
MORTALITY AT THE HIGHEST AGES 

BY A. R. THATCHER, C.B., M.A., F.S.S. 

The pattern of mortality at the highest ages has been considered by many 
authors, including Redington (1969), Humphrey (1970) and Benjamin (1964, 
1982). The questions raised have included the following: 

(a) Is there a definite upper limit to the span of human life, so that qx 
reaches unity at a finite age? Or does qx tend gradually to unity as 
age tends to infinity, as happens under the Gompertz and Makeham 
laws? Or does qx tend to a constant less than unity, as under the 
Perks formula or the formula which was used to graduate the English 
Life Tables No. 11 and 12? 

(b) Has the fall in mortality rates at lower ages been accompanied by a 
similar fall at the very highest ages? Has the upper tail of the curve 
of death (µxlx) shifted? 

(c) Does the lower mortality of females compared with males extend to 
the very highest ages, or do the rates eventually tend to converge? 

In earlier discussions, notably following the paper by Redington (1969). the 
hope was expressed that more work on the numbers of registered deaths at 
the highest ages, or using the D.H.S.S. sample of pensioners as an extra 
source of data, might help to throw light on these questions. The present 
paper attempts to make a further contribution to the debate by examining 
the data which are now available for England and Wales. 

ENGLISH LIFE TABLES 

Because the numbers reaching the highest ages are so small, their mortality 
rates can only be studied from national data. Like previous writers on this 
subject, we therefore begin with the English Life Tables. The rates of mortality 
(qx) from the last five E.L.T.s, at five-yearly intervals of age, are shown in Table 1. 
These rates are illustrated graphically in Figures 1 and 2, though omitting E.L.T. 
No. 11 to avoid visual confusion. In E.L.T. Nos. 10 and 11 the published rates for 
males stop at q104; the values of q105 shown in Table 1 are the extrapolations given 
by Humphrey (1970). 

The traditional method of estimating mortality rates in the E.L.T.s is to divide 
the numbers of registered deaths by an exposed to risk based on the census of 
population. Unfortunately this method runs into difficulties at the highest ages 
because the numbers of very old persons are exaggerated in the censuses. This is 
partly because the form-fillers sometimes enter the wrong age or date of birth and 
partly because of coding or keying errors. Over most of the age range such errors 
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Table 1. 1000q from English Life Tables and Gompertz curves 

Males Females 

Age Age 
Table Years 85 90 95 100 105 85 90 95 100 105 

E.L.T. No. 10 1930–32 210 286 376 484 604 179 251 336 441 562 
E.L.T. No. 11 1950–52 207 293 376 440 483 167 241 313 368 404 
E.L.T. No. 12 1960–62 187 256 324 380 420 147 221 303 378 434 
E.L.T. No. 13 1970–72 173 241 320 405 493 129 198 288 405 546 
E.L.T. No. 14 1980–82 166 227 290 381 524 119 185 249 323 478 

Gompertz 1942–57 202 276 370 483 610 159 225 313 424 556 
Gompertz 1981 165 227 308 409 528 130 185 260 358 479 

MALES 

Figure 1. Rates of mortality for males from English Life Tables 
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FEMALES 

Age 

Figure 2. Rates of mortality for females from English Life Tables 

can go either way and may tend to cancel out, but at the extreme upper tail of the 

age distribution they do not. A recent examination (O.P.C.S., 1984) showed that 

the census numbers were too high by 2·7% in the age range 95-99 and were much 

more seriously defective for centenarians. 

