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NEW DEVELOPMENTS IN INTERPOLATION FORMULAE 

BY ERICH MICHALUP, LL.D. 
Professor at the University of Caracas 

ANY symmetrical interpolation formula may be written in matrix form, e.g. 
the six-term interpolation formula for subdivision of an interval into five parts 
may be expressed as 

where ut is the function to be interpolated, yl the function giving interpolated 
values, and ci the coefficients. We have 

(since they each equal unity), and this is the condition that 

are the coefficients of a summation formula expressed in linear compound form 
which contains the operator [5] (Mervyn Davis, T.A.S.A. XIX, 303). (It 
should be noted, however, that c0 + 2C1 + 2C2 + . . . + 2C14 = 5, not I as with a 
normal summation formula.) Extracting the operator [5] this inverse process 
of summation may be repeated as many times as the above conditions are 
fulfilled. 
Vaughan (J.I.A. LXXII, 482) drew attention to the very close connexion 

between a summation formula and an interpolation formula. He proved that 
the degrees of reproduction (i.e. the degree of the polynomial which is un- 
changed by application of the formula) of a summation formula based on the 
operation [n]r and of its associated interpolation formula were the same as far 
as degree r - I. In the course of his paper he showed that Woolhouse’s 
graduation formula-the first to be expressed in summation form (J.I.A. 
XXIII, 352)-was identical with the ordinary three-term interpolation formula 
for subdividing an interval into five parts. Schärtlin’s graduation formula 

[3]3 3-3(1 - §2) 
is likewise identical with the ordinary second-difference formula for subdivision 
into three parts. 
In view of the possibility of expressing every symmetrical interpolation 

formula symbolically by a summation formula (Vaughan, T.S.A. I, 361), it is 
of interest to investigate the interpolation formulae which are derived from 
summation formulae of the type 

Let k[n]r be described as the operator and 

or, for brevity, [x, y, z, ...] as the nucleus. 

Richard Kwan
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Consider first the operator [5]r, and in order to simplify to a certain extent 
the numerical application take k = 10- r+1. The operator [5]6 10-5 combined 
with a five-term nucleus produces only one summation formula correct to 
the fifth degree, and all others are correct either to the third degree or the first 
degree. Hence, by Vaughan’s result, there is one derived interpolation formula 
with a degree of reproduction of the fifth degree (which must be the ordinary 
six-term interpolation formula) and all others have a maximum degree of 
reproduction of three. The operator [5]5 10-4 combined with a nine-term 
nucleus can produce many summation formulae correct to the fifth degree; 
by Vaughan’s result the associated interpolation formulae will have a degree 
of reproduction of four (except again the ordinary six-term interpolation 
formula with its degree of reproduction of five). This operator [5]5 10-4 applied 
to the nine-term nucleus [x, y, z, t, u] will therefore be considered in more 
detail. 
The first step is to examine the conditions to be satisfied in order to obtain 

‘osculatory’ and ‘non-osculatory’ interpolation formulae. It can be shown, 
by quite straightforward but somewhat laborious algebra, that if y0,1(p) is the 
interpolation curve derived from [5]5 10-4 [x, y, z, t, u] applied to the interval 
(0, 1), and y-1,0(p) is the interpolation curve derived from the same formula 
applied to the interval ( - 1, o), then y0,1(p) -y-1 0(p) takes the form 

where ø(p) is a fifth-degree polynomial 

Since 

it follows that a = o. The readiest approach to obtain b, c, d, e and f is to note 
that ø(p) is the coefficient of u3 in 

