1. We can see variation in cohort sizes
over time, peaking at age 55 in 2002. By design, the two groups are approximately
equal in size up to age 67. Thereafter, due to lockdown, Group 1 exposures decrease
at a faster rate than Group 10: at age 94, Group 10 typically has 3 to 4 times the
number of members remaining than Group 1.

Exposures, E(i, t, x), range (across all years) from about 4250 (at age 55) down
to 13 (at age 94). Deaths, D(i, t, x), range from 151 (peak mortality ages) down
to 4 (age 94). It is evident, therefore, that subdividing an already small national
population produces crude age-specific death rates that will be subject to quite
significant sampling variation.

Age-specific death rates for the 10 sub-groups in 2012 are plotted in Figure 2 (left-
hand plot). This plot is typical of what we see for all years 1985 to 2012. Despite
the significant levels of sampling variation along each curve, we can still see a clear
ranking in the plot: Group 1 has consistently the highest death rates across all
ages; Group 2, the next highest; and so on down to Group 10. In particular, the
rankings are what could be described as socio-economically reasonable: the more
affluent someone is, the less likely they are to die in the next year compared with
a less affluent person of the same age. We can also observe that relative differences
in death rates between sub-groups are biggest at younger ages and smallest at very
high ages.

We experimented with numerous ways of segmenting the population, but always
ended up with a similar (or even narrower) spread of curves at higher ages. This
finding is in line with the compensation law of mortality (Gavrilov and Gavrilova,
1991) which postulates that mortality rates for different populations tend to converge
with age. This ‘law’ implies that wealth and lifestyle-related factors have a reduced
impact as we age, while other, mainly genetic, factors become more significant. The
narrowing gap with age is consistent with the findings of, for example, Cristia (2009)
for US males, and Villegas and Haberman (2014) for males in England and Wales.
In our dataset, the compensation law seems to point to convergence in the high 90s.
For reasons discussed earlier, it is desirable to have distinct rankings over as wide a
range of ages as possible. However, at high ages, it can be difficult to differentiate
between groups. Still, we have not found any evidence that groups cross over even
at very high ages in our data set, although the model does not preclude this.

It is also of interest to look at the variation in life expectancies between groups. To
avoid the need to extrapolate beyond the maximum age in our dataset, we calculate
partial period life expectancies using a maximum age of 95, defined as the expected
number of years survived from age x to age xu = 95, conditional on having survived
to age x, and assuming that mortality stays at the same levels as in year t. This
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life expectancies (LE) for Danish males Groups 1 to 10 at age 67 (capped at age 95)
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measure can be approximated as follows:

LE(t, x) ≈ 1

2
+

xu−1∑
y=x+1

Sp(t, x, y) +
1

2
Sp(t, x, xu),

where Sp(t, x, y) = exp
[
−
∑y−1

s=x m̂(t, s)
]

defines the observed period survival proba-
bilities. Partial life expectancy up to age 95 is only very slightly less than complete
(untruncated) life expectancy: proportionately the difference is less than 5% at all
ages up to age 83 for all groups and years. (If life expectancies above age 83 are
required, then it would be recommended to extrapolate the life table first before
calculating full, untruncated period life expectancies.)

Figure 2 (right-hand plot) shows partial period life expectancies (LEs) for the 10
groups. At age 67 (and the same holds for other ages), there is a clear separation
between observed partial period LEs in all years across all 10 sub-groups (Group 1
has the lowest LE; Group 10 has the highest), even though we are using unsmoothed
data. The gap between observed age-67 LEs for Groups 1 and 10 widened between
1985 and 2012 from 4.0 to 5.3. Nevertheless, Group 1 improved at a somewhat faster
rate than Group 2 (and, to a lesser extent, Groups 3 and 4). An augmented version
of the LE plot can be found in Appendix C where confidence bands accounting
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for sampling variation in death counts have been added. The general absence of
overlap of the bands confirms that the differences between the groups and the group
rankings are statistically significant.

Similar observations have been found previously with Danish data by Brønnum-
Hansen and Baadsgaard (2012) using disposable income as a covariate. However,
these authors only report period LE at a single age 0 and separate the population
into quartiles. By contrast, we have carried out a much more detailed analysis using
deciles rather than quartiles, used partial period LE over a range of ages from 55 and
up, and used death rates at individual ages from 55 to 94. Our conclusion is that
the use of disposable income as the key metric could be improved upon significantly.
Specifically, income, on its own, does not achieve a satisfactory separation of the 10
sub-groups across all ages and all years: a problem that we have resolved through
the use of the A = W + 15Y affluence index with lockdown at age 67.

The widening over time of the gap in life expectancy noted above is not unique
to Denmark and can be observed elsewhere. The UK Office for National Statistics
(2011) consider LEs in England and Wales by occupation group and find a widening
gap between professional/managerial and unskilled manual workers; Cristia (2009)
considers US males and females subdivided by lifetime earnings and also finds a
widening gap over time; and Mackenbach et al. (2003) find increasing gaps in six
European countries using other socio-economic measures.

3 Modelling framework and estimation

3.1 Modelling sub-group mortality

Let m(i, t, x) be the underlying age-specific death rate for population i in year t for
individuals aged x last birthday on the first of January in the year of death. A
standard hypothesis in multi-population modelling is that the relationship between
the death rates at given ages in two related populations should not diverge in the
long run: that is, the ratio m(i, t, x)/m(j, t, x), for i 6= j, should remain stable over
time. This stability condition is often referred to as coherence, and further discussion
can be found, for example, in Cairns et al. (2011) and Hyndman et al. (2013).

