REPLACING THE THEORY OF EFFICIENT MARKETS----IMPLICATIONS FOR THEORY AND PRACTICE

Paul Woolley and Dimitri Vayanos

London School of Economics

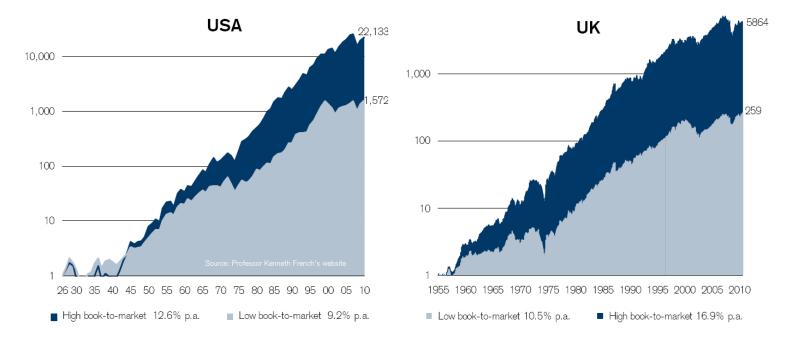
Plan of the talk

□ Momentum, reversal and value.

Prominent market anomalies.

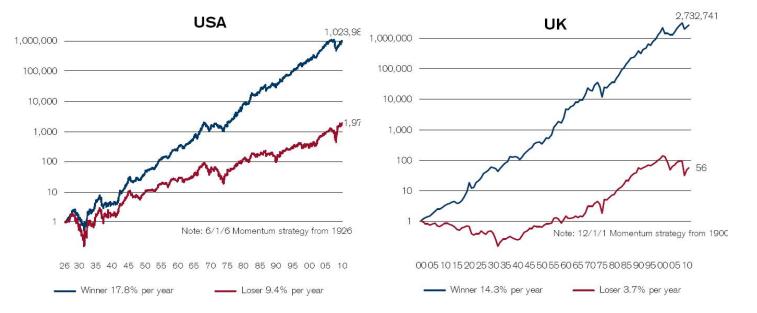
□ An institutional theory.

Rational explanation of the anomalies.


Practical applications of the theory.

Efficient portfolio management in an inefficient market.

Momentum, Reversal and Value


- Momentum: Tendency of recent performance to continue in the near future.
- Reversal: Tendency of performance over a longer history to revert.
- Value (closely related to reversal): Ratio of prices to fundamentals predicts inversely future performance.
- Prominent market anomalies!

Value

Source: Dimson, Marsh and Staunton, Global Investment Returns Sourcebook, Credit Suisse Research Institute, 2011

Momentum

Source: Dimson, Marsh and Staunton, Global Investment Returns Sourcebook, Credit Suisse Research Institute, 2011

Sharpe Ratios

Momentum

70% for individual stocks (average of US, UK, Japan, Continental Europe).

■ 34% for country-level indices.

Value

- 36% for individual stocks (average of US, UK, Japan, Continental Europe).
- 34% for country-level indices.

Source: Asness, Moskowitz and Pedersen (2009), Value and Momentum Everywhere. Data from 1970/1980s to 2008.

Explanations

Momentum and reversal are hard to explain within standard Finance models.

- Two leading approaches:
 - Behavioural Finance.
 - Market frictions.

Behavioural Finance

- Momentum and reversal can arise if investors react incorrectly to information signals.
- Example:
 - Investors are too optimistic about some assets (overpricing them) and too pessimistic about others (underpricing them) → Reversal.
 - Optimism/pessimism builds gradually \rightarrow Momentum.

Market Frictions

□ Key friction: Delegation and agency.

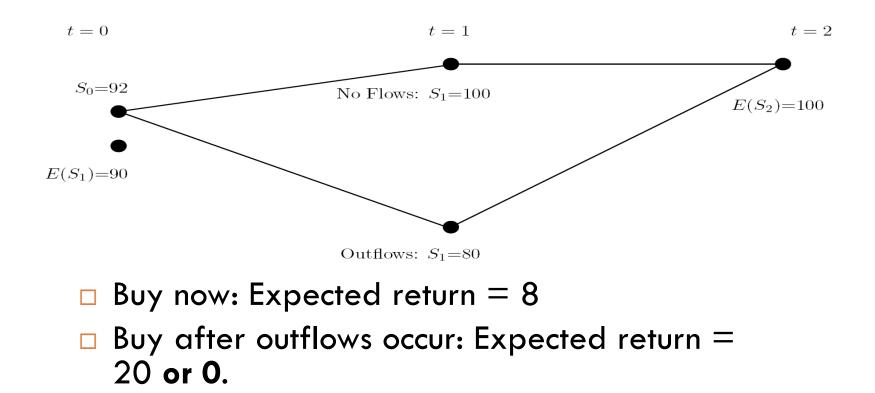
- Vayanos and Woolley (2011), An Institutional Theory of Momentum and Reversal.
 - Momentum and reversal result from flows between investment funds.
 - Fund managers and investors are rational.