and thus must also be the coefficient of u3 in y0, 1(p), since y-1, 0(p) contains no 
term u3. Now let us write ø(p) in full for p = o, 1/5, 2/5, 3/5, 4/5, I so as to obtain the 
first five differences. On the other side we expand [5]5 10-4 [x, y, z, t, u], take 
out the coefficients of u3 and again take differences. The resulting five equations 
are shown in Appendix A(I). The conditions for the summation formula to 
reproduce polynomials of the first, third and fifth degrees and therefore for 
the interpolation formula to reproduce to the first, third and fourth degrees are 
j= 1, k = - 5, m = 14 respectively (see Appendix E, in which it should be noted 
that the x, y, z, . . . of that Appendix are 16 times the x, y, z, . . . of [5]5 10-4 
[x, y, z, ...]). They are shown as conditions A, B and C respectively in 
Appendix A(z). The conditions for continuous derivatives at the terminal 
points are b = o, c = o, d = o, e = o, and are shown as conditions D, E, F and G, 
respectively, in Appendix A(z). 
Generally, it is impossible to have seven equations satisfied with only five 

unknowns at our disposal. We must pick the equations which seem most 
appropriate for the end in view. For instance, the five conditions A, B, C, 
D, E determine the nucleus [80, 48, -96, o, 16] of Sprague’s interpolation 
formula, the first osculatory six-term interpolation formula written in an 
equivalent form (Karup, p. 92, formula (6)). The conditions A, B, D, E, F 
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determine the nucleus [960, 877, - 81, - 609, - 671175 of the author’s inter- 
polation formula M 3 with three continuous derivatives. This is a graduating 
formula, since, although it reproduces polynomials of the third degree, it does 
not in general reproduce the end-points of the interval. The fourth difference 
error is - 7a4/240. 
The conditions that an interpolation formula derived from 

should reproduce the end-points of the interval are obtained by expanding 
the formula and equating c5 and c10 to zero. c0 is, of course, unity. They are 

which, not unexpectedly, reduce to conditions A, B, C. 
It has been pointed out that the actual selection from various graduating 

interpolation formulae depends largely on the particular data and the amount 
of departure from the data permitted at pivotal points. For that reason the 
derivation of interpolation formulae correct to third differences with a pre- 
determined fourth-difference error denoted by R seems to be of interest. If 
the formula is to have continuous first and second derivatives at the terminal 
points, we have to combine conditions A, B, D, E with the equation 

since a fourth-difference error R in the interpolation formula corresponds 
to a fourth-difference error of 54R in the related summation formula (T.A.S.A. 
XXXI, 303). The solution will be 

or 

These yield Sprague’s nucleus when R=0. R= - 16/579.2 = - 5/181 deter- 
mines an osculatory interpolation formula with 27 terms. 
The conditions A, B, D with t = u = 0 yielding the nucleus 

determine a graduating tangential interpolation formula with 25 terms and 
the conditions A, B, C, D with u = 0 determine a reproducing tangential 
interpolation formula with 27 terms. 
The conditions A, B with the sum of the squares of the terms of the nucleus 

(x2 + 2y2 + 2z2 + 2t2 + 2u2) minimized, yield the nucleus 

[1744, 1544, 944, - 56, - 14561/231 with R= .2432/7 = -.035 

nearly. Rounding off (still maintaining conditions A, B) we obtain the simpler 
nucleus [IO, 5, 5, - I, -6]. 
The operator [5]5 IO-4 combined with a five-term nucleus produces many 

interpolation formulae with 25 terms and may be written as [515 10-4 [x, y, z]. 
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Every interpolation formula having a fourth difference error R must satisfy 
the three conditions 

Let us now minimize the smoothing index based on fifth differences. The 
square of this smoothing index will be proportionate to x2 + 2y2 + 2z2. The 
nucleus 8 [4, 2, - 3] is obtained where R = - .0248 approximately. If, alter- 
natively, the sum of the absolute values of the fifth differences is to be mini- 
mized, we require the minimum of 

from which we derive R = - .0244 and the nucleus 4 [14, 0, -5]. 
Let us now investigate the operator [5]6 with a five-term nucleus, taking 

k = 10-6 for the sake of convenience. It may be written as [5]6 1O-6 [x, y, z]. 
From Appendix E it follows that every associated interpolation formula 
having a fourth-difference error R must satisfy the three conditions 