This difficulty has long been recognised and in the E.L.T.s the mortality rates 

at the very highest ages have been estimated by extrapolating the graduated 

values at younger ages. The effect, however, as remarked by Humphrey (1970), is 

that eventually the method of graduation becomes more important than the 

underlying data. In E.L.T. No. 10, mortality rates at the highest ages were found 

by assuming a Gompertz curve. In E.L.T.s No. 11 and 12, a method of 

graduation was used which assumed that mx follows a combination of a logistic 

curve with a normal (Gaussian) curve, with the effect that at high ages qx tends to 

a constant less than unity. In E.L.T. No. 13, the method of graduation assumed 

that the limiting age for both males and females was 110. In E.L.T. No 14 it was 

assumed that mx follows a cubic curve. These differences of method largely 

account for the different shapes of the curves illustrated in Figures 1 and 2. 
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MORTALITY RATES BASED ON DEATHS ONLY 

It is possible to avoid using the census data at high ages by constructing the 

exposed to risk entirely from the data on registered deaths. As an example of the 

method, those who were living and aged 100 in 1970 must have died at age 100 in 

1970, or at age 101 in 1971, or at age 102 in 1972, and so on. If we wait until all 

those who were aged 100 in 1970 have died, we can work backwards from the 

deaths to the numbers who were living. This is the ‘method of extinct generations’ 

which was pioneered by Vincent (1951). It has been applied to deaths in England 

and Wales by Humphrey (1970) and more recently by Thatcher (1981). 

Humphrey used as his data all deaths at age 85 and over in England and Wales 

from 1910–62 and he split these into periods. He produced graduated rates of 

mortality at ages 86–104 based on the experience of 1942-57 and found that these 

followed the Gompertz curve. His findings are discussed further below. 

Thatcher used data on the deaths of 4,404 centenarians who died in 1960–79. 

His paper gave data for males and females separately and a life table for persons 

(i.e. males and females together); from the data we can easily construct the life 

tables for males and females separately and these are given in Table 2. In this, for 

example, the top line shows that 648 males reached the age of 100 during the 

period and of these 292 died before reaching the age of 101. Thus for males 

q100 = ·451 and this estimate, being based on a binomial sample of size 648, has a 

standard error of ·020. 

Despite the standard errors, there are some conclusions which can be drawn 

with reasonable confidence from Tables 1 and 2: 

(i) At ages 100–105 the observed values of qx in Table 2 (i.e. the values based 

on the actual numbers of deaths, without any graduation or extrapola- 

tion) are higher than E.L.T. No. 12, for both males and females. Since 

Age 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109+ 

Table 2. Life tables based on deaths (only) in 1960–79 

Males Females 

Deaths Exposed Standard Deaths Exposed 
at this to Rate of error at this to Rate of 

age risk mortality of 4x age risk mortality 
dx lx qx dx lx qx 

292 648 ·451 (·020) 1,463 3,756 ·390 
175 356 ·492 (·026) 931 2,293 ·406 
86 181 ·475 (·037) 534 1,362 ·392 
46 95 ·484 (·051) 370 828 ·447 
26 49 ·531 (·071) 198 458 ·432 
10 23 ·435 (·103) 142 260 ·546 
6 13 ·462 (·138) 54 118 ·458 
3 7 ·429 (·187) 30 64 ·469 
0 4 18 34 ·529 
4 16 

Standard 
error 
of qx 

(·008) 
(·010) 
(·013) 
(·017) 
(·023) 
(·031) 
(·046) 
(·062) 
(·086) 
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mortality rates have been falling, and the observed values relate to a later 
period than E.L.T. No. 12, we conclude that E.L.T. No. 12 under- 
estimated the rates of mortality at ages 100–105. 

(ii) At least at ages 100–104, the observed values tend to be higher than E.L.T. 
No. 13 for males but lower for females. 

(iii) E.L.T. No. 14 is consistent with the observed values at around age 105 but 
is significantly below them at age 100. 

These points are discussed further below. 

THE D.H.S.S. SAMPLE OF PENSIONERS 

In the discussion following the paper by Redington (1969), the hope was 
expressed that the D.H.S.S. 5% sample of pensioners might produce useful new 
data on mortality at high ages. This sample, which has since been increased in size 
to 10%, has indeed proved useful for estimating the aggregate population of 
centenarians (O.P.C.S., 1984). As a specimen illustration of the kind of 
information which the sample can contribute to the estimation of mortality rates, 
the relevant figures for females at ages 95 to 100 in 1981 are given in Table 3. In 
this table the deaths (in the first column) are from the registration data. The 
initial estimate of the exposed to risk (in the second column) is from the D.H.S.S. 
sample, grossed up by a factor of 10. This grossed up figure was then reduced by 
3% (in the third column) to allow for delays (in 1981) in removing deceased 
persons from the sample. The resulting death rate mx was then converted to a rate 
of mortality qx by using the approximate formula qx = 1 – exp ( – mx), which is 
appropriate at high ages. 