We propose the following multi-population gravity model of the CBD-X type for
underlying age-specific death rates in the 10 sub-groups:

logm(i, t, x) = β
(i)
0 (x) + κ

(i)
1 (t) + κ

(i)
2 (t)(x− x̄) (2)

where i is the sub-group, t is the year and x is the age last birthday at the start of
the year. This is a variant in the style of Plat (2009) of the CBD model (Cairns et

al., 2006) that adds a non-parametric age effect, β
(i)
0 (x), to the basic CBD model,
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and models the log death rate rather than the logit of the mortality rate. The non-
parametric age effect was found to be necessary to preserve the mortality rankings
between sub-groups over the full range of ages from 55 to 94. The κi1(t) terms
capture changes in the level of mortality, while the κi2(t) terms pick up changes

in the slope of the log-mortality curve relative to the baseline β
(i)
0 (x). As detailed

below, we model period effects by incorporating a common long-term trend for all
sub-groups, combined with a short-term gravity effect.

We specify the following stochastic model for the period effects:

κ
(i)
1 (t) = κ

(i)
1 (t− 1)− ψ

(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
+ µ1 + Z1i(t) (3)

κ
(i)
2 (t) = κ

(i)
2 (t− 1)− ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
+ µ2 + Z2i(t) (4)

where κ̄1(t) =
1

n

n∑
i=1

κ
(i)
1 (t) and κ̄2(t) =

1

n

n∑
i=1

κ
(i)
2 (t). (5)

κ̄1(t) and κ̄2(t) (Equation 5) can be interpreted as processes that govern mortality
improvements at the national level, with additional sub-group deviations from κ̄1(t)
and κ̄2(t) (Equations 3 and 4) that are mean reverting to prevent sub-groups from
diverging from each other. The random innovation terms Zfi(t) are multivariate
normal with mean 0 and covariances

Cov (Zfi(t), Zgj(t)) =

{
vfg for i = j
ρvfg for i 6= j

for f, g = 1, 2, where −1 < ρ < 1 and the Zfi(t) are independent from one year to
the next.

The κ
(i)
1 (t) share a common drift, µ1, and the κ

(i)
2 (t) share a common drift, µ2, where

µ1 and µ2 need to be estimated. The components of equations (3) and (4)

−ψ
(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
and − ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
represent gravity effects between sub-groups (similar to Cairns et al., 2011, and
Dowd et al., 2011) that prevent individual sub-group death rates from drifting away
from the trend. Although 0 < ψ < 2 ensures stationarity, we restrict the range
further to 0 < ψ < 1 to avoid oscillatory behaviour.

From Equations (3), (4) and (5), it is straightforward to show that (κ̄1(t), κ̄2(t)) is
a bivariate random walk with drift (µ1, µ2)

′ and one-step-ahead covariance matrix

1 + (n− 1)ρ

n

(
v11 v12
v12 v22

)
.

Now define ∆1i(t) = κ
(i)
1 (t)− κ̄1(t). The ∆1i(t) are correlated AR(1) processes with

AR(1) parameter 1 − ψ, that revert and add to 0, and are independent of κ̄1(t).

Similar properties hold for the ∆2i(t) = κ
(i)
2 (t)− κ̄2(t).
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We have deliberately chosen to have a single short-term contemporaneous correla-
tion parameter, ρ, and a single gravity parameter, ψ, to keep the model simple (while
still fitting the data well) and to reduce the computational burden. This parame-
terisation implies that the one-step-ahead correlations in log death rates between all
pairs of sub-groups are equal.

The gravity effect operates through the κ parameters which gravitate towards each
other over time. However, the non-parametric age effects, β

(i)
0 (x), do not gravitate

towards each other and it is the group-specific values of these parameters that keep
the groups separate over the long run and in the same order as we have observed
in the past. The key implication of this is that the mortality rates across different
groups will not diverge systematically in the long run, but this does not imply that
they will converge. The gaps between them can fluctuate without any requirement to
converge to some constant value. Further, AR(1) processes (here, ∆1i(t) and ∆2i(t))
do not converge to zero. Again, the underlying principle is that of coherence, but
this does not preclude periods of divergence (as some studies noted above involving
educational attainment have found), it just requires that in the long run there is no
divergence.

3.2 Parameter estimation

The latent state variables and process parameters were estimated using Bayesian
methods, providing a rigorous and coherent framework for deriving point estimates
and for assessing parameter uncertainty. This approach allows us to mitigate prob-
lems that arise as a result of small population sampling variation, as recently high-
lighted by Villegas et al. (2017) and Chen et al. (2017).

We seek to estimate the posterior distribution for β (representing all of the β(i)(x)),

κ (representing all of the κ
(i)
j (t)) and φ (representing all of the process parameters

governing the dynamics of the κ
(i)
j (t)), given the specific information, D, about

deaths by sub-group, year and age. The posterior distribution is proportional to

f1(D|β, κ, φ)f2(β, κ|φ)f3(φ)

where: f1 is the probability of observing D(i, t, x) deaths, given β, κ and φ; f2 is
the density function for β and κ, given φ; and f3 is the prior density for the process
parameters, φ.