Basic Intuition

Suppose that a negative shock hits an asset's fundamentals.

- Funds holding asset realize poor returns.
- Funds experience outflows.
- → Funds sell asset.
- → If outflows are gradual, asset price declines gradually → Momentum.
- \rightarrow Asset price below fundamental value \rightarrow Reversal.

A Case Study: The Tech Bubble

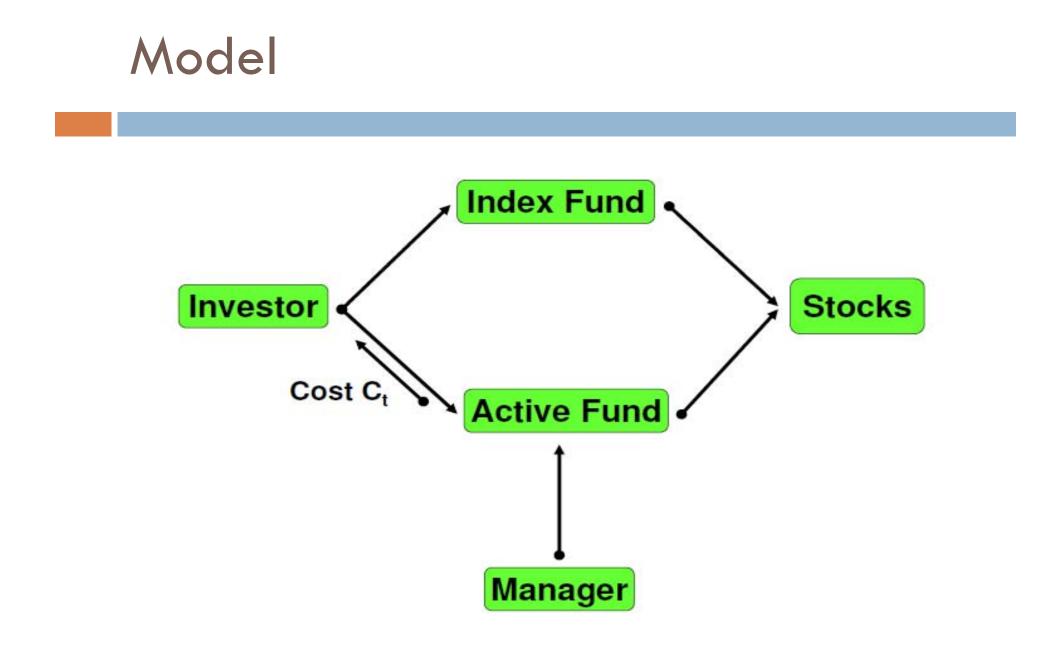

Value was doing OK, but growth much better.

- Outflows from value funds into growth funds.
- Gradual decline in value and further rise in growth.

The Bird-in-the Hand Effect

- Q: Why do investors absorb outflows, buying assets whose price is expected to drop?
 - Why isn't the effect of gradual flows fully anticipated into current prices?
- □ A: Investors prefer one bird in the hand.
 - Expectation of outflows renders assets undervalued.
 - Buy now: Lock in attractive long-run return. (One bird in the hand)
 - Buy after outflows occur: Earn higher return on average, but risk that undervaluation disappears. (Two birds in the bush)

A Simple Example


Supporting Evidence

- Lou (2011), A Flow-Based Explanation for Return Predictability.
 - Predict fund flows based on past returns.
 - Impute flows in or out of individual stocks.
 - Use stock-level flows to predict returns.