Of course, the estimate that there were (for example) 880 females aged 100 was 
found by grossing up a sample of only 88 females, so the resulting estimates of qx 
for centenarians have larger standard errors than those in Table 2. For males the 
standard errors are much larger still. However, we must remember that Table 3 is 
based on only a single year and moreover relates to the extreme tail of the age 
distribution. If it becomes possible to repeat such analyses on a more regular 
basis in the future, to graduate the resulting population estimates from year to 

Table 3. Mortality rates for females in 1981 using the 

D.H.S.S. sample of pensioners 

Age 
x 

95 
96 
97 
98 
99 

100 

Registered Living in June 1981 Central 
deaths DHSS death 
in 1981 sample Adjusted rate 

dx × 10 Lx mx 

2246 7860 7624 ·295 
1679 5010 4860 ·345 
1252 3550 3444 ·364 
864 2390 2318 ·373 
583 1320 1280 ·455 
398 880 854 ·466 

Rate of 
mortality 

qx 

·255 
·292 
·305 
·311 
·366 
·373 
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year and to take account of them in calculating the mortality rates for individual 
ages 85–94 as well as 95 and over, the result could be a useful addition to the data 
for England and Wales. 

THE GOMPERTZ CURVE 

Before assessing the above results, we need to compare them with the 
Gompertz graduation made by Humphrey. We recall that Gompertz found that 
the force of mortality µx was related to the age x by the formula 

µx= Acx (1) 

and that this implies that 

log px = – Bcx (2) 

This in turn implies that if log (–log px) is plotted against x, the resulting graph 
should be a straight line. Here c is the Gompertz constant and A and B are 
constants of proportionality which are determined as soon as we know px at a 
single point. 

Humphrey (1970) found that his estimates of mortality rates based on deaths 
only, in 1942–57, could be well graduated in the age range 86–104 by the 
Gompertz curves with constants c = 1·0740 for males and c = 1·0804 for females, 
though he excluded age 85 (which did not fit so well) and he found that the actual 
deaths fell slightly below the graduations at ages 100–104. He also fitted 
Gompertz curves to data given by Vincent (1951) for deaths over age 85 in 
Sweden in 190–145 and France in 1920–38; all the Gompertz constants were 
between 1·065 and 1·090. (We may remark that these constants are somewhat 
lower than those normally found in Gompertz graduations at younger ages such 
as 35–85. One theory, discussed by Redington (1969), is that in mixed 
populations there may be a ‘survival of the fittest’ effect which produces an 
apparent reduction in the Gompertz constant at the highest ages.) 

In Figures 3 and 4 the values of log (–log px given by the mortality rates in 
E.L.T. No. 14 are plotted against x as dashed lines. (Here the logarithms are to 
the base 10). The straight lines marked H show Humphrey’s graduations for 
1942–57. For comparison, the Figures also show straight lines (marked G) which 
have been drawn to have exactly the same slopes as Humphrey’s graduation (viz 
given by the Gompertz constants c = 1·0740 for males and 1·0804 for females) but 
shifted downwards so as to pass through the points given by E.L.T. No. 14 at age 
90. No other data have been used to construct these straight lines and it is not of 
course suggested that they represent the actual mortality rates in 1981. However, 
they show how relatively close the rates in E.L.T. No. 14 are to Gompertz curves 
and also show the ages at which they differ most. The equations of the lines 
marked G are: 

Males – log px = ·11178 × 1·0740(x–90) 
Females – log px = ·08867 × 1·0804(x–90) 

(3) 
(4) 
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Figure 3. log (–log px) for males from E.L.T. No. 14 (dashed line), Humphrey’s 
graduation (H) and a straight line (G) drawn parallel to (H) 
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Values of qx derived from (3) and (4) are shown in the bottom line of Table 1. The 
penultimate line shows qx from Humphrey’s graduations, here extended to ages 
85 and 105. 

