MORTALITY OF ASSURED LIVES IN SOUTH AFRICA

CONTINUOUS INVESTIGATION 1956-58

[The following is a slightly abbreviated version of a report by the Mortality Standing Committee of the Actuarial Society of South Africa, which has been made available by courtesy of that Society. The report was discussed at meetings of the Society in Johannesburg on 28th November 1960 and in Cape Town on 23rd January 1961; abstracts of the discussions and a written reply thereto on behalf of the Committee have been placed in the Faculty Library.— Editor T.F.A.]

(1) Origin and scope of investigation

At the 1956 Annual General Meeting of the Society it was decided to ask life offices to contribute appropriate data to a Continuous Mortality Investigation to be conducted under the auspices of the Society.

Data was called for in respect of ordinary life business, i.e. industrial and funeral business, annuity business, group assurance schemes and deferred annuity pension schemes were to be excluded. The subdivision of the data was basically as follows:

- (i) Territory: Union, Central African Federation, East Africa.
- (ii) Race: Europeans, Africans, Indians and Coloured lives.
- (iii) Medical and Non-medical separately.

Cases not accepted at ordinary rates for the race concerned were to be excluded. Separate returns were to be made in respect of female lives unless the proportion of female lives was small. Offices were asked if possible to make returns both on a sum assured basis and on a number of policies basis. Selection was to be traced for three years.

(2) Response to investigation

The first returns received related to the census date falling in the year 1956. Eleven offices commenced contributing at that stage, one further office commenced in 1957, and one in 1958. The thirteen

offices represent some 70% of the industry, judged by premium income. It is hoped eventually to cover at least 90% of the industry.

(3) Selection of data for first investigation

Table 1 sets out the totals of the available data in the various subsections.

It was decided to concentrate on the subsection with the largest amount of data, as this was most likely to produce reliable results. Other portions of the experience will be investigated later as time permits, and as the volume of data becomes sufficiently large to produce reliable results.

The subsection of the data chosen for the first investigation was therefore in respect of Europeans in the Union. It was decided to produce a table of graduated ultimate (3 years duration and over) rates of mortality, combining medical and non-medical business, and to use these rates of mortality as a standard table to compare the medical experience with the non-medical experience. Time did not permit of the investigation of the select portion of the data.

It should be noted that while the subsection is described as being in respect of Europeans, some offices found it impracticable entirely to exclude non-European lives. A small proportion of non-European lives is therefore included in the experience. The experience is also preponderantly in respect of male lives, the proportion of female lives being small.

All offices participating in the investigation made returns on a policies basis, whereas five offices did not make a sum assured basis return, and one other office did so for only part of the period. The investigation was therefore made on a policies basis.

(4) Period of investigation and volume of data

Seven offices had made returns in respect of four census dates, i.e. 1956 to 1959 inclusive. Of the other six offices, five made three returns and one made two returns.

A decision had to be made on whether to adopt a period for the investigation such that all offices contributed for the same period. An analysis of the combined experience of all offices for the 1956, 1957 and 1958 census returns separately showed a sufficient degree of correspondence for the whole of the data to be adopted as the basis of the investigation. The experience therefore covers the census dates falling in the calendar years 1956, 1957 and 1958 together with the associated deaths.

The volume of the data may be judged from the following figures:

	Exposed to risk	Deaths
Medical Non-medical	786,033·5 744,253·0	8,688 2,992
Total	1,530,286.5	11,680

The detailed figures are set out in Tables 2-4.

Table 1

Totals of exposed to risk and deaths for various subsections of the experience

	Durations (0-2 years	Durations 3 ye	Durations 3 years and over		
	Exposed to risk	Deaths	Exposed to risk	Deaths		
Europeans: Medical Union Central African	162,915	425	786,034	8,688		
Federation	20,800	56	69,488	492		
East Africa	8,062	11	18,304	123		
Europeans : Non- medical						
Union Central African	422,890	850	744,253	2,992		
Federation	45.526	84	52,012	168		
East Africa	9,193	9	5,781	7		
Coloureds	9,413	18	10,543	50		
Natives	1,488	2	11,972	47		
Indians	24,091	61	46,380	346		

(5) Graduation

Ungraduated rates of mortality for half-ages were derived using the "modified policy year" method of Haynes (J.I.A., vol. 69, p. 154). Ultimate rates of mortality for the policy year commencing in financial year N are given by

 $q_{x-\frac{1}{2}}$ = [Deaths after policy anniversary in year N aged x nearest birthday at end of year N plus deaths before policy anniversary in year (N+1) aged x nearest birthday at end of year N]÷[In force at

end of year N aged x nearest birthday plus deaths after policy anniversary in year N aged x nearest birthday at end of year N].