Hence 

Minimizing the square of the smoothing index based on sixth differences, i.e. 
minimizing x2 + 2y2 + 2z2, we obtain R = - .03456 and the nucleus will be 
64 [11, 6, -9]. If, alternatively, the sum of the absolute values of the sixth 
differences is to be minimized we require the minimum of 

from which we derive R = -.03408 and the nucleus 160 [8, 0, -3]. 
We will now investigate interpolation formulae derived from 

since most of the six-term interpolation formulae published hitherto come 
into that category. By consideration of the terms of the expanded formula 
and by methods similar to those by which the conditions of Appendix A were 
derived, we obtain the conditions of Appendix B. We see that in a formula of 
the fourth degree z = t. In a formula of the third degree z = t =0; if, further- 
more, the second derivative is continuous, it follows from condition 0 that 
u=w. 
The nucleus corresponding to the operator [5]3 10-2 might also be in- 

vestigated without difficulty; but it seems that only one formula of that class 
has been published up to now, Greville’s formula No. 109 (T.A.S.A. XLV, 202), 
the nucleus of which is [0, 0, 58, -62, 0, 0, 0, 5, 5]/3, a second-degree formula 
correct to first differences with first-order contact. 
The four-term interpolation formula for subdivision of an interval into five 

parts has 19 terms. Vaughan (£.I.A. LXXII, 482) gives the formula corre- 
sponding to ordinary third-difference interpolation as [5]4 5-3 ( 1 - 4a2) ux, 
which, in the notation of this paper, would be written [5]4 1O-3 [72, -321, The 
next class is [53 10-3 [x, y, z, t]. The respective conditions to be satisfied may 
be obtained by methods similar to those previously described and are shown 
in Appendix C. 
The four-term interpolation formula correct to second differences with 

second-order contact at the end-points comes from S, T, U, V. The nucleus is 
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[ 1080,600, -432, -208]/25, and the formula is of the fifth degree. The condition 
for a formula [5]3 10-3 [x, y, z, t] to be of a lesser degree than five turns out to 
be the same condition (XY) as for it to be of a lesser degree than four. Thus 
this class of formula does not contain any fourth-degree osculatory formula, 
and Jenkins’s four-term interpolation formula with second-order contact is of 
the next class and can be written symbolically as 

Lastly, let us consider an eight-term interpolation formula for the sub- 
division of intervals into seven parts based on [[7]77-6[x, y, z, t, u, v, w]. The 
conditions to be fulfilled, in order that it should be correct to the first, third, 
fifth and sixth differences, are shown as conditions (AA), (BB), (CC), (DD), 
respectively, of Appendix D and the conditions that it should have osculatory 
interpolation of the various orders are shown as conditions (EE), (FF), (GG), 
(HH), respectively, of Appendix D. They are derived in a like manner to the 
conditions of Appendix A. Similarly, if conditions (AA), (BB), (CC), (DD) 
are all satisfied, the end-points will be reproduced. The reproducing inter- 
polation formula with three continuous derivatives, i.e. the solution of the 
conditions (AA), (BB), (CC), (DD), (EE), (FF), (GG), yields the nucleus 

and the graduating interpolation formula correct to fifth differences with four 
continuous derivatives, i.e. the solution of the conditions (AA), (BB), (CC), 
(EE), (FF), (GG), (HH), yields the nucleus 

with a sixth-difference error of 29/5040. 
From Appendix E it may be verified that every interpolation formula derived 

from [7]87-7 [x, y, z, t] having a sixth-difference error of R must satisfy the 
conditions 

Minimizing the square of the smoothing index based on eighth ‘differences, i.e. 
minimizing x2 + 2y2 + 2z2 + 2t2, we obtain R = 65871/11 .77 and the nucleus 
[6353, 1145, -7234, 2951]/77 and minimizing the sum of the absolute values 
of the eighth differences, we obtain R = 17944/3.77 and the nucleus 
[307, 0, -264, 112]/3. 
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APPENDIX A(I) 

Six-term interpolation formulae of fifth degree or less 
Operator [5]5 10-4, nucleus [x, y, z, t, u] 