It will be seen from Figures 3 and 4 that the largest difference between E.L.T. 
No. 14 and the Gompertz line G occur at age 100, for both males and females. 
Bearing in mind our earlier finding that the observed values of qx in Table 2 are 
higher than in E.L.T. No. 14 at age 100 for both sexes, it seems reasonable to 
suppose that the actual rates of mortality may well have been even closer to the 
Gompertz curves than were the rates in E.L.T. No. 14; though we need to take 
account of the difference in the dates between the observed values, which relate to 
1960–79, and E.L.T. No. 14 which relates to 1981. 

Although we do not have enough data to make a formal graduation, it is 
possible to test whether the observed data in Table 2 are significantly different 
from the Gompertz curves, either in their levels or in their slopes, after allowing 
for differences in dates. As regards the levels, the most reliable values in Table 2 
are those for q100. For males, the estimated value of q100 in Humphrey’s 
graduation was ·483 in 1942–59, centred on about 1950. Equation (3) gives 
q100= ·4088 relating to 1981. Interpolating between these, we would expect a 
value of q100= ·435 for 1970, which is the central year for the period of 1960–79 
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Figure 4. log (–log px) for females from E.L.T. No. 14 (dashed line), Humphrey’s 
graduation (H) and a straight line (G) drawn parallel to (H). 

covered by Table 2. The observed value in Table 2 is q100 = ·451 with a standard 
error of ·020, which is clearly consistent with expected value. For females, 
Humphrey’s graduation gives q100= ·424 centred on 1950, equation (4) gives 
·3575 for 1981, interpolation gives ·381 for 1970, and the observed value in Table 
2 is ·390 with a standard error of ·008. Again the observed figure is consistent with 
the expectation. 

As regards the slopes of the mortality rates, Table 2 shows that out of 648 
males who reached the age of 100, 23 reached 105 and 4 reached 108. According 
to the Gompertz curve (3) we would expect 30·8 to reach 105 and 2·8 to reach 108. 
For females, Table 2 shows that out of 3,756 who reached the age of 100, 260 
reached 105 and 34 reached 108. According to the Gompertz curve (4) one would 
expect 279·6 to reach 105 and 33·7 to reach 108. Thus the mortality rates above 
age 100 show the same apparent drop below the slope of the Gompertz curve as 
has been observed by previous writers, though the numbers of deaths are too 
small to establish full statistical significance. 

The main conclusion which we draw, however, is that to the extent that 
mortality rates at ages 85–105 can be approximated by Gompertz curves, it 
appears from Figures 3 and 4 that the slopes of these lines in 1981 (and hence the 
Gompertz constants c) were still remarkably similar to those found by 
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Humphrey. But the levelof the lines has shifted downwards, which would imply a 
more or less uniform percentage reduction in the force of mortality at these ages. 
We must remember, of course, that at these ages uniform percentage reductions 
in µx do not imply uniform percentage reductions in qx; the relationship between 
µx and qx can be derived from equations (1) and (2). 

RATIOS OF FEMALE TO MALE MORTALITY RATES 

Ratios of female to male mortality rates (qx) have shown remarkable declines 
at ages up to 85 (Daykin, 1985), but at ages 90–105 the changes have been less 
spectacular. Table 4 shows the ratios derived from the last five E.L.T.s. It also 
shows the ratios given by Humphrey’s Gompertz graduation (his Table 10, here 
extended to include ages 85 and 105), and for comparison the ratios from the 
Gompertz curves (3) and (4) above. We note that the latter fail to reflect the latest 
fall to ·72 in the observed ratio at age 85. 

The figures in Table 4 are largely self-explanatory but we may add two small 
comments. The first is that the rather high ratios at ages 100 and 105 in E.L.T. 
No. 13 are consistent with our earlier findings from Table 2, which suggested that 
the extrapolated rates in E.L.T. No. 13 may have been too low for males and too 
high for females at these ages. This could explain the high ratios in Table 4. 