The ungraduated rates of mortality (medical and non-medical combined) for durations 3 years and over, so arrived at, are set out in Table 4. The ungraduated values of $q_{x-\frac{1}{2}}$ for x from 17 to 96 inclusive were used to produce graduated values of $q_{x-\frac{1}{2}}$ for x from 27 to 86 inclusive, using the Spencer 21-term summation formula. The calculations were done on an electronic computer. The graduated values for x from 77 to 82 inclusive were adjusted by inspection to improve the run of the figures.

The usual tests of graduation were applied over the range from ages $26\frac{1}{2}$ to $85\frac{1}{2}$. The progression of the rates is not ideally smooth, but is certainly smooth enough for practical purposes. Expected deaths over the range are 11,264.8 as against actual deaths of 11,265. The individual deviations seldom exceed twice the standard error of the deviations. The successive deviations change sign frequently as do the accumulated deviations. The graduation was considered satisfactory and was adopted.

Table 2
South African Assured Lives 1956-58 (durations 3 years and over)
Exposed to risk, deaths and observed rates of mortality
Europeans—Union—Medical

Nearest age x	Exposed to risk	Deaths	$q_{x-\frac{1}{2}}$	Nearest age x	Exposed to risk	Deaths	T, 1
15	46.75		.00000	60	10834.5	212	-01957
16	82.75	i —	.00000	61	$9782 \cdot 75$	184	-01881
17	157.75	1	.00634	62	9007	232	02576
18	482.75		.00414	63	8493.75	228	02684
19	710.75	2 2	00281	64	7969-5	180	.02259
20	1132-25	4	.00353	65	7220	187	-02590
21	$2052 \cdot 5$	2	-00097	66	6734.5	222	-03296
22	3069.5		•00130	67	$6300 \cdot 25$	264	-04190
23	4039.5	8	-00198	68	5875.5	231	+03932
24	5032	5	-00039	69	$5482 \cdot 5$	251	.04578
25	6304.5	5	-00079	70	5010	199	.03972
26	$7955 \cdot 25$	9	.00113	71	$4357 \cdot 25$	190	·04361
27	$9749 \cdot 25$	8	.00082	72	3874.75	217	-0.5600
28	$11355 \cdot 25$	7	-00062	73	3656.5	190	·05196
29	$12511 \cdot 25$	20	-00160	74	$3507 \cdot 75$	192	·05474
30	13733-25	16	-00117	75	3341-5	210	-06285
31	14921.75	25	-00168	76	3 050·5	266	-03720
32	16082.75	32	-00199	77	2676	229	-08558
33	$16993 \cdot 25$	24	.00141	78	2345.75	192	+08185
34	$17785 \cdot 25$	21	·00118	79	1941.5	185	·09529
35	19041-25	36	-00189	80	1640-5	155	-09448
36	20111	45	.00224	81	1394	168	-12052
37	$20613 \cdot 25$	49	.00238	82	1145.75	131	·11434
38	20612	50	.00243	83	886-75	119	·13420
3 9	$20712 \cdot 25$	53	.00256	84	656.5	74	·11272
40	21242.5	50	.00235	85	533.25	60	·11252
41	$21844 \cdot 25$	81	$\cdot 00371$	86	409.75	71	-17328
42	22598.75	88	.00389	87	301.75	49	·16239
43	23573	73	.00310	88	211.5	31	-14657
44	$24593 \cdot 5$	114	00464	89	166	33	-19880
45	24741.5	94	-00380	90	122.5	12	-09796
46	24973	113	-00452	91	102	23	·22549
47	25097.75	147	-00586	92	55.5	13	-23423
48	$25059 \cdot 5$	171	.00682	93	40	12	·30000
49	24986	177	.00708	94	19.5	3	·15383
50	24150-25	174	.00720	95	14.75	3	-20339
51	23718.5	186	00784	96	14.5	6	·41379
52	23137	226	.00977	97	8	1	·12500
53	21579	205	.00950	98	6		-00000
54	19435	180	.00926	99	$\frac{3}{2}$	2	1-00004
55	16093.75	191	.01187	100	3		-00000
56	$14348 \cdot 25$	194	01352	and over			
57	14013.75	157	.01120			ļ	
58	13624.25	199	·01461	1	786,033.5	8,688	
59	12740.75	213	.01672	II.	,	1 7777	1

Table 3

South African Assured Lives 1956-58 (durations 3 years and over)