Supporting Evidence (cont'd)

Panel B: Subsamples Based on Time Periods and Firm Size								
	Dependent Variable = $ret(t+1, t+3)$							
	k=6 (80-93)		k=6 (94-06)		k=6 (Small Cap)		k=6 (Large Cap)	
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Intercept	0.072	0.065	0.119	0.090	0.653	0.631	0.223	0.190
	(1.37)	(1.29)	(2.54)	(1.65)	(5.53)	(5.16)	(5.84)	(4.28)
E[FIPP(t-k, t)]		0.106		0.203		0.158		0.175
		(1.80)		(3.44)		(3.50)		(3.35)
ret(t)	-0.022	-0.027	-0.022	-0.029	-0.012	-0.018	-0.031	-0.041
	(-1.10)	(-1.43)	(-1.07)	(-1.60)	(-0.85)	(-1.39)	(-1.55)	(-2.36)
ret(t-k, t-1)	0.032	0.027	0.023	0.014	0.035	0.028	0.021	0.011
	(2.77)	(2.75)	(2.44)	(1.92)	(4.82)	(4.62)	(3.10)	(1.57)
ret(t-36, t-k-1)	-0.003	-0.003	-0.006	-0.006	-0.005	-0.004	-0.003	-0.003
	(-1.83)	(-1.83)	(-4.13)	(-4.11)	(-2.41)	(-2.27)	(-1.68)	(-1.62)
R^2	7.76%	8.44%	5.69%	6.99%	6.78%	7.55%	8.81%	9.96%
No Obs	72946	72946	150322	150322	104970	104970	118298	118298

Fund flows explain a good part of stock-level momentum, especially for large stocks and recent data.

Dynamics

Following poor returns by active fund:

- □ Gradual outflows from active fund.
- □ Stocks that active fund overweights:
 - Immediate price drop.
 - Drop in expected return in short run → Momentum.
 - Rise in expected return in long run → Reversal.
- Stocks that active fund underweights:
 - Opposite effects.

Additional Implications

- Fund flows generate comovement.
 - Following outflows from some funds, all assets held by the funds drop in price.
 - Supporting evidence: Anton and Polk (2011), Greenwood and Thesmar (2011).
- Fund flows generate lead-lag effects (i.e., crossasset predictability).
 - Price drop of one asset predicts that other assets held by the same funds will drop in the short run and rise in the long-run.

Additional Implications (cont'd)

- Momentum, reversal and comovement are larger for assets with high idiosyncratic risk.
 - Trading against mispricings in those assets subjects fund managers to high risk of underperforming their benchmark.
- Predictability of returns based on earnings:
 - Post-earnings drift (earnings surprises predict short-run return movements in same direction).
 - Value stocks have high expected returns and low and declining earnings.

Portfolio Management

- Momentum, reversal and value:
 - Well-documented empirically.
 - Form basis for most active investment strategies.
- □ However:
 - Investment strategies are mainly data-driven, without underlying conceptual framework.
- $\square \rightarrow$ A theory can add value!

Some Investment Questions

How to best implement momentum and value?

- Raw vs. risk-adjusted returns.
- Measure of fundamentals.
- How to best combine momentum and value?
- How does optimal strategy depend on investor's horizon?

Back to the Theory

- Our theory provides a framework to answer those questions.
- Vayanos and Woolley (2011), A Theoretical Analysis of Momentum and Value Strategies.
 - Calibration of the model.
 - Use model as "test bed" to evaluate a number of investment strategies.
 - Analytical formulas for Sharpe ratios (SR).

Calibration and SR

Calibrate using evidence on mutual-fund returns and flows.

Key parameters:

Response of flows to performance.

Price impact of flows.

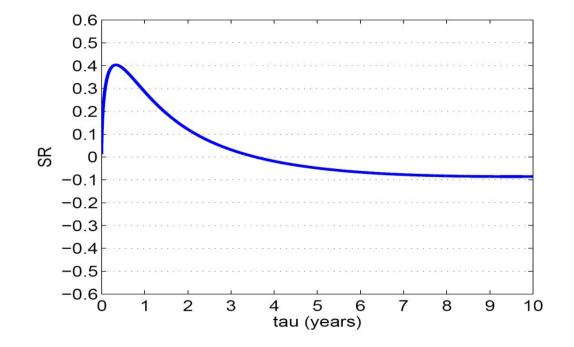
□ Two types of SR:

Static (short-horizon investor).

Standard in empirical studies.

Dynamic (long-horizon investor).