Secondly, we observe that the Gompertz curves for males and females have 
different constants, and so long as these differ in the direction at present 
observed, then the mortality rates for males and females will continue to 
converge as age increases. However, such patterns may not be immutable. For 
example, at lower ages, the ratio of female to male mortality has been 
considerably affected by the changing incidence of smoking and lung cancer in 
males. In 1981 the generation of males born in 1901–10, who may represent the 
peak of lung cancer mortality (see J.I.A., 90, 244), had not yet reached the highest 
age ranges. 

EXPECTATIONS OF LIFE 

In Table 5 we bring together the expectations of life from E.L.T.s No. 10–14, 

Table 4. Ratio of female to male mortality rates 

(qx) 

Age 
85 90 95 100 105 

E.L.T. No. 10 ·85 ·88 ·89 ·91 ·93 
E.L.T. No. 11 ·81 ·82 ·83 ·84 ·84 
E.L.T. No. 12 ·79 ·86 ·94 ·99 1·03 
E.L.T. No. 13 ·75 ·82 ·90 1·00 1·11 
E.L.T. No. 14 ·72 ·81 ·86 ·85 ·91 

Gompertz (1942–57) ·79 ·81 ·85 ·88 ·91 
Gompertz (1981) ·79 ·81 ·84 ·87 ·91 
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Table 5. Expectations of Life from English Life Tables and Gompertz curves 

Males 

Age 

Females 

Age 
Table Years 85 90 95 100 105 85 90 95 100 105 

E.L.T. No. 10 1930–32 3·50 2·63 1·97 1·48 4·00 2·98 2·22 1·65 1·22 
E.L.T. No. 11 1950–52 3·48 2·56 1·99 1·67 4·20 3·12 2·47 2·09 1·88 
E.L.T. No. 12 1960–62 3·90 2·97 2·38 2·00 4·58 3·32 2·49 1·99 
E.L.T. No. 13 1970–72 4·14 3·09 2·34 1·84 5·02 3·57 2·52 1·79 
E.L.T. No. 14 1980–82 4·34 3·33 2·57 1·86 1·24 5·38 3·95 3·02 2·21 1·38 

Gompertz 1942–57 3·61 2·68 1·96 1·42 1·02 4·41 3·24 2·33 1·66 1·17 
Gompertz 1981 4·34 3·24 2·39 1·75 1·27 5·22 3·87 2·82 2·02 1·43 

together with values calculated from the Gompertz graduation for 1942–57 by 
Humphrey and the Gompertz curves (3) and (4) for 1981. These last estimates are 
of course conditional on the assumption that the Gompertz curves can be 
extended beyond age 105. The technical method used to obtain expectations 
from the Gompertz curves was to calculate lx at 6-monthly intervals and to apply 
Simpson’s rule within each year of age. 

We note from Table 5 that in E.L.T. No. 14 the expectations of life at ages 
85–105 are all within 2 months of those given by the Gompertz curves. Table 5 
also suggests that in the last 30 years the expectation of life has increased by 
about 9–10 months for males and 10–14 months for females at age 85, but by only 
about 3 months for both sexes at age 105. 

THE SPAN OF HUMAN LIFE 

As outlined in the opening paragraph of this paper, there are three main 
theories about the span of human life: either it has a definite upper limit, in which 
case qx reaches unity at a finite age; or qx tends gradually to unity as age tends to 
infinity; or qx tends to a limit less than unity. 

The first theory was espoused by Vincent (1951) who believed that human life 
has an upper limit of, at the most, 113 years. Nevertheless in February 1986 a 
Japanese, Shigechiyo Izumi, died at the fully authenticated age of 120 years*; so 
it seems that Vincent’s supposed limit was incorrect. Of course this does not rule 
out the logical possibility that there may still be an upper limit to life; but if so, it 
must be at least 120 years. 