Exposed to risk, deaths and observed rates of mortality

Europeans—Union—Non-medical

Nearest age x	Exposed to risk	Deaths	$q_{x-\frac{1}{2}}$	Nearest age x	Exposed to risk	Deaths	$q_{x-\frac{1}{2}}$
15	162.5		-00000	60	2238-25	38	-01699
16	272.5		.00000	61	1963	46	01033
17			.00000	62	1732.5	41	02367
	470.25						
18	2000	5	.00250	63	1552.75	41	02640
19	3052.75	5	-00164	64	$1302 \cdot 25$	37	·02841
20	5182	10	.00193	65	1091.75	27	+02473
21	8766.25	18	∙00205	66	$929 \cdot 25$	30	-03228
22	12521	28	.00223	67	$842 \cdot 25$	31	-03681
23	15077	21	-00139	68	$701 \cdot 25$	42	-05989
24	17490.5	32	·00183	69	550	26	.04727
25	$19958 \cdot 25$	32	-00160	70	$425 \cdot 25$	26	-06114
26	22460.25	34	-00151	71	330.25	22	06662
27	24524.5	27	-00110	72	279.75	12	.04290
$\frac{28}{28}$	25754·75	35	-00136	73	214.5	17	.07925
29	25972	30	.00136	74	147.5	14	01323
90	05054.05	20	00112		0.0		00709
30	25854:25	29	00112	75	92	9	-09783 -10667
31	25647.25	39	00152	76	75	8	
32	25560.5	34	.00133	77	60.25	8 2 5	.03320
33	25420.5	46	.00181	78	39		.12821
34	25312.75	32	.00126	79	20.75	1	-04819
35	25526	48	.00188	80	9.5	4	·42105
36	25904.75	59	-00228	81	3		-00000
37	$25485 \cdot 5$	69	$\cdot 00271$	82	1.75		·00000
38	$24748 \cdot 25$	60	.00242	83	4.25	2 1	-47059
39	24006.5	51	.00212	84	3	1	-33333
40	23792.75	69	-00290	85	,		.00000
41	23158-25	58	.00250	86	$\frac{2}{1}$		-00000
42	22805.5	86	00237	87	Ī		.00000
43	22745·5	86	00378	88	,	_	-00000
44			00376				
44	22619 75	85	00/370	80	_	_	
45	$21335 \cdot 25$	104	.00487	90			
46	20418.25	93	.00455	91	_	_	
47	19676.25	109	0.00554	92	-		
48	18550.25	109	-00588	93	1		•00000
49	17063.75	136	.00797	9.4	<u> </u>	_	
50	15011-75	126	.00839	95		_	
51	13469.75	114	.00846	96			
52	12128-25	96	-00791	97			
53	10422.75	92	-00883	98		_	
54	8236.75	94	.01141	99	_	_	
55	5814.75	75	01290	100	1	_	.00000
56	4689.5	66	01230	and over			00000
57	4034.75	59	01462	and over	744,253.0	2,992	1
58					744,400°U	2,992	1
	3494.25	59	01688			1	
59	3039.25	50	.01645	1		1	}

Table 4
South African Assured Lives 1956-58 (durations 3 years and over)
Exposed to risk, deaths and observed rates of mortality
Europeans—Union—Medical and Non-medical combined