In practice, f1 depends only on D, β and κ, and not on φ. For modelling the condi-
tional distribution of the deaths, given κ, we use conditionally independent normal
distributions for the logD(i, t, x) (conditional on κ) with mean log m̂(i, t, x)E(i, t, x)
and variance 1/Dobs(i, t, x), where Dobs(i, t, x) is the observed number of deaths.
This choice of distribution is discussed further in Cairns et al. (2016).

f2(β, κ|φ) is based on the multivariate time series structure for the κ
(i)
j (t). In our
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formulation, β plays no role in f2: that is, our prior assumption is that the β
(i)
0 (x)

are independent of each other and have an improper uniform prior distribution; and
we let the deaths data drive the estimation of the β

(i)
0 (x). For the given combination

of equations (2), (3) and (4), we only need two identifiability constraints to uniquely
identify the posterior density. We choose to fix κ̄1(1) = 0 and κ̄2(1) = 0. Beyond
these constraints, we also need a distributional assumption for ∆(t) = {∆ji(t) : j =
1, . . . , 10; i = 1, 2} at time t = 1. We assume the stationary distribution of the
underlying vector autoregressive process for ∆(1). Since 0 < ψ < 2 and the Zki(t)
are multivariate normal, the stationary distribution of ∆(t) required for ∆(1) exists
and is also multivariate normal.

The use of the log-normal for deaths in combination with pre-specified variances
and the chosen time series model for κ results in a log-likelihood function that is
quadratic in the latent state variables, β

(i)
0 (x), κ

(i)
1 (t) and κ

(i)
2 (t). An advantage

of this specification is that when we use Markov chain Monte Carlo (MCMC) to
sample from the posterior distribution for the parameters, we can use computation-
ally efficient Gibbs sampling from the conditional posterior distributions (i.e., the

multivariate normal) to update the β
(i)
0 (x), κ

(i)
1 (t) and κ

(i)
2 (t).

The log-likelihood does not lead to a simple conditional posterior distribution for ρ,
so we use the Metropolis-Hastings (MH) algorithm to update ρ instead of the Gibbs
sampler (see, e.g., Gilks et al.,1996). Estimation of the posterior distribution for ψ
also uses the MH algorithm for similar reasons.

The parameters v11, v22 and v12 are estimated subject to constraints. Specifically,
vij = νv̂ij, where the prior point estimates for the v̂ij are based on estimated val-
ues for the total Danish population, and the scalar parameter, ν > 0, has to be
estimated.

Uniform prior distributions are assumed throughout, except for the following:

• A Beta(2, 2) prior for ρ to ensure it remains in the range (0, 1).

• A Beta(2, 2) prior for ψ.

• An inverse gamma prior for ν, centred around 1 (shape parameter 11 and
rate parameter 10); since the log-likelihood function is quadratic in relevant
latent state variables, ν has an inverse gamma distribution for its conditional
posterior distribution.
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Figure 3: Estimated age and period effects for the 10 sub-populations.

4 Model fitting results and validation

4.1 Fitted age-specific death rates

Point estimates for fitted age and period effects are plotted in Figure 3. The base
mortality tables (left-hand plot), represented by the β

(i)
0 (x), provide the basis for the

rankings of the different sub-groups in individual years. The κ
(i)
1 (t) period effects

(middle plot) drive changes in the overall level of mortality. The individual series all
follow a consistent downward trend (of generally improving mortality) that steepens

after around 1995. Changes in the κ
(i)
2 (t) (right-hand plot) indicate how the slopes

of the individual mortality curves have been changing. These have tended to rise
over time (by varying amounts) indicating that mortality has improved at a faster
rate at lower ages than at higher ages.

Figure 3 also reveals that the historical pattern of the time series between sub-groups
exhibits a narrowing of the gap over some periods as well as some divergence over
other periods – features that are quite permissible within the structure of the gravity
model. Nevertheless, the model does not allow for long-term trend differentials,
despite this being a major risk concern for the insurance industry. However, it
would require many more years of data than currently available to us to derive a
statistically significant result supporting coherence or otherwise. While exploring
alternative models is, of course, important, what we present is a first step which
demonstrates that the current model provides a good fit to the data.

Estimates for the fitted age and period effects in Figure 3 are the underlying drivers
of the next two figures.
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Figure 4: Fitted age-specific death rates, m(i, t, x), for Danish males Groups 1
to 10 using the CBD-X model, with sub-groupings based on the affluence index
(wealth+15×income) and lockdown at age 67. Top row: by age (55-94) in years
1985 and 2012. Bottom row: by year (1985-2012) for ages 60 and 80.
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Figure 5: Fitted age-specific death rates, m(i, t, x), for Danish males Groups 1 to
10 using the CBD-X model, but with sub-groupings based on income only and no
lockdown at age 67. Top row: by age (55-94) in years 1985 and 2012. Bottom row:
by year (1985-2012) for ages 60 and 80.
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Figure 6: Partial period life expectancy (LE) for Danish males in Groups 1 to 10
for ages 67 (left) and 73 (right). Lines: LEs based on fitted age-specific death rates.
Points: LEs based on observed age-specific death rates.

Figure 4 shows fitted age-specific death rates for the years 1985 and 2012 across
all ages and for ages 60 and 80 across all years. The upper right sub-plot can
be compared to the observed age-specific death rates in Figure 2 (left-hand plot).
The fitted rates smooth out the noise considerably and achieve a sharp distinction
between each of the sub-groups. At the same time, this clarity is achieved without
losing any of the main patterns and characteristics underpinning the observed rates,
such as the change in trend around 1995. From these plots of smoothed fitted age-
specific death rates (and others not included here), we can confirm the findings
observed earlier from plots of observed rates:

• Falling death rates over time at all ages.

