NEW DEVELOPMENTS OF THE LEE-CARTER MODEL FOR MORTALITY DYNAMICS

Professor Steven Haberman and Dr Arthur Renshaw Cass Business School, City University

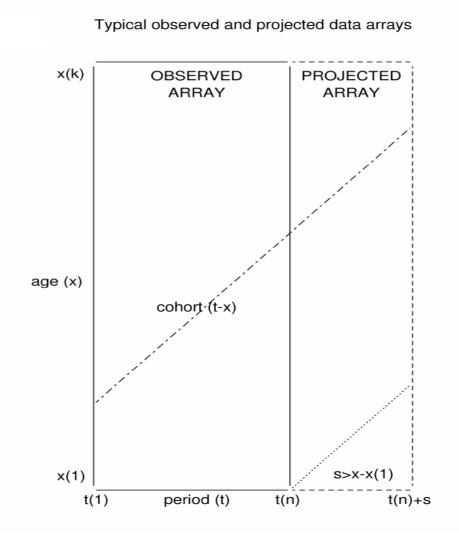
Mortality and Longevity – Making Financial Sense of the Highly Uncertain 8 April, Edinburgh 15 April, London

AGENDA

- Data and Notation
- Basic Lee-Carter Model
- Age-Period-Cohort Model
- Risk Measurement
- Concluding Comments

ILLUSTRATION OF DATA CONFIGURATION

Typical rectangular data array and targeted projected array.



NOTATION

Data: (d_{xt}, e_{xt})

 d_{xt} = number of deaths at age x and time t e_{xt} = matching exposure to risk of death
with empirical central mortality rate

$$\hat{m}_{xt} = d_{xt} / e_{xt} \, .$$

Random variables:

 D_{xt} = number of deaths at age x and time t

 Y_{xt} = response (generic)

LEE CARTER MODELS: BASE VERSION

STRUCTURE

One of the benchmark demographic models used for mortality modelling and projections in many countries. Lee and Carter (1992) proposed:

$$\ln m_{xt} = \eta_{xt} + \varepsilon_{xt}, \quad \eta_{xt} = \alpha_x + \beta_x \kappa_t,$$

where the ε_{xt} are IID $N(0, \sigma^2)$ variables.

This is a regression framework with no observable quantities on the RHS.

STRUCTURE (cont)

Structure is invariant under the transformations

$$\{\alpha_{x}, \beta_{x}, \kappa_{t}\} \mapsto \{\alpha_{x}, \beta_{x}/c, c\kappa_{t}\}$$
$$\{\alpha_{x}, \beta_{x}, \kappa_{t}\} \mapsto \{\alpha_{x} - c\beta_{x}, \beta_{x}, \kappa_{t} + c\}$$

and is made identifiable using the following constraints (which are not unique):

$$\sum_{t=t_1}^{t_n} \kappa_t = 0, \sum_{x} \beta_x = 1, \text{ and which imply the least squares estimator}$$

$$\hat{\alpha}_{x} = \frac{1}{t_{n} - t_{1} + 1} \sum_{t=t_{1}}^{t_{n}} \ln m_{xt}$$

INTERPRETATION OF PARAMETERS

 α_x : 'average' of $\log m_{xt}$ over time t so that exp α_x represents the general shape of the age-specific mortality profile.

 κ_t : underlying time trend.

 β_x : sensitivity of the logarithm of the hazard rate at age x to the time trend represented by κ_t .

 ε_{xt} : effects not captured by the model.

FITTING BY SVD

(Lee and Carter (1992))

A two-stage estimation process: estimate α_x as above. Estimate κ_t and β_x as the 1st right and 1st left singular vectors in the SVD of the matrix $[\log \hat{m}_{xt} - \hat{\alpha}_x]$.

Thus

$$\log(\hat{m}_{xt}) = \hat{\alpha}_x + s_1 u_1(x) v_1(t) + \sum_{i>1} s_i u_i(x) v_i(t)$$

where

 s_i , u_i , v_i = (ordered) singular values and vectors

and

$$\hat{\beta}_x \hat{\kappa}_t = s_1 u_1(x) v_1(t)$$

subject to the constraints on κ_t and β_x .