						l i	
Nearest age x	Exposed to risk	Deaths	$q_{x-rac{1}{2}}$	Nearest age x	Exposed to risk	Deaths	$q_{x-\frac{1}{2}}$
15	209.25		.00000	60	13072.75	250	 -0191:
						230	0195
16	355.25		.00000	61	11745.75		
17	628	1	·00159	62	10739.5	273	.0254
18	$2482 \cdot 75$	7	$\cdot 00282$	63	10046.5	269	-0267
19	3763.5	7	.00186	64	9271.75	217	0234
20	6314.25	14	.00222	65	8311.75	214	-0257
$\overline{21}$	10818.75	20	00185	66	7663.75	252	-0328
22	15590.5	32	.00205	67	7142.5	295	-0413
23	19116.5	29	.00152	68	6576.75	273	.0415
			00152	69	6032.5	277	.0459
24	$22522 \cdot 5$	37	.00104	09	0032.9	211	0400
25	$26262 \cdot 75$	37	-00141	70	$5435 \cdot 25$	225	.0414
26	30415.5	43	.00141	71	4687.5	212	.0452
27	34273.75	35	.00102	72	4154.5	229	.0551
28	37110	42	-00113	73	3871	207	-0534
29	$38483 \cdot 25$	50	.00130	$7\frac{7}{4}$	3655.25	206	.0563
30	39587.5	45	.00114	75	3433 ·5	219	-0637
						274	.087€
31	40569	64	.00158	76	3125.5		-0844
32	$41643 \cdot 25$	66	.00158	77	$2736 \cdot 25$	231	
33	42413.75	70	-00165	78	2384.75	197	.0826
34	43098	53	.00123	79	$1962 \cdot 25$	186	-0947
35	44567-25	84	-00188	80	1650	159	-0963
36	46015.75	104	.00226	81	1397	168	·1202
37	46098.75	118	-00256	82	1147.5	131	·114
38	45360.25	110	.00243	83	891	121	.1358
39	44718.75	104	00243	84	659·5	$1\overline{5}$	·1137
						0.0	110
40	$45035 \cdot 25$	119	⋅00264	85	$535 \cdot 25$	60	·112]
41	45002.5	139	•00309	86	410.75	71	.1728
42	$45404 \cdot 25$	174	.00383	87	302.75	49	-1618
43	46318.5	159	.00343	88	211.5	31	·1468
44	47213.25	199	.00421	89	166	33	.1988
4	40070 75	198	·00 43 0	90	122.5	12	-0979
45	46076.75				102	23	•2254
46	45391-25	206	.00454	91			·2342
47	44774	256	.00572	92	55.5	13	-2342
48	43609.75	280	.00642	93	41	12	
49	42049.75	313	.00744	94	19.5	3	·1538
50	39162	3 00	.00766	95	14.75	3	•203
51	37188-25	300	-00807	96	14.5	6	•4137
52	35265-25	322	00913	97	8	1	.1250
53	32001.75	297	00918	98	6	l <u>-</u>	-0000
54	27671.75	274	.00928	99	2	2	1.0000
	21000 5	ace	01014	100	4		-0000
55	21908.5	266	.01214		4		-0000
56	19037.75	260	·01366	and over			
57	18048.5	216	-01197				
58	17118.5	258	$ \cdot 01507 $		1,530,286.5	11,680	
59	15780	263	.01667				

Table 5

South African Assured Lives 1956-58 (durations 3 years and over) Graduated rates of mortality and comparison of actual deaths with expected deaths computed from graduated rates of mortality

European—Union—Medical and Non-medical combined

Nearest age <i>x</i>	Graduated $q_{x-\frac{1}{2}}$	Actual deaths	Expected deaths		Expected at hs		ulated ation	Standare error
				+		+		
15	·00140		-3		.3		-3	.5
16	.00162		.6		.6		.9	.8
17	.00192	1	1.2	_	.2		$1 \cdot 1$	1.1
18	.00207	7	$5\overline{.1}$	1.9		-8		$2\cdot 3$
19	.00210	7	7.9	_	-9		.1	2.8
20	·00206	14	13.0	1.0	_	.9	_	3.6
21	-00198	20	21.4		1.4		.5	4.6
22	-00186	32	29.0	3.0		2.5		5.4
23	.00173	29	33.1		4.1	_	1.6	5.8
24	·00160	37	36.0	1.0			·6	6.0
25	·001 46	37	38.3	_	1.3		1.9	6.2
26	.00135	43	41.1	1.9		_		6.4
27	$\cdot 00126$	35	43.2	_	8.2	_	8.2	6.6
28	.00123	42	45.6		3.6		11.8	6.8
29	.00123	50	47.3	2.7	_		9.1	6.9
30	·00128	45	50.7		5.7		14.8	7.1
31	.00135	64	54.8	9.2	_	_	5.6	7.4
32	-00146	66	60.8	5.2			•4	7.8
33	.00158	70	67.0	3.0	_	2.6	_	8.2
34	·00172	53	74.1		21.1		18.5	8.6
35	-00188	84	83.8	.2	_ !		18.3	9.2
36	.00204	104	93.9	10.1	— i		$8 \cdot 2$	9.7
37	.00222	118	102.3	15.7		7.5	_	10.1
38	.00241	110	109-3	.7		$8 \cdot 2$		10.5
39	.00261	104	116.7	l –	12.7	_	4.5	10.8
40	.00282	119	127.0		8.0	Manda	12.5	11.3
41	.00306	139	137.7	1.3		_	11.2	11.7
42	.00334	174	151.7	22.3	_	11.1	_	12.3
43	.00367	159	170.0	-	11.0	.1	-	13.0
44	.00407	199	192.2	6.8	-	6.9		13.9
45	.00454	198	209.2		11.2	_	$4 \cdot 3$	14.5
46	.00506	206	229.7	_	23.7	_	28.0	15.2
47	·00564	256	252.5	3.5			24.5	15.9
48	.00625	280	$272 \cdot 6$	7.4		_	$17 \cdot 1$	16.5
49	·00689	313	289.7	23.3	_	6.2	_	17.0
50	·0075 4	300	295.3	4.7	_	10.9	_	17.2
51	.00822	300	305.7		5.7	5.2		17.5
52	.00891	322	314.2	7.8		13.0		17.7
53	.00963	297	308.2	<u> </u>	11.2	1.8		17.6
54	·01044	274	288.9		14.9		13.1	17.0

Table 5 (contd.)