• A wide gap in age-specific death rates between the least and most affluent at
younger ages, and a narrower gap at higher ages.

For comparison with alternative grouping methods, equivalent plots are provided in
Figure 5, where the sub-groups are based on income only with no lockdown at age
67. The step change in the age-80 plot in the fitted rates around 1995 for Group 1
that is evident in the bottom right-hand plot in Figure 5 but not in Figure 4 is most
likely to be the result of changes in social assistance and old-age pension provision
in the previous year. After 1995, the sub-group rankings are poor especially after
retirement. Similar plots have been obtained for income only with lockdown at
67, and the affluence index (wealth+15×income) with no lockdown. Out of all
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Figure 7: Posterior distributions for the process parameters µ1, µ2, ρ, ψ, v11 and
v22.

the numerous experiments that we conducted, only affluence with lockdown at 67
produces a consistent ranking across all years and all ages.

Figure 6 plots the development of partial period LEs over time for ages 67 and 73
for each of Groups 1 to 10. The points show LEs derived from observed age-specific
death rates, while the lines show LEs based on fitted age-specific death rates.

Compared with the observed LEs, the fitted LEs have more stable trends, as well
as smoother gaps between the 10 groups from year to year. The model and fitting
procedure achieve this without losing the essential characteristics of the observed
LEs. To illustrate, the fitted LEs at both 67 and 73 (lines) track closely, but more
smoothly, the level and pattern of the observed LEs (points) across all years. In
particular, they pick up both the trend change in 1995 and the changing levels of
inequality, such as the narrowing of the gap over time in LEs between Groups 1 and
2.

In line with earlier findings on the crude LEs, fitted LEs exhibit a wider spread at
younger ages and a slight widening of spreads between sub-groups over the period
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1985 to 2012. These plots highlight the wide gap between the rich and poor, even
in a country with a strong health care and social security system.

4.2 Parameter uncertainty

Posterior distributions for the process parameters are presented in Figure 7. Even
with 28 years of data we can see that there is significant uncertainty in the drift
parameters µ1 and µ2: the key parameters dictating long-term improvement rates.
As discussed below, uncertainties in µ1 and µ2 are also important determinants of
between-group correlations because of the common dependence of future death rates
on the uncertain drifts. The limited number of observations also results in relatively
wide posterior distributions for ρ, v11 and v22. The gravity parameter, ψ, can be seen
to be relatively small with, proportionately, significant variation around its median.

Although we do not plot posterior distributions for the age and historical period
effects, their impact can be seen in the credibility intervals for historical death rates
(i.e, up to 2012) in Figure 8. The impact of parameter uncertainty on forward
correlations is discussed further in the next section.

4.3 Model validation

The stochastic model was subjected to a number of in-sample and out-of-sample
model validation tests. Standardised residuals were not found to exhibit any clus-
tering or obvious cohort effects and had a level of variability consistent with model
assumptions, indicating a good in-sample fit and providing no evidence of overfit-
ting (which would be evident if the standardised residuals had a much lower variance
than 1). Estimates of age and period effects were found to be robust relative to the
choice of estimation period, and out-of-sample experience was found to be consistent
with projections. For further details, see Appendix D.

Additionally, it is important to recognise that Danish mortality data have their own
idiosyncratic features (as identified, for example, by Juel, 2008, and Christensen et
al., 2010), and include features such as the change in trend after 1995 seen in Figure
2). These idiosyncrasies are captured well by our stochastic model across all ages,
years and affluence groups.
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5 Projected mortality

5.1 Projecting future age-specific death rates

We begin by projecting future age-specific death rates. The results in this section,
unless otherwise stated, include full parameter uncertainty. This means that we
draw historical values for the latent state variables (the β

(i)
0 (x) and the κ

(i)
j (t)) and

the process parameters (ρ, ψ, etc.) at random from the simulated MCMC output,

and then use the final year’s (2012) κ
(i)
j (t) plus the selected process parameters to

generate each stochastic projection scenario. (For further details, see Cairns et al.,
2011, Appendix B).

Fan charts for the underlying historical (pre-2012) and forecast (post-2012) age-
specific death rates for ages 65 and 75 are plotted in Figure 8. The relative positions
of the fans remain stable over the period 1985 to 2012, before widening after 2013,
reflecting the projected uncertainty in future rates.

Forward correlations over varying time horizons are considered in Figure 9. These
rise steadily the further into the future we project. Initially, the levels of the curves
reflect the short-term contemporaneous correlations between the period effects. As
the projection horizon lengthens, the shape reflects mean reversion towards the
‘national’ random walk (Equations 3 and 4).

We also see that Group 10 tends to have lower forward correlations than, e.g.,
Group 5, which, in turn, has lower forward correlations than Group 1. The reason is
simply that Group 10 death rates are lower than Group 1 and so, in relative terms,
contribute less than 10% of the risk to the national average. To illustrate, suppose
R1 and R2 are identically distributed risks, and R = pR1 + (1− p)R2. If the weight,
p, attached to R1 is greater than 0.5, then R1 will contribute more to the riskiness
in R, and the correlation between R and R1 will be higher than that between R and
R2.

