MODELS FOR CLASSIFYING
POLICYHOLDER LAPSE
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THE ISSUE

* Higher lapses in life insurance may result in significant loss of premiums

* A lapse can be voluntary or involuntary, wildly varying reasons possible

* Finding key factors in common however helps act proactively on people
who might lapse




RESULTS - A QUICK SNAPSHOT

- Achieved an 80% accuracy for classifying first-year lapse, and a 90%
accuracy for lapse by 3rd year

- Certain models performed better in short term, others better in
longer term

- Similarly, certain variables were more important in shorter-term,

others in longer-term.




ACTUARIAL LITERATURE REVIEW

* Economic status of household affects policyholder behaviour

* Products with better rates might result in more policyholders wanting to
replace their existing policy

* Other variables such as commission structure or policyholders’ education
play a role as well




DATA COLLECTION AND PREPARATION

* Updated datasets taken several months apart for analysis and model testing
* In-force and lapsed policyholders for Ordinary Life taken, ages 18-65
* Variables like modal premium, age, cover amount, agent code present

* Variables extrapolated include no. of payments, no. of riders, no. of

dependents, years left to maturity




PRELIMINARY DATA ANALYSIS

* Lapse defined as paying the last premium within 3 years from date of issue

* No significant differences/trends found between lapse rates from datasets

taken at different months




PRELIMINARY DATA ANALYSIS

* Relations between lapse rate and different variables including:
* Cohort
* Product type
* Age
* Agency selling the policy,

and distributions of certain variables like number of payments were studied,

as was seasonality in lapses




PRELIMINARY DATA ANALYSIS
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PRELIMINARY DATA ANALYSIS
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PICKING THE RIGHT MODEL

* Right model for the right task
* Complexity

* Interpretability

* Variables used




PICKING THE RIGHT MODEL
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Naive Bayes - sample graphs
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C5.0 - a sample graph
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TRAINING AND TESTING

e GLM used as benchmark, other models like CART, C5.0, Naive
Bayes tested

* Models tested on 2 datasets in 2018 and 2019

* Accuracy and Fl-Score used as 2 performance metrics




RESULTS
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RESULTS
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USING THE RESULTS

Name Policy # Age Bracket Gender
John Doe 271828182 30-40 M

Jane Doe 987654321 50-60 F

Bob Ross 123456789 20-30 M

Fred Rogers 314159265 20-30 M

Premium Size Lapse Risk Priority Cross-Selling Opportunities
20000-50000 Medium High Savings Plan 5

50000-100000 Low Medium Pension Annuity
2000-5000 High Medium 5-Year Term Life
10000-20000 Low Low None




USING THE RESULTS

Agent Product Prob_Y1

Agent 1 Product 1 0.89

Agent 1 Product 2 0.74

Agent 1 Product 3 0.82

Agent 2 Product 4 0.93

Agent 3 Product 4 0.88

Agent 4 Product 4 0.91

Agent 5 Product 1 0.73 0.86 0.43
Agent 5 Product 2 0.46 0.44 0.13
Agent 6 Product 2 0.74 0.85 0.88




CONCLUSION

* Certain classification models can be used to predict whether a

policyholder is likely to lapse in a given period of time

* The results of these models can be used to proactively sort customers
with missed payments, in order of priority. ldeally any products
matching the customer profile (using a product recommendation

system for example) could be used to cross-sell.

* These results can also be used to retrospectively analyze which

agents/products perform well or poorly in terms of persistency