Nearest age <i>x</i>	Graduated $q_{x-\frac{1}{2}}$	Actual deaths	Expected deaths		Expected ths	Accum devia	ulated ation	Standard error
				+	_	+		
55	·01139	266	249.5	16.5	_	3.4		15.8
56	.01251	260	238.2	21.8		$25 \cdot 2$		15.4
57	.01382	216	249.4		33.4		8.2	15.8
58	.01527	258	261.4		3.4		$11.\overline{6}$	16.2
59	01684	263	265.7		2.7		14.3	16.3
60	.01853	250	242.2	7.8		-	6.5	15.5
61	.02040	230	239.6		9.6		16.1	15.4
62	.02247	273	241.3	31.7	_	15.6		15.5
63	.02481	269	249.3	19.7		35.3	_	15.8
64	.02745	217	254.5	_	37.5	_	$2 \cdot 2$	16.0
65	.03033	214	252.1	_	38.1	_	40.3	15.9
66	.03329	252	255.1		3.1		43.4	16-0
67	0.03621	295	258.6	36.4			7.0	16.1
68	.03907	273	257.0	16.0		9.0		16.0
69	.04192	277	252.9	24.1		33.1	_	15.9
			i					
70	·04490	225	244.0		19.0	14.1	_	15.6
71	.04819	212	225.9		13.9	.2	-	15.0
72	.05204	229	216.2	12.8		13.0		14.7
73	.05661	207	219-1		12.1	.9		14.8
74	∙06197	206	226.5	_	20.5		19.6	15.0
75	-06810	219	233.8	_	14.8		34.4	15.3
76	$\cdot 07483$	274	233.9	40.1		5.7		15.3
77	08191	231	224.1	6.9		12.6		15.0
78	-08904	197	212-3		15.3		2.7	14.6
79	00504	186	188.2		$\frac{100}{2 \cdot 2}$		$\frac{7}{4} \cdot 9$	13.7
00	10300	150	100.0	İ	10.9		15.0	13.0
80	10263	159	169.3	15.	10.3	1	15.2	12.4
81	·10920	168	152.6	15.4	1.0	·2	1.0	11.5
82	·11572	131	132.8		1.8		1.6	
83	12222	121	108.9	12.1	10.0	10.5		10.4
84	·12882	75	85.0		10.0	.5		9.2
85	.13560	60	72.6		12.6		$12 \cdot 1$	8.5
86	-14288	71	58.7	12.3	_	·2	_	7.7
87	15102	49	45.7	3.3		3.5		6.8
88	.16004	31	33.8	_	2.8	.7		5.8
89	·16994	33	28.2	4.8		5.5	_	5.3
90	·18072	12	22.1		10.1	_	4.6	4.7
90 91	19238	23	19.6	3.4			1.2	4.4
$\frac{91}{92}$	20492	13	11.4	1.6		-4		3.4
	21834	12	9.0	3.0		3.4		3.0
$\frac{93}{94}$	21834	3	4.5	3.0	1.5	1.9	_	2.1
								1.0
95	•24782	3	3.7	0.0	.7	1.2		1·9 1·9
96	•26388	6	3.8	2.2	1.3	3.4		
97	-28082	1	2.2	-	1.2	2.2	_	1.5
98 99	·29864 ·31734		1.8	1.4	1.8	1·8		1.3
90	01101	_						
100	·33692	-	.3	-	.3	1.5		•5
101	.35738	-	.7	-	.7	-8	_	·8
102	·37872		·4		·4	·4		.6
		11,680	11,679.6	426.0	425.6			887-6

The remaining graduation problems concerned the completion of the two ends of the curve. At the young ages the data shows a "hump" in the curve round about ages 18-22, presumably due to accidental deaths. There is a corresponding "hollow" about age 28. It was decided to complete this portion of the curve by graphic graduation, and to preserve the features shown by the crude rates of mortality. The usual tests of graduation were applied, and showed the graphic graduation to be satisfactory.