Figure 9 also shows forward correlations between two stylised pension plans and the
national population. The first (‘white-collar’) pension plan is assumed to be made up
of equal numbers of Groups 8, 9 and 10, the high earners. The second (‘blue-collar’)
pension plan is made up of equal numbers of Groups 2, 3 and 4. We exclude Group
1 from the analysis as it potentially includes more unemployed people. Both plans
have much higher correlations with the national population than any of Groups 1 to
10 separately, reflecting the point that some of the idiosyncratic risk in each of the
three contributing sub-groups has been pooled. We also see that the blue-collar plan
has higher correlations than the white-collar plan, for the same reason that Group
1 has higher correlations than Group 10. It is noteworthy that the correlation term
structure for the white-collar plan is similar to that for UK assured lives both in
terms of level and shape (see the UK Continuous Mortality Investigation of Assured
Lives versus England & Wales males examined in Dowd et al., 2011, Figure 13).
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Figure 8: Fan charts for age-specific death rates at ages 65 and 75 for Danish males
Groups 1 to 10. The charts show: (a) parameter uncertainty in the fitted age-specific
death rates up to 2012, and (b) combined parameter uncertainty and process risk
from 2013. The lower and upper edges of the fans correspond to the 5% and 95%
quantiles, respectively.
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25

We also looked at how the ratio of death rates between different populations,
m(i, t, x)/m(j, t, x) evolved through time, scenario by scenario (Figure 8 does not
allow this to be investigated), in order to check how strongly the principle of co-
herence applies in simulations. Baseline ratios between different groups and ages

are defined by exp
(
β
(i)
0 (x)− β(j)

0 (x)
)

. The long run simulated ratios are centred

on these baseline values, typically with a standard deviation of about 0.14 (slightly
wider than, but still consistent with, the observed historical ratios). Groups that
were closer together historically have a greater chance of crossing over temporarily.
For the same reason, small temporary crossovers are more likely at higher ages.

5.2 Sensitivity to the inclusion of parameter uncertainty

The level and shape of the forward correlation curve depend on whether we include
uncertainty in the underlying process parameters (see, e.g., Cairns, 2013). We in-
vestigate this issue in Figure 10 (left-hand plot) for Group 5 by way of illustration.
This plot shows forward correlations under three experiments:

• Full Parameter Uncertainty (Full PU): full allowance for uncertainty in all pro-
cess parameters and latent state variables based on the posterior distribution.

• Partial PU#1: the drift parameters µ1 and µ2 are fixed at their posterior
medians. All other elements of the posterior distribution remain random.

• Partial PU#2: the process parameters µ1, µ2, ρ, ψ and ν are fixed at their
posterior medians.

From Figure 10 (left-hand plot), we see that the curves for Partial PU #1 and #2
are almost indistinguishable indicating that uncertainty in ρ, ψ and ν has little
impact on the empirical correlations. By contrast, moving from Partial PU#1 or
Partial PU#2 to Full PU results in a big change. Uncertainty in µ1 and µ2 pushes
up uncertainty in κ̄1(t) and κ̄2(t), with a corresponding impact on uncertainty in
sub-group death rates. Since each sub-group has a common dependency on κ̄1(t)
and κ̄2(t) (and, hence, µ1 and µ2), correlations rise, in line with the results in Cairns
(2013).

5.3 Sensitivity to the choice of prior distribution

In Figure 10 (right-hand plot), we pick out Group 5, by way of example, and in-
vestigate the sensitivity of the correlation term structure to changes in the prior
distributions for ρ and ψ. Each has either a Beta(2, 2) or Beta(3, 3) prior distribu-
tion as outlined in the legend. In each case, the three sets of priors produce similar
results in each plot. Although this experiment is a limited one, it suggests that our
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Figure 10: Empirical forward correlations between Group 5 and the total popula-
tion, cor (m(i, t, x), m̄(t, x)), for age 65, showing sensitivity to changes in inputs and
assumptions. Left: impact of different levels of parameter uncertainty: Full parame-
ter uncertainty (PU); Partial PU #1 has µ1 and µ2 fixed at their posterior medians;
Partial PU #2 has µ1, µ2, ρ, ψ and ν fixed at their posterior medians. Other
elements of the posterior distribution remain random. Right: the three lines show
sample forward correlations under three different combinations of prior distributions
for ρ and ψ.

estimates of the correlations are stable over a range of time horizons relative to the
choice of prior.

5.4 Sensitivity to the gravity assumption

Appendix E outlines a modified model with different gravity effects for κ1 and κ2, ψ1

and ψ2 respectively. Although we find that estimates for ψ1 and ψ2 are significantly
different from the single parameter ψ in the original model, we find that key outputs
of interest (the distribution of future death rates and forward correlations) are largely
unaltered.
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6 Applications and extensions

6.1 Applications

Our analysis of mortality across a wide age range is important in the context of the
intended applications. In particular, we seek to model sub-population death rates
with a view to assessing how sub-groups will evolve over time relative to each other
at all included ages. The resulting forward correlation term structure (as defined
in Appendix A) needs to be plausible if the model is going to be useful to pension
plans and insurers as a key component of their risk assessment (see, e.g., Villegas et
al., 2017).

A key current example is hedging an annuity provider’s book of business using an
index hedge, i.e., a hedging instrument that is based on the mortality experience of
the national population. The difference between this and the mortality experience
of the sub-population underlying the annuity provider’s book of business introduces
basis risk in the hedge and hence reduces its effectiveness. The higher the correlation
between the two populations, the lower the basis risk and the greater the hedge
effectiveness (see Blake et al., 2018, section 6.3). For a real world example of an index
hedge specifically designed to minimise basis risk, see the Aegon hedge designed in
2013 by Société Générale (Michaelson and Mulholland, 2015).