Construction of Momentum and Value


□ Momentum:

High weight for assets with high cumulative returns over a lookback window.

Value:

High weight for assets with high future earnings forecasts relative to price.

Static SR of Momentum

Maximum SR = 40%, for lookback window of 4 months.
 For comparison: Market index has SR = 30%.

Static SR of Value

- Two versions of a value strategy, using different forecasts for future earnings.
 - Accurate vs. crude forecast.
- \square Both achieve SR = 26%.
 - Crude forecast does not hurt!
 - Forecast error raises weight of assets for which market expects low earnings.
 - Declining earnings are associated with high expected returns.

Comments

- SRs somewhat lower than empirical evidence (e.g., AMP 2009).
 - □ Momentum: 40% vs 70%/34%.
 - Value: 26% vs 36%/34%.
 - Calibration considers only subset of flows.
- Momentum dominates value.
 - Consistent with empirical evidence.
- Value less sensitive to implementation than momentum.

Combining Momentum and Value

Negative correlation between momentum and value.

Consistent with empirical evidence.

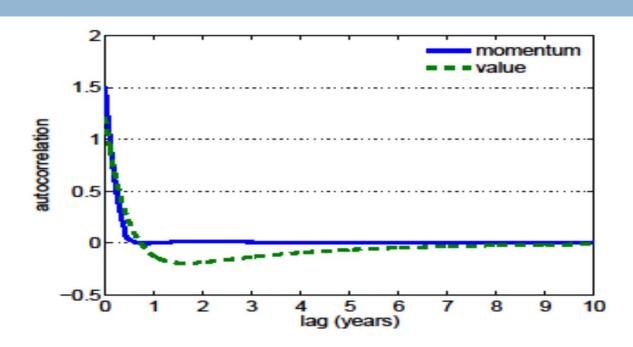
Diversification benefits from combining the two strategies.

\square SR of optimal combination = 48%.

Optimal combination can be further improved!

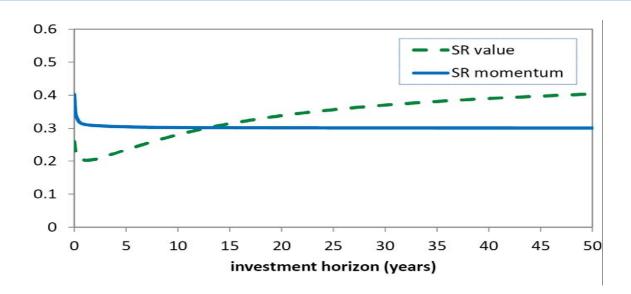
• Overall optimal SR = 61%.

Use information on fund flows.


Lagged Value

- □ Value strategy using lagged signal.
- □ Higher SR than with current signal:
 - Maximum for 1 year, and equal to 35%.
- Has element of momentum.
- When combined with momentum, SR same as with current signal.

Dynamic SR


- Exceeds static SR if autocovariance of returns is negative.
 - Long-run risk is smaller than sum of short-run risks.
- What is autocovariance for momentum and value strategies?

Autocovariance

- □ Momentum has small short-run momentum.
 - Weights change rapidly Inherit only part of asset return momentum.
- Value has short-run momentum and long-run reversal.

Dynamic SR

- □ Long-run risk of momentum is sum of short-run risks.
 - Series of uncorrelated bets.
- Long-run risk of value is smaller than sum of short-run risks.
 Expected return becomes higher following poor performance.
- Value overtakes momentum for long investment horizons.

Conclusion

- Momentum, reversal and value can result from flows between investment funds.
- Analytical framework for studying efficient portfolio management in an inefficient market.
 - Good to combine momentum and value. Even better to use information on fund flows.
 - Long-run investors should raise their weight on value and lower that on momentum.

Further Reading

Papers:

Vayanos-Woolley (VW 2011): An Institutional Theory of Momentum and Reversal.

http://personal.lse.ac.uk/vayanos/WPapers/ITMR.pdf

VW (2011): A Theoretical Analysis of Momentum and Value Strategies.

http://personal.lse.ac.uk/vayanos/WPapers/TAMVS.pdf

- VoxEU Columns:
 - VW (2009): Capital Market Theory after the Efficient Market Hypothesis.

http://www.voxeu.org/index.php?q=node/4052

VW (2012): New Light in the Choice of Investment Strategy. http://www.voxeu.org/index.php?q=node/7530