At the high ages an attempt at a graphic graduation showed that a second degree polynomial would be appropriate. The formula

$$q_{85\frac{1}{2}+h} = q_{85\frac{1}{2}} + \cdot 0077h + \cdot 00044h^2$$

was adopted after it had been established that it would fit the data satisfactorily.

Table 5 shows the graduated rates of mortality for ages $14\frac{1}{2}$ to $101\frac{1}{2}$, together with the actual and expected deaths, deviations, accumulated deviations and the standard errors of the deviations. The standard error has been taken as the square root of the expected deaths.

(6) Comparison with standard tables

For the purposes of identification the mortality table arrived at in this investigation is designated the S.A.56/58 Ultimate Table.

The following table compares ultimate rates of mortality from the S.A.56/58 Ultimate Table (see Table 6) with those from various standard tables. The figures in parentheses are the S.A.56/58 rates of mortality as a percentage of the standard table rates of mortality.

Age	S.A.56/58	A1924-29	A1924-29 Light	A1949-52	C.S.O.58 Basic
15	·00150	·00206 (73)	·00164 (91)	-00111 (135)	.00056 (268)
20	.00203	00235 (86)	00172 (118)	00111 (183)	00084 (242)
25	·00140	.00235 (60)	00190 (74)	00112(125)	00093 (151)
30	.00131	·00241 (54)	·00207 (63)	·00116 (113)	·00108 (121)
35	·00196	·00286 (69)	00231 (85)	·00132 (148)	00141 (139)
40	·00294	.00388 (76)	00310 (95)	·00188 (156)	·00236 (125)
45	.00479	00527 (91)	00426 (112)	·00330 (145)	·00403 (119)
50	.00788	·00764 (103)	·00635 (124)	·00599 (132)	·00671 (117)
55	.01193	·01190 (100)	·00983 (121)	·01035 (115)	·01093 (109)
60	·01944	01973 (99)	01574 (124)	$\cdot 01720 (113)$	01756 (111)
65	.03182	·03188 (100)	02662 (120)	.02810 (113)	02761 (115)
70	.04648	0.05327 (87)	04666 (100)	04543 (102)	04330 (107)
75	.07142	08497 (84)	07856 (91)	07257 (98)	·06380 (112)
80	·10592	12910 (82)	12019 (88)	11369 (93)	09564 (111)
85	·13913	18676 (74)	·17254 (81)	-17282 (81)	14012 (99)

 $q_x U ltimate$

+24164 (77)

-25168 - (74)

-25611 (73)

90

N.B. The C.S.O.58 Basic Table is a recent American table that is stated to represent the average company ultimate mortality on standard ordinary business for the period 1950 to 1954.

 $\begin{array}{c} {\bf Table} \ 6 \\ \\ {\bf S.A.56/58} \ Ultimate} \ {\bf Table} \ (durations \ 3 \ years \ and \ over) \end{array}$