Another example concerns concentration and diversification of risk. Per unit of
pension, a pension plan whose membership is concentrated entirely in a single af-
fluence decile will potentially be exposed to greater levels of longevity risk than a
similarly-sized plan whose membership is spread more evenly across all 10 deciles.
The extent of this additional risk can be measured using the approach in this pa-
per, and assessment of strategies to mitigate this risk will require knowledge of the
forward correlation term structure. Complementing this, a plausible forward corre-
lation term structure will aid assessment of the diversification benefits from having
a portfolio of lives that span a range of cohorts rather than one that is concentrated
in a single cohort.

6.2 Extensions

This study has focused on older male mortality in Denmark. For females, we obtain
similar results with the exception that the affluence index is less effective at pro-
ducing the anticipated ranking amongst Groups 1, 2 and 3. Group 1, in particular,
seems to have rather lower mortality than Groups 2 and 3, perhaps suggesting that
reported levels of income and wealth do not reflect the true level of affluence of the
females in Group 1. Further work needs to be done on female mortality, although
we can report that consistent rankings can be observed amongst Groups 4 to 10. In
contrast, a similar study of affluence-based mortality in Norway (Kallestrup-Lamb
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and Rosenskjold, 2017) finds consistent rankings for females across all 10 deciles.

We have not attempted to explore the many other potential covariates and pieces
of information within the SD database. Our study could be extended in a number
of ways. For example, we could look at the explanatory power of including other
covariates, such as marital status, occupation and area of residence; how individuals
migrate between different affluence sub-groups; and how to model mortality above
age 95, in a way that exploits the convergence in death rates at high ages observed
in Figure 4.

Although the model proposed here fits the data well, there are many variants and
generalisations that could be considered. These include: alternative one-year-ahead
correlation structures; alternative gravity effects (e.g., Appendix E); and more gen-
eral models for the drifts of κ̄1(t) and κ̄2(t) (e.g., as remarked in Appendix D.3)
including allowance for trend differentials between the sub-groups.

7 Conclusions

Understanding socio-economic differences in mortality is important both to policy-
makers planning state pension budgets and to private sector providers of mortality-
linked products, such as pensions and annuities. We have found that socio-economic
differences can be modelled more effectively through a combination of two elements:
the choice of multi-population stochastic mortality model, and the choice of predic-
tive variable or covariate.

The multi-population stochastic mortality model we developed explains historical
differences in the mortality of sub-groups of a national population and ensures that
we obtain plausible projections of mortality improvements, which satisfy the follow-
ing five criteria: (a) generate a projected trend that is consistent with the historical
trend in mortality improvements, (b) produce levels of variability consistent with
that observed in the historical data, (c) preserve sub-group rankings, (d) generate
coherent projections across sub-groups, and (e) deliver plausible forward correla-
tions between sub-groups over different ages and future horizons. We used Bayesian
estimation methods to dampen the impact of sampling variation in the sub-group
data – this is important for a relatively small national population such as Denmark.

We had access to a comprehensive and very high quality data set covering the mortal-
ity experience of the Danish population. Our approach allowed us to explain mortal-
ity differences in older Danish males at a much finer level of granularity than hitherto
attempted using income or education as a predictive variable – namely, at the decile
level and for single ages – using just a single composite index to allocate males to
a sub-group. The index, which we call the affluence index, is based on income and
wealth data available on the Statistics Denmark database. The male population
aged 55 to 94 in years 1985 to 2012 was subdivided into 10 sub-groups, based on
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the relative value of their affluence index (measured as wealth+15×income). Prior
to age 67, they would be allocated to a particular sub-group annually, based on the
value of the index in the previous year. In their final year before reaching age 67 –
the state pension age in Denmark for much of the period under investigation – they
would be allocated to a sub-group and treated as remaining in that sub-group for
the remainder of their lives, a procedure we call lockdown. Lockdown at a partic-
ular age combined with the affluence index was found to be critical for ensuring a
consistent ranking of sub-group death rates across all years and all ages.

We experimented with a number of possible predictive variables: income, individual
wealth, household wealth, and linear combinations of these. For most of the variants
considered, results were not satisfactory across all ages and/or in all years. Typically,
we would find consistent and unchanging mortality rankings across age for the higher
(more wealthy) sub-groups, while lower sub-groups might be correctly ranked at
some ages, but not at other ages. In most of our experiments, we found that (a)
high income or high wealth is a strong predictor of low mortality, but (b) low income
or low wealth is not a strong or consistent predictor of high mortality. For example,
a 70-year-old might have little capital, but still have a good pension that allows him
to live a healthy lifestyle. Another 70-year-old might have no pension, but have
substantial personal savings that she can draw on to provide an adequate income in
retirement – income that would not be recorded as such by Statistics Denmark.

Our approach fits Danish male data very well, preserving the socio-economic rank-
ings over the historical period and without losing any of the raw data’s underlying
characteristics. It also generates plausible forecasts of mortality for each of the 10
sub-group and produces a plausible correlation term structure for sub-group mor-
tality rates. In the case of Danish females, there are some cross-overs in the lower
socio-economic groups, but the rankings are preserved in the middle and higher
groups. Our modelling framework makes no assumptions about rankings and so
the model copes perfectly well if there are cross-overs – although large numbers
of cross-overs would indicate that the predictive variable was fairly weak. To the
best of our knowledge, no other investigators have been able to identify covariates
that explain female mortality in the lower socio-economic groups better than our
affluence index, although it remains a puzzle why females in Group 2 sometimes
have worse mortality than those in Group 1. This is a clearly a subject for future
research.