Finally, $\hat{\kappa}_t$ are adjusted so that

$$\sum_{all \ x} d_{xt} = \sum_{all \ x} \hat{d}_{xt} \ \forall \ t. \qquad \text{where } \hat{d}_{xt} = e_{xt} \exp(\hat{\alpha}_x + \hat{\beta}_x \hat{\kappa}_t).$$

FITTING BY WEIGHTED LEAST SQUARES (GAUSSIAN)

Perform the iterative process

Set starters
$$\hat{\alpha}_{x}$$
, $\hat{\beta}_{x}$, $\hat{\kappa}_{t}$; compute \hat{y}_{xt}
 \downarrow
 $update \ \hat{\alpha}_{x}$; compute \hat{y}_{xt}
 $update \ \hat{\kappa}_{t}$, adjust s.t. $\sum_{t=t_{1}}^{t_{n}} \kappa_{t} = 0$; compute \hat{y}_{xt}
 $update \ \hat{\beta}_{x}$; compute \hat{y}_{xt}
 $compute \ D(y_{xt}, \hat{y}_{xt})$
 \downarrow
 $repeat$; stop when $D(y_{xt}, \hat{y}_{xt})$ converges

Where
$$y_{xt} = \log \hat{m}_{xt}$$
, $\hat{y}_{xt} = \hat{\eta}_{xt}$, $D(y_{xt}, \hat{y}_{xt}) = \sum_{x,t} w_{xt} (y_{xt} - \hat{y}_{xt})^2$

with weights

$$w_{xt} = d_{xt}$$
 (or = 1).

For a typical parameter, we use the updating algorithm:

$$updated(\theta) = \theta - \frac{\partial D}{\partial \theta} / \frac{\partial^2 D}{\partial \theta^2}.$$

POISSON BILINEAR MODEL

$$Y_{xt} = D_{xt}$$
, $E(Y_{xt}) = e_{xt} \exp(\alpha_x + \beta_x \kappa_t)$, $Var(Y_{xt}) = \phi E(Y_{xt})$

with log-link and non-linear predictor

$$\eta_{xt} = \log e_{xt} + \alpha_x + \beta_x \kappa_t.$$

Perform iterative process with

$$y_{xt} = d_{xt}, \ \hat{y}_{xt} = \hat{d}_{xt} = e_{xt} \exp(\hat{\alpha}_x + \hat{\beta}_x \hat{\kappa}_t)$$

$$D(d_{xt}, \ \hat{d}_{xt}) = \sum_{x,t} 2w_{xt} \left\{ d_{xt} \log\left(\frac{d_{xt}}{\hat{d}_{xt}}\right) - \left(d_{xt} - \hat{d}_{xt}\right) \right\}$$

with weights

$$w_{xt} = \begin{cases} 1, \ e_{xt} > 0 \\ 0, \ e_{xt} = 0 \end{cases}$$

LEE CARTER: BINOMIAL

$$\eta_{xt} = \alpha_x + \beta_x \kappa_t \qquad \sum_{x} \beta_x = 1, \ \kappa_{t_n} = 0$$

and link functions $\eta_{xt} = g(q_{xt})$

Possible choices of g are:

I. complementary log-log link

$$\eta_{xt} = \log\left\{-\log\left(1 - q_{xt}\right)\right\}$$

II. log-odds link

$$\eta_{xt} = \log\left(\frac{q_{xt}}{1 - q_{xt}}\right)$$

III. probit link

$$\eta_{xt} = \Phi^{-1}(q_{xt})$$

DIAGNOSTICS

1) Proportion of the total temporal variance explained by the 1st SVD component:

$$\frac{s_1^2}{\sum_{all,i} s_i^2} \times 100\%$$

(Not a good indicator of goodness of fit.)

2) Standardised deviance residuals

$$\hat{\varepsilon}_{xt} = \operatorname{sign}(y_{xt} - \hat{y}_{xt}) \sqrt{\operatorname{dev}(x,t)/\phi}$$

(we could also use standardised SVD residuals)

3) Plot differences between actual total and expected total deaths for each time period, *t*.

PROJECTIONS

Time series (ARIMA)

$$\{\hat{\kappa}_t : t \in [t_1, t_n]\} \mapsto \{\dot{\kappa}_{t_n+s} : s > 0\}.$$

Construct mortality rate projections

$$\dot{m}_{x,t_n+s} = \hat{m}_{xt_n} \exp{\{\hat{\beta}_x(\dot{\kappa}_{t_n+s} - \hat{\kappa}_{t_n})\}}, \ s > 0$$

by alignment with the latest available mortality rates.

