Mortality Projections associated with the '00' series tables

London 12/9/2005 Edinburgh 14/9/2005

Agenda

- Introduction
- P-spline model
- Lee-Carter model
- Illustrative Results
- Use of Stochastic Methods in practice
- Conclusions/Future Work
 Lunch
- Software workshop

Introduction

- Mortality Projections
 - Historical perspective
 - Need for stochastic approach
- Overview of recent work
- Feedback received on Working Paper 15
- What Happens Next?

Mortality Projections

- Projection factors first produced for a(55)
- 92 series single projection factor
- Cohort effect range of 3 projections
- Need for stochastic approach

Overview of recent work

- Working Paper 1
 - An interim basis for adjusting the "92" Series mortality projections for cohort effects
 - Offered a range of projections
- Working Paper 3
 - Initial exposure of various projection methodologies
 - Consultation document to guide future work
- Working Paper 11
 - Summary of responses to WP3
 - "green light" to continue work
- Working Paper 15
 - Proposed 2 methods: P-spline and Lee-Carter

Feedback on WP15

- Broad support for the introduction of stochastic methodologies
- Both P-spline and Lee-Carter wanted no clear 'winner'
- Support for CMI issuing illustrative software
- Software must allow actuaries to make appropriate adjustments
- Respondents clearly felt that it was inappropriate for the CMI to prescribe a method or basis...
- ... but there was an equally clear demand for some guidance
- Recognised possibility of other models

What Happens Next

- Timescale for consultation & approval
 - Proposed Base Tables + full dataset released 28 Sept
 - Consultation till 31 October
 - FIMC adopt Base Tables Q1 2006?
- Status of CMI projections work
 - Peer reviewed, not approved
 - Exposing work to the profession will allow full review and issues to surface
- Future work
 - To be decided as feedback to current proposals is received and analysed

Generating Mortality Scenarios

Iain Currie

James Kirkby

Heriot Watt University, Scotland

September 2005

Plan of talk

- The P-spline method
- The Lee-Carter method

Scenario generating in 1-d

Data

$$d = d_{n_y \times 1}$$
, deaths

$$e = e_{n_y \times 1}$$
, exposures

Model

$$d = \mathcal{P}(e * \lambda)$$

$$\lambda = \lambda_{n_y \times 1}, \qquad \log \lambda = B_y \theta = m$$

Estimates

Mean curve: $\hat{\boldsymbol{m}} = \boldsymbol{B}_{\boldsymbol{y}} \hat{\boldsymbol{\theta}}$

Standard error curve: $\hat{s} = SE(\hat{m})$

Deterministic scenario

Mean curve: $\hat{m}_i = \hat{m} + z_i \hat{s}, i = 1, 2, 3, ...$

where $z_i \sim \mathcal{N}(0, 1)$.

Stochastic scenario

$$d_i = \mathcal{P}(\boldsymbol{e} * \exp(\hat{\boldsymbol{m}}_i)), i = 1, 2, 3, \dots$$

Scenario generating in 2-d

Data

$$D = D_{n_a \times n_y}$$
, deaths

$$\boldsymbol{E} = \boldsymbol{E}_{n_a \times n_y},$$
 exposures

Model: 2-d P-splines: $\mathbf{B} = \mathbf{B}_y \otimes \mathbf{B}_a$

$$D = \mathcal{P}(E * \Lambda)$$

$$\Lambda = \Lambda_{n_a \times n_y}, \qquad \log \Lambda = B_a \Theta B'_y = M$$

Estimates

Mean sheet: $\hat{\boldsymbol{M}} = \boldsymbol{B}_a \hat{\boldsymbol{\Theta}} \boldsymbol{B}_y'$

Standard error sheet: $\hat{S} = SE(\hat{M})$

Deterministic scenario

Mean sheet: $\hat{M}_i = \hat{M} + z_i \hat{S}, i = 1, 2, 3, ...$

where $z_i \sim \mathcal{N}(0, 1)$.

Stochastic scenario

$$\boldsymbol{D}_i = \mathcal{P}(\boldsymbol{E} * \exp(\hat{\boldsymbol{M}}_i)), i = 1, 2, 3, \dots$$

Lee-Carter model

Data

$$\boldsymbol{D} = \boldsymbol{D}_{n_a \times n_y},$$
 deaths

$$\boldsymbol{E} = \boldsymbol{E}_{n_a \times n_y},$$
 exposures

Model: Lee-Carter

$$D = \mathcal{P}(E * \Lambda)$$

$$\log \mathbf{\Lambda} = \mathbf{\alpha} \mathbf{1}' + \mathbf{\beta} \mathbf{\kappa}' = \mathbf{M}$$

or
$$\log \lambda_{ij} = \alpha_i + \beta_i \kappa_j$$

Lee-Carter projections to 2050

Bootstrapping I

Pearson residuals R_p

$$R_p = rac{D - \hat{D}}{\sqrt{\hat{D}}}$$

Permute row one of R_p - and solve for new data!!

Repeat for all other rows using the same permutation.

Refit bootstrap data and forecast.