It is important to recognise that the focus of the paper is the affluence index and
the modelling framework rather than the national peculiarities of the particular
data set we have analysed. The peculiarities of the Danish data have not had
any influence over the choice of affluence index or the stochastic mortality model,
although it did influence the lockdown age which was set equal to the main state
pension age in Denmark for most of the period . The implication of this is that
with a suitable dataset and with appropriate adaptation of the affluence index and
lockdown conditions, the same model could be used with other countries.
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Appendices

A Forward correlations

Forward correlations can depend on a number of different random outcomes of in-
terest. We mention two here, but others can be defined. For notational convenience
assume that the last year of observation is year 0. Quantities of interest include
death rates, m(i, t, x) and survivor indices, S(i, t, x) =

∏t
s=1 exp[−m(i, s, x+ s− 1)]

(the ex post probability that an individual aged x at time 0 survives to time t). We
define the correlation functions:

• ρm(i, t, x; j, s, y) = cor(m(i, t, x),m(j, s, y)),

• ρS(i, t, x; j, s, y) = cor(S(i, t, x), S(j, s, y)).

For both, we are likely mainly to be interested in the case t = s, and we focus our
brief comments on this case.

A plausible forward correlation term structure will satisfy the following desirable
criteria (building on Villegas et al., 2017):

FC1 ρm(i, t, x; j, s, y) should only be equal to 1 in the case (i, t, x) = (j, s, y) (non-
trivial correlations).

FC2 For a fixed age x, and time t, ρm(i, t, x; i, t, y) should be close to 1 for y close
to x, and fall away as y gets further away from x.
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FC3 For i 6= j, ρm(i, t, x; j, t, y) < ρm(i, t, x; i, t, y) (i.e., correlations between dif-
ferent ages in the same population are higher than equivalent correlations
between different populations).

Having a reliable and plausible forward correlation term structure is important for
a number of actuarial applications: for example, in assessing the diversification ben-
efits to an insurer of holding distinctly different portfolios of lives, and in assessing
the effectiveness of an index-based longevity hedge on an annuity portfolio.

A popular multi-population model that fails some of the above criteria is that of
Li and Lee (2005) (see Villegas et al., 2017) in which logm(i, t, x) = A(x)K(t) +
β(i, x)κ(i, t), where A(x)K(t) is an age-period component that is common to all
populations, and β(i, x)κ(i, t) is an age-period component that is specific to popula-
tion i. For two populations i and j, for any ages x and y, where β(i, x) = β(j, y) = 0,
we will have ρm(i, t, x; j, t, y) = 1. So the model fails criteria 1 and 2 and, almost
certainly, criterion 3.

B Definitions of the financial variables used in the

study

Gross annual income includes all taxable income, such as wage income, self-employment
income, unemployment insurance benefits, social assistance (from 1994), honoraria
and all types of pension-related income. Note that non-taxable income (e.g. con-
tributions to labour market pension schemes and private pension schemes) are not
included in the gross annual income, as the taxes are deferred until the deccumula-
tion phase.

For retired individuals, there is a break in the gross annual income variable from
1994 onwards. There are several reasons for this break. The level of old age pension
benefits was increased in 1994 to compensate for the government removal of a special
tax rebate previously given to retirees. Moreover, individuals living in retirement
homes prior to 1994 were only given a monthly allowance, but no amount to cover
rent, heating, electricity, etc., as these expenses were paid for by the government.
After 1994, all individuals, irrespective of their living situation, were given the full
amount of old age pension benefits or disability pension benefits.

Household net wealth is calculated as total assets minus total liabilities at year end.
Total assets include real estate, bank deposits, bonds, stocks, mortgage deeds, shares
in firms, the value of cars, boats and mobile homes, as well as cash. Liabilities include
credit secured by a mortgage on real estate, debt to financial institutions, credit
card debt, and all other types of debt to private companies and the government
(e.g., unpaid tax). Prior to 1983, all assets were assigned to the male spouse.
Thereafter, 50% is allocated to each spouse, unless otherwise reported to the tax
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Figure 11: Partial period life expectancies for Groups 1 to 10 from 1985 to 2012
with 90% confidence bands (grey fans).

authorities. From 1987 to 1996, net wealth also included the taxable equity value
of self-employed businesses (which can be negative). In 1997, a wealth tax was
abolished, which resulted in the equity value of self-employed companies, the value
of some mortgage deeds, shares in firms, and the value of cars, boats and mobile
homes no longer being reported in the wealth measure.

C Poisson uncertainty in empirical life expectan-

cies

Figure 11 (an augmented version of the right-hand plot of Figure 2) shows empirical
partial period LEs with 90% confidence bands added. Confidence bands reflect
uncertainty in point estimates of the LE based on the conditional Poisson model
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for deaths. It can be seen that the confidence intervals are consistent, relatively
narrow (close to 0.25 years) and generally do not overlap. Graphically, the inclusion
of confidence intervals supports the hypothesis that the groups are ranked from 1
to 10 in terms of low to high life expectancy.

D Model validation

D.1 Standardised residuals

Standardised (Pearson) residuals based on the Poisson model for deaths are defined
as

ε(i, t, x) = (m̂(i, t, x)−m(i, t, x)) /
√
m(i, t, x)/E(i, t, x).