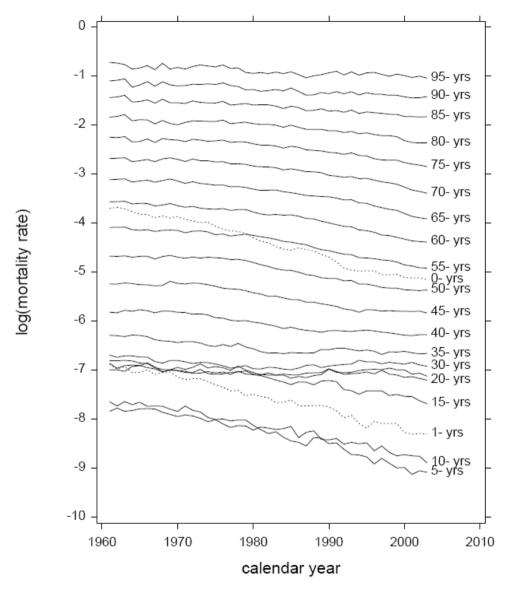
Note

$$F(x,t_n+s) = \exp{\{\hat{\beta}_x(\dot{\kappa}_{t_n+s} - \hat{\kappa}_{t_n})\}}, \ s > 0$$

is a mortality reduction factor, as widely used in the UK and elsewhere.