Europeans—Union—Medical and Non-medical combined

x	q_x	l_x	e_x	x	q_x	l_x	e_x
15	.00150	9,999,999	55.403	60	.01944	8,084,393	16.050
16	00179	9,984,999	54.486	61	02140	7,927,232	15.368
17	.00201	9,967,126	53.584	62	.02360	7,757,590	14.705
18	00201	9,947,092	52.692	63	.02610	7,574,511	14.060
19	.00209		51.802	64		1 1 1 1 1 1 1 1	
19	100209	9,926,303	91.907	0±	02888	7,376,816	13.437
20	.00203	9,905,557	50.911	65	.03182	7,163,773	12.836
21	.00192	9,885,448	50.014	66	03476	6,935,822	12.258
22	.00180	9,866,468	49.111	67	.03764	6,694,733	11.700
23	.00167	9,848,709	48.199	68	-04048	6,442,743	11.157
24	.00153	9,832,261	47.280	69	0.04337	6,181,941	10.628
2.5		0.015.00	10000				
25	00140	9,817,218	46.352	70	.04648	5,913,830	10.110
26	00130	9,803,474	45.417	71	$ \cdot 05003 $	5,638,955	9.603
27	00124	9,790,729	44.476	72	·05423	5,356,838	9.108
28	-00122	9,778,589	43.532	73	$\cdot 05919$	5,066,337	8.631
29	.00125	9,766,659	42.585	74	·06496	4,766,461	8.174
30	.00131	9,754,451	41.638	75	.07142	4,456,831	7.741
31	.00140	9,741,672	40.693	76	.07836	4,138,524	7.337
32	.00152		39.750	77			
		9,728,034			.08551	3,814,230	6.961
33	00165	9,713,247	38.810	78	09250	3,488,075	6.612
34	.00180	9,697,220	37.874	79	-09929	3,165,428	6.285
35	.00196	9,679,765	36.943	80	·10592	2,851,133	5.978
36	.00213	9,660,793	36.015	81	·11246	2,549,141	5.687
37	-00231	9,640,216	35.092	82	·11896	2,262,464	5.407
38	.00251	9,617,947	34.173	83	$\cdot 12550$	1,993,322	5.137
39	.00271	9,593,806	33.259	84	·13215	1,743,160	4.874
40	.00294	9,567,806	32.350	85	.19019	1 510 001	4.617
41			31.445		113913	1,512,801	
	00319	9,539,677		86	14684	1,302,325	4.363
42	.00350	9,509,245	30.546	87	15542	1,111,092	4.114
43	.00386	9,475,963	29.653	88	.16488	938,406	3.871
44	.00430	9,439,386	28.768	89	17522	783,681	3.635
45	.00479	9,398,797	27.892	90	·18644	646,365	3.407
46	0.00535	9,353,776	27.026	91	.19854	525,857	3.188
47	0.00594	9,303,734	26.172	92	$\cdot 21152$	421,453	2.977
48	-00657	9,248,469	25.328	93	-22538	332,307	2.776
49	.00721	9,187,707	24.496	94	·24012	257,412	2.584
	00700	0.707.101	00.074	0.5		105.000	0.100
50	.00788	9,121,464	23.674	95	.25574	195,602	2.400
51	00856	9,049,586	22.862	96	$\cdot 27224$	145,579	2.225
52	⋅00926	8,972,122	22.059	97	•28962	105,946	2.058
53	.01002	8,889,040	21.265	98	.30788	75,262	1.896
54	·01089	8,799,972	20.480	99	·32702	52,090	1.740
55	.01193	8,704,140	19.706	100	.34704	35,056	1.586
56	01105	8,600,300	18.944	101	.36794	22,890	1.428
57	01453	8,487,206	18.196	102	.38972	14,468	1.260
58	01400	8,363,887	17.464	103	40000	8,830	1.064
59	01766	8,229,730	16.749	103	•50000	5,298	.773
35	01700	0,440,100	10.149	104	30000	3,290	1113
	1			11	<u> </u>	<u> </u>	1

In considering the results of the experience an assessment needs to be made of the degree of reliance that can be placed on the results. The A1924-29 and A1949-52 investigations each had about seven times the volume of data of the S.A.56/58 investigation. On the other hand, an exposed-to-risk of some $1\frac{1}{2}$ million policy years is a very considerable amount of data, and bearing in mind that the general level of mortality for the three years taken separately was very similar, it is felt that the table produced gives a good measure of current ultimate assured lives mortality for European male lives in the Union.

The general shape of the mortality curve for the Union is different from the four standard tables with which a comparison is made, although there is a marked similarity (but a different level) over certain wide ranges of ages. For example, compare the mortality rates at ages 50-69 with A1924-29 Light, or at ages 50-84 with C.S.O. 58.

As regards the level of mortality, the S.A. table is generally lower than A1924-29, lower than A1924-29 Light except at the important middle ages, lower than A1949-52 only from the mid 70's, and lower than C.S.O. 58 only at the very high ages.

At the younger ages the S.A. table is perhaps surprisingly in excess of the modern British and American experience. It is estimated that accidental deaths account for more than 40% of the total deaths below age 40 amongst European assured lives in the Union. Comparable figures for Britain and America would establish whether or not the Union's high accident rate is the main reason for the relatively less favourable mortality at the younger ages.

It has been said that the Union is second only to the U.S.A. in the incidence of coronary heart disease amongst males. The high incidence of deaths from this type of disease in the Union may well explain the relationship between the S.A. table and A1949-52 from the middle ages up to the mid 70's, but if the U.S.A. has a still higher incidence than the Union, the relatively lower American experience at these ages is somewhat puzzling.

At the high ages the S.A.56/58 experience is good. The question arises whether this is genuine or whether the inclusion of numbers of small paid-up policies where the assured lives have died, but where the policies remain on the books because the deaths have not been notified, has artificially lowered the experience rates of mortality. To guard against this possibility offices were asked to exclude all policies where the sum assured was less than £100, and this was done in respect of at least 60% of the experience. The light experience is

therefore more likely to be genuine than not, and on general grounds there are two reasons for expecting light mortality at high ages in the Union. First, the climate is more favourable to survival at the older ages than is the case in say Britain. Secondly, the heavier death-rates at the earlier ages can lead to a relative improvement at the older ages on the principle of "the survival of the fittest".