The relation between ø(p) and the nucleus 

+ 1 25c + 25d + 5e + ƒ=10( u)/32 
250c +150d+70e+3Oƒ=10( t + 3u)/32 

150d+ 180e + 150ƒ= 10( Z + 2t + 3u)/32 
120e+240ƒ=10( y+z+t+u)/32 

120ƒ=10(x )/32 

The resulting five equations 

625.384b=24x-30y+10z-10t+30u 
25.384c= -10x+11y-z-t+11u 
5.384d= 7x- 6y - 2z+ 2t+ 6u 
384e= - 2x+ y+ z+ t+ u 

384ƒ= x 
or 

10x/32 =
10y/32 = - 625b + 125c -25d + 5e+119ƒ 
10z/32= 1875b-125c-75d+55e+ 93ƒ 
10t/32=-1875b-125c+75d+55e+27ƒ 
10u/32= 625b+125c+25d+5e+ ƒ 

APPENDIX A(2) 

Condition Equivalent to 
(A) x + 2y + 2z + 2t + 2u = 16 Degree of reproduction I 

(B) y + 4z + 9t + 16u = -80 Degree of reproduction 3 (with A) 

(C) z + 6t + 20u = 224 Degree of reproduction 4 and repro- 
duction of end-points (with A and 
B) 

(D) 12x-15y+5z-5t+15u= o Continuous first derivative 
(E) -10x+11y-z-t+11u= o Continuous second derivative 

(F) 7x-6y-2z+2t+6u= o Continuous third derivative 

(G) - 2x+y+z+t+u= o Continuous fourth derivative 

(G') x = o Fourth-degree formula 

120f

aa

625b



80 New Developments in Interpolation Formulae 

APPENDIX B 

Six-term interpolation formulae of fifth degree or less 
Operator [5]* 10-4. Nucleus [x, y, z, t, u, v, w] 

Condition to 

(H) Degree of reproduction I 

(I) Degree of reproduction 3 
(with H) 

(J) Reproduction of end- 
points (with H and I) 

(K) 

(L) 

Degree of rep roduction 4 
(with H, I and J) 

(Ml Continuous first deriva- 
(N) tive 

(0) Continuous second deri- 
vative 

(P) Continuous third deriva- 
(Q) 

(R) 

tive 

Continuous fourth deri- 
vative 

CR’) Fourth-degree formula 

APPENDIX C 
Four-term interpolation formulae of fifth degree or less 

Operator [5]3 10-3 Nucleus [x, y, z, t] 

Condition

(S) Degree of reproduction I 

(T) Degree of reproduction 2 also repro- 
duction of end-points (with S) 

Continuous first derivative 

(V) Continuous second derivative 

(W) Continuous third derivative 

(XY) Third-degree formula 

(U)

Equivalent

Equivalent to
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APPENDIX D 

Eight-term interpolation formulae of seventh degree or less 
Operator [7]7 7-6. Nucleus [x, y, z, t, u, V, w] 

Condition 

(AA) 
(Degree of reproduction I) 

(BB) 
(Degree of reproduction 3) 

(CC) 
(Degree of reproduction 5) 

(DD) 
(Degree of reproduction 6, also repro- 
duction of end-points) 

(EE) 
(Continuous first derivative) 

(FF) 
(Continuous second derivative) 

(GG) 
(Continuous third derivative) 

(HH) - 
(Continuous fourth derivative) 

APPENDIX E 

where b = ?2 E-1 (see H. Tetley, Actuarial Statistics, I, 179). 

Since 

Hence 

AJ 6 



82 New Developments in Interpolation Formulae 

APPENDIX E (continued) 

Respective conditions for the associated summation formulae [5]’ 5--’ [x,y, z, . . .] 
to be correct to first, third and fifth degrees are 

i.e. 

Also 

Respective conditions for the associated summation formulae [7]? 7-* [x, y, z, . . .] 
to be correct to first, third, fifth and seventh degrees are 

i.e. 