If the model fits well, then the ε(i, t, x) should be approximately i.i.d. standard
normal. Heat plots of these (see, e.g., Cairns et al., 2009) for the 10 affluence groups
are provided in Figure 12 using the posterior mean for the m(i, t, x). As a graphical
diagnostic, each of these plots looks almost completely random, with no systematic
clustering, and hence consistent with the independence criterion. The ε(i, t, x) have
mean −0.07 and variance 1.004, which is consistent with standard normality, and
a QQ plot of the residuals against a standard normal is reasonably linear with
only marginal evidence of a fat tail (kurtosis = 3.14). There is also no evidence of
overfitting (which would be evident if the standardised residuals had a much lower
variance than 1).

These results suggest that the fit is much better than can typically be achieved for
some other populations or models (see, e.g., Cairns et al., 2009, Section 6.1.2). This
finding allows us to conclude that the model provides a satisfactory in-sample fit
over the period 1985-2012.

D.2 Robustness

We tested for the robustness of parameter estimates relative to the range of years,
following Cairns et al. (2009). Parameter estimates using data from three periods:
1985-2012; 1995-2012; and 1995-2004. By way of example, results for Group 5 are
plotted in Figure 13. We see that the broad shape of each of β

(5)
0 (x), κ

(5)
1 (t) and

κ
(5)
2 (t) is largely unchanged in the years where estimates overlap. The approximate

parallel shifts in κ
(5)
1 (t) and κ

(5)
2 (t) are the artificial result of the constraint that

κ̄1(t) = κ̄2(t) = 0 in the first year of observation (1985 or 1995). The same con-
straints result in a small shift (from the κ̄1(t) constraint) and a tilt (from the κ̄2(t)

constraint) in the β
(5)
0 (x) curves. Based on this limited test, there is no evidence to

suggest that the model fit is not robust.
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Figure 12: Plots of standardised (Pearson) residuals, ε(i, t, x), for affluence groups
1 to 10. Deep orange: ε > 0, close to 0. Light orange: ε > 0, further from 0. Deep
blue: ε < 0, close to 0. Light blue: ε < 0, further from 0.
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D.3 Optimal historical calibration period

For out of sample backtesting, we need, first, to choose an historical period (not
including the most recent years) to which the model is calibrated. We then simulate
from the year after the end of the calibration period up to the most recent year that
has been actually observed and compare these with the forecasts. To choose the
best calibration period, we follow the approach of Booth et al. (2002). We focused
on the posterior means of the fitted κ̄1(t), this being the main driver of uncertainty
in the level of mortality in all groups. Over the full period 1985-2012, we observe a
change in trend around 1995 (see Figure 3 for the individual κ

(i)
1 (t)). Booth et al.

(2002) remark that trend changes can and do happen (e.g., in Australia) and they
propose a method for choosing the optimal start date for calibration. We found the
optimal start date to be 1995.

Alternative approaches that are less sensitive to the choice of start date have been
proposed that generalise the random walk to allow for structural changes or jumps
in the random-walk drift: see, for example, Börger et al. (2014) and van Berkum et
al. (2016).

D.4 Out-of-sample backtesting

Following Lee and Miller (2001) and Dowd et al. (2010), we compare out-of-sample
projections of partial period life expectancy (LE) from age 67 based on a model
calibration using data from 1995 to 2004. Results are presented in Figure 14. Grey
fans show the out-of-sample projections of the LE with no allowance for sampling
variation. Red fans show the outcome for LEs using simulations of the underlying
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death rates based on draws from the posterior distribution. From a graphical point
of view, the actual outcomes (narrower red fans) for the 10 groups look reasonable
with some groups above and some below their central projection. However, the plots
exhibit relatively high LEs for Groups 9 and 10. While this is certainly compatible
with the current model structure, it might indicate evidence of an alternative model
structure, e.g., with a different correlation pattern or with differential sub-group
trends. We leave this for further work.

E A more general model

A variant of the original model outlined in Equations (3) and (4) that we also
considered was

κ
(i)
1 (t) = κ

(i)
1 (t− 1)− ψ1

(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
+ µ1 + Z1i(t) (6)

κ
(i)
2 (t) = κ

(i)
2 (t− 1)− ψ2

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
+ µ2 + Z2i(t) (7)

where there are now two gravity parameters, ψ1 and ψ2, for the κ1 and κ2 period
effects respectively. We will refer to this new model as M2 and to the original model
as M1. Although this represents a modest change from the original model, it is
important to test how robust forward correlations are to variations in the model.

Outputs for M2 versus M1 are summarised briefly in Figures 15 and 16. The only
significant difference between the models is that ψ1 and ψ2 tend to be lower than ψ
in model M1 (and, to a lesser extent, ρ). In spite of this, forward correlations for M2
are very similar to M1: in part, because forward correlations are heavily dependent
on uncertainty in µ1 and µ2 as much as ψ1 and ψ2.
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Figure 14: Fan charts of historical and projected partial period life expectancy (LE)
from age 67 for each of affluence Groups 1 to 10. Grey fan: credibility intervals (5%
to 95% quantiles; here simulated prediction intervals with allowance for Bayesian
parameter uncertainty) for underlying LE (historical and projected) using data from
1995 to 2004 and simulated mortality from 2005 to 2012. Red fan: credibility
intervals using data from 1995 to 2012.
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Figure 15: Posterior distributions for process parameters in model M2 (black) and
corresponding parameters in model M1 (grey).
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Figure 16: Left: forward correlations at age 65 for Group 5 versus the national
population for M1 (black line) and M2 (red dashed). Right: credibility intervals for
M1 (black/grey fans) and M2 (red).