(7) Medical and non-medical experience

The following table sets out a comparison of the medical and non-medical sections of the experience. The expected deaths have been calculated using the graduated values of $q_{x-\frac{1}{2}}$ derived from the combined experience.

Age-	Medical				Non-med	Medical	
group	A	Е	100 A/E	A	Е	100 A/E	Non-medical
15-19	5	3.0	166.7	10	12.0	83.3	200·1
20-24	23	27.2	84.6	109	105.5	103.3	81.9
25-29	49	61.6	79.5	158	153.9	102.7	77.4
30-34	118	118.6	99.5	180	188.7	95.4	104.3
35-39	233	226.4	102.9	287	279.7	102.6	100.3
40-44	406	388.8	104.4	384	389.8	98.5	106.0
45-49	702	709.1	99.0	551	544·7	101.2	97.8
50-54	971	994.0	97.7	522	518.4	100.7	97.0
55-59	954	979-1	97.4	309	285.3	108.3	89.9
60-64	1036	1032-3	100.4	203	194.6	104.3	96.3
6569	1155	1130.7	102-1	156	145.0	107.6	94.9
70 - 74	988	1060-9	93.1	91	70.8	128.5	72.5
75 - 79	1082	1070.2	101-1	25	$22 \cdot 3$	112-1	90.2
80-84	647	646.2	100.1	7	2.4	291.7	34.3
85-89	244	238.4	102.3		.6	_	
90-94	63	66.3	95.0		$\cdot 2$		_
95 – 99	12	12.1	99.2	_	_		
100 and over		1.1			•4	_	
Total	8688	8766-0	99-1	2992	2914.3	102.7	96.5

The correspondence between medical and non-medical mortality is somewhat closer than was the case with the A1949-52 experience (durations 3 years and over), where medical mortality was about 94% of non-medical mortality.

The Committee responsible for the A1949-52 investigation pointed out that the aggregate difference between medical and non-medical mortality was largely fortuitous, as the following quotation from their report shows:

When comparisons are made between the medical and non-medical business of individual offices the margin between the mortality experienced by these two classes of business greatly diminishes. It seems, in fact, that a high proportion of the total non-medical business is transacted by offices whose mortality experience is heavier than average in all classes. Consequently, one reason why the non-medical experience is heavier than the medical experience is that it contains a higher proportion of data from "heavy" offices.

In the present investigation comparisons of figures for individual offices have not been made, but it is likely that the same feature is present. Also, the fact that there are fewer contributing offices, and that one office contributed about 60% of the data, may be the main reason for the closer correspondence of medical with non-medical mortality as compared with the A1949-52 investigation.

The figures in the table given above convey the impression that there is a different relationship between medical and non-medical mortality at the middle and higher ages as compared with the younger ages. Care is needed, however, in interpreting the figures, for somewhat different patterns are revealed by different groupings of the data, as follows:

Age	Medical	Age	Medical	Age	Medical
group	Non-medical	group	Non-medical	group	Non-medical
15-24 25-39 40-54 55-69 70-	% 91·5 98·0 99·1 93·6 77·1	15-29 30-44 45-59 60-74 75-	% 82·2 104·0 95·5 90·0 81·5	15–34 35–49 50–64 65–79 80–	93·4 100·7 95·1 86·6 51·5

(8) Conclusion

The mortality table produced by the investigation can be regarded as a useful measure of European male assured life mortality in the Union. It does not purport to represent the experience of any one office, nor of any one class of business, and actuaries will no doubt wish to compare their own offices' experience with the average experience as represented by the table.

Much remains to be done, for no attempt has yet been made to investigate select rates of mortality, nor non-Union mortality, nor the mortality of non-European lives. All of these investigations will be pursued, and the main investigation will be added to as more data becomes available.

As stated earlier, relatively few returns were made on a sum assured basis. For the Committee to make use of the data it will

have to make a comparison, for each office that makes a sum assured return, between the policies basis returns and the sum assured basis returns, or to make a similar comparison for the total of the data for As some offices prefer not to have their individual these offices. results available to anyone other than themselves, the Committee is averse to making comparisons for individual offices. Even the making of the combined comparison might well give an indication of the experience of an individual office. For this reason, and also because of the additional work entailed when so many other aspects still require to be investigated, the Committee would prefer not to pursue any investigation on a sum assured basis. It is felt that returns should no longer be made to the Committee on a sum assured basis, and that those offices that wish to see the effect of adopting this alternative unit of investigation should make their own comparisons from their own data.