The second theory would apply if, for example, mortality follows the 
Gompertz curve not only up to age 105 but also beyond age 105. There would 
then be no absolute upper limit to life, but of course there will always be a highest 
age observed so far, and this will gradually increase as more and more people 
survive to become exposed to risk in the highest age range. For several years the 

* See the Guinness Book of Records, 1987. 
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highest age observed in England and Wales was 112, but this record has been 
broken by Mrs Anna Williams who reached age 114 in June 1987. If the 
Gompertz law continues to apply at these ages, out of every 100 females who 
reach the age of 113 one may expect to find that about 2 will reach age 116, or 
perhaps even more if mortality rates continue to fall. 

Under the third theory, some people will live even longer. This theory is based 
on the observation that the mortality curve seems to flatten at the highest ages. 
Under the Perks formula, and the formula which was used to graduate E.L.T.s 
No. 11 and 12, the flattening was assumed to continue. It is true that the 
subsequently observed mortality rates in Table 2 have proved to be higher than 
those in E.L.T. No. 12, so it now seems that the flattening was over-estimated or 
perhaps assumed prematurely. Nevertheless, none of the observed values of qx 
has so far exceeded ·55 so the hypothesis that qx may tend to a limit still remains 
open. Perks himself (J.I.A., 95, 305) doubted whether the force of mortality 
would ever be observed to exceed unity; this implies that the expectation of life 
will never fall below one year, however high the age. But on the Gompertz curves 
one would not in any case expect the expectation of life to fall noticeably below 
one year until at least age 111 so it will be some time before the differences 
between these hypotheses can be fully tested, at least from data for England and 
Wales. 

CONCLUSIONS 

The conclusions of this investigation are more definite than the author, at least, 
had expected. The absolute upper limit of human life, if it exists, appears to have 
receded and must now be placed at not less than 120 years. On the other hand, the 
flattening of mortality rates at high ages, which was anticipated in E.L.T.s Nos. 
11 and 12, did not occur to the extent expected. Instead, mortality rates at high 
ages in England and Wales still look remarkably like Gompertz curves. What is 
more, the Gompertz constants which were found by Humphrey (1970) in his 
graduation of data for 1942–57 still seem to give a good representation of the 
increase of the force of mortality between ages 90 and 105. 

What has most obviously changed since 1942–57 has been the general level of 
the force of mortality, which appears to have fallen by as much throughout the 
age range 90–105 as it has done at age 90, namely by about ·7% per annum. Thus 
the curve of deaths has definitely shifted, though not by very far at the extreme 
upper tail. If the Gompertz curves can be assumed to extend to even higher ages, 
the expectation of life at age 105 has increased since 1942–57 by about 3 months. 
The mortality rates of males and females continue to tend towards convergence 
at high ages. 

These conclusions are of course, based on present information and like 
previous assessments of this kind they will need to be reviewed as further data 
become available. It will be particularly interesting to see whether the force of 
mortality continues to fall at the highest ages and whether the relationship 
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between male and female mortality rates will be affected when, for example, the 
generation of heavy-smoking and cancer-prone males who were born in 1901–10 
reaches and then moves through the age ranges 90–105, to be followed some 
15 years later by a generation of heavy-smoking females. It may well be that the 
Gompertz-type patterns will then be disturbed, at least temporarily. 

REFERENCES 

BENJAMIN, B. (1964) Demographic and actuarial aspects of ageing. J.I.A., 90, 211. 
BENJAMIN. B. (1982) The span of life. J.I.A., 109, 319. 
DAYKIN, C. D. (1985) The-recent trend of mortality in Great Britain. J.I.A., 112, 75. 
HUMPHREY, G. T. (1970) Mortality at the oldest ages. J.I.A., 96, 105. 
OFFICE OF POPULATION CENSUSES AND SURVEYS (1984) Editorial. Centenarians: 1981 estimate. 

Population Trends 38. H.M.S.O., 1984. 
REDINGTON, F. M. (1969) An exploration into patterns of mortality. J.I.A., 95, 243. 
THATCHER, A. R. (1981) Centenarians. Population Trends 25. H.M.S.O., 1981. 
VINCENT, P. (1951) La mortalité des vieillards. Population, April-June 1951. 