Bootstrapping II

Deviance residuals R_d

$$\boldsymbol{R}_d = \operatorname{sign}(\boldsymbol{D}_{x,t} - \hat{\boldsymbol{D}}_{x,t}) \sqrt{2[\boldsymbol{D}_{x,t} \log \frac{\boldsymbol{D}_{x,t}}{\hat{\boldsymbol{D}}_{x,t}} - (\boldsymbol{D}_{x,t} - \hat{\boldsymbol{D}}_{x,t})]}$$

Permute row one of R_d - and solve for new data!!

Repeat for all other rows using the same permutation.

Refit bootstrap data and forecast.

References

Lee-Carter models

Lee & Carter (1992) J American Statistical Association, 87, 659-675.

Brouhns, Denuit & Vermunt (2002) Insurance: Mathematics & Economics, 31, 373-393.

Penalized spline models

Eilers & Marx (1996) Statistical Science, 11, 758-783.

Currie, Durban & Eilers (2004) Statistical Modelling, 4, 279-298.

Richards, Kirkby, and Currie, (2005) BAJ, to appear

Web sites

http://www.ma.hw.ac.uk/~iain/research/papers.html

http://www.ma.hw.ac.uk/~iain/workshop/workshop.html

Agenda

- Introduction
- P-spline model
- Lee-Carter model
- Illustrative Results
- Choosing a mortality basis for reporting purposes
- Conclusions/Future Work

Lunch

Software workshop

Illustrative Results

Rajeev Shah

Illustrative Results

- Using the output from Stochastic models
- Model differences:
 - P-spline (period penalty) v P-spline (cohort penalty) v
 Lee–Carter v 92 Series
- Effect of using different datasets for P-spline
- Effect of using different parameters for P-spline
- Progress of projections 1984-1992 for P-spline
- Progress of annuity values 1984-1992

Using the output from Stochastic models

- Models generate μ_x (for data at age nearest)
- Estimate q_x as $1 \exp[-(\mu_x + \mu_{x+1})/2]$
- Calculate Improvement Factors = q_{x,t} / q_{x,(t-1)}
- Decide on start data
 - Adjust Base Table for recent improvements and office experience
- Apply Improvement Factors to start data to get projected q[']x,t
- Calculate annuity values

Model differences:

P-spline (period penalty) v P-spline (cohort penalty) v Lee–Carter v 92 Series

92 Series projections

92 Series SC projections

92 Series MC projections

92 Series LC projections

P-spline Cohort Penalty

P-spline – Period Penalty

Lee-Carter

Effect of using different datasets

- Uses P-spline model
- Assured Lives Data to 1992

Ages 20-100 – Cohort Penalty

Ages 40-100 – Cohort Penalty

Ages 20-100 – Period Penalty

Ages 40-100 – Period Penalty

Effect of using different parameters

- Uses P-spline model
- Assured Lives Data to 1992

Cohort with knots every 6 years

Cohort with knots every 5 years

Cohort with knots every 4 years

Period with knots every 3 years

Period with knots every 4 years

Period with knots every 5 years

Progress of projections 1983-1992

Uses P-spline model

Cohort penalties

Data to 1983 - Cohort Penalty

Data to 1984 - Cohort Penalty

Data to 1985 - Cohort Penalty

Data to 1986 - Cohort Penalty

Data to 1987 - Cohort Penalty

Data to 1988 – Cohort Penalty

Data to 1989 - Cohort Penalty

Data to 1990 – Cohort Penalty

Data to 1991 - Cohort Penalty

Data to 1992 - Cohort Penalty

Cohort Penalties – Age 60 – 4.5%

Cohort Penalties – Age 65 – 4.5%

Cohort Penalties – Age 70 – 4.5%

Cohort Penalties

Progress of projections 1983-1992

Uses P-spline model

Period penalties

Data to 1983 – Period Penalty

Data to 1984 – Period Penalty

Data to 1985 – Period Penalty

Data to 1986 - Period Penalty

Data to 1987 - Period Penalty

Data to 1988 – Period Penalty

Data to 1989 - Period Penalty

Data to 1990 - Period Penalty

Data to 1991 – Period Penalty

Data to 1992 - Period Penalty

Period Penalties – Age 60 – 4.5%

Period Penalties – Age 65 – 4.5%

Period Penalties – Age 70 – 4.5%

Period Penalties

Progress of projections 1983-1992

Uses Lee-Carter model

Period penalties

Lee-Carter

Portfolio Risk Capital – Cohort Penalties

(95% Confidence Interval)

Portfolio Risk Capital – Period Penalties

(95% Confidence Interval)

Portfolio Risk Capital – Lee Carter

(95% Confidence Interval)

Agenda

- Introduction
- P-spline model
- Lee-Carter model
- Illustrative Results
- Choosing a mortality basis for reporting purposes
- Conclusions/Future Work
 Lunch
- Software workshop

Discussion Forum – Choosing a mortality basis for reporting purposes

Stephen Richards and Keith Miller

Choosing a basis for reporting

- Choice of base table and base mortality
- Choice of projection basis for future mortality
 - Stochastic v deterministic
 - Probabilistic v non-probabilistic
 - Model selection: P-spline v Lee-Carter v other
 - Penalty options: age-period v age-cohort
 - Dataset and parameters
- How do we enable the Board to make a decision?