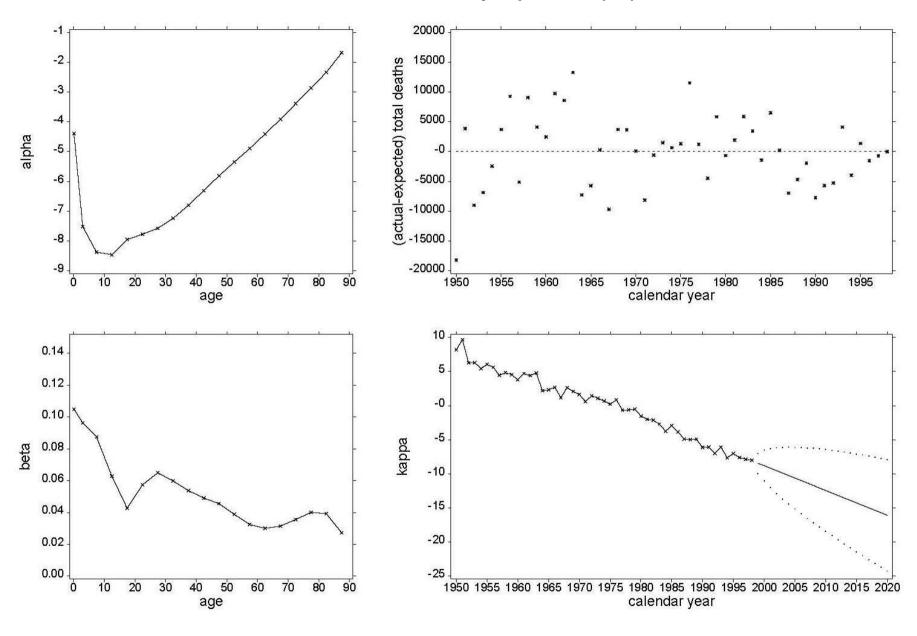
For ARIMA(0,1,0) with drift parameter λ

$$F(x,t_n+s) = \exp(\hat{\beta}_x \hat{\lambda} s), \ s > 0,$$

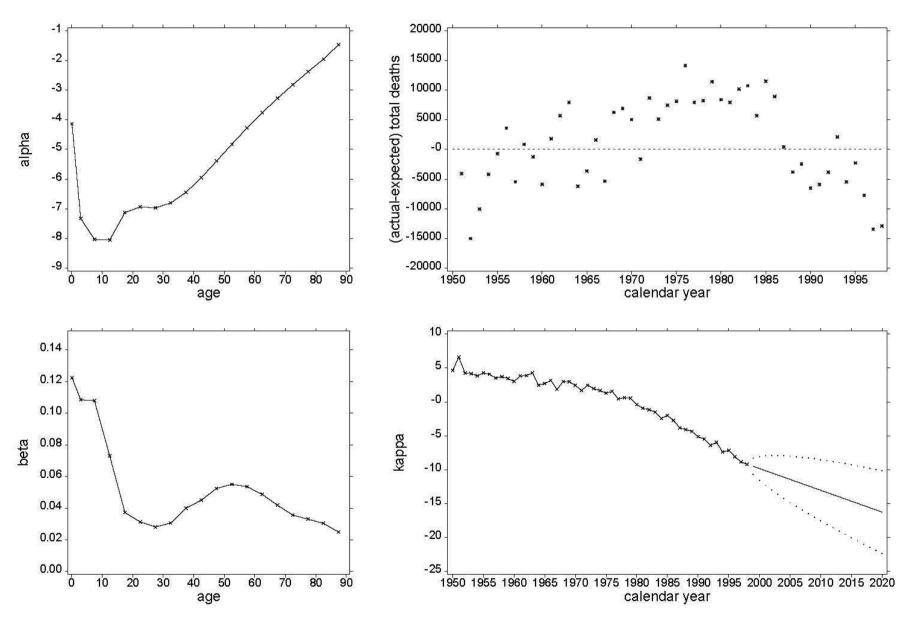


E+W 1961 – 2003 male mortality experience. Log crude mortality rates against period, for grouped age (0-,1-,5-,10-, ..., 90-, 95-).

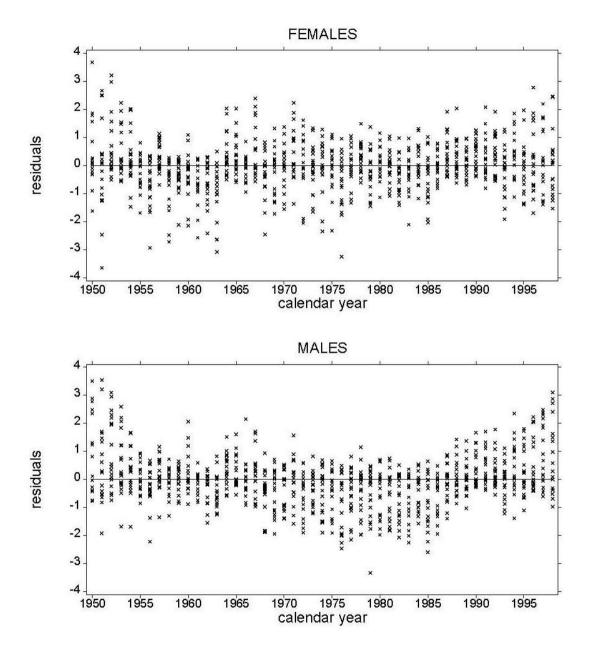
E+W female mortality experience (LC)



E+W male mortality experience (LC)



LC model: E+W mortality experience



INTERIM CONCLUSIONS

- Basic LC model fits England and Wales females mortality experience fairly well; but poor fit for male experience
- Enhancements
 - optimize choice of fitting period
 - add a second factor: $\alpha_x + \beta_x^{(1)} \kappa_t^{(1)} + \beta_x^{(2)} \kappa_t^{(2)}$
 - allow for a cohort effect

AGE-PERIOD-COHORT MODELS IN LC FRAMEWORK

UK: Strong cohort effect for those born in period 1925 – 1945 (also US, Japan, Germany Sweden)

The Lee-Carter structure may be expanded to incorporate a cohort effect:

APC:
$$\eta_{xt} = \log e_{xt} + \alpha_x + \beta_x^{(0)} \iota_{t-x} + \beta_x^{(1)} \kappa_t$$

under the Poisson setting.

The age-cohort substructure

AC:
$$\beta_x^{(1)} = 0$$

is also of interest, while we recall that for the standard model

LC:
$$\beta_x^{(0)} = 0$$
.

FITTING AGE-PERIOD-COHORT MODELS

Fitting is problematic because of the relationship cohort = (period – age) or z = t - x between the three main effects.

We resort to a two-stage fitting strategy, in which α_x is estimated first, according to the original Lee-Carter SVD approach, thus

$$\hat{\alpha}_{x} = \frac{1}{t_{n} - t_{1} + 1} \sum_{t=t_{1}}^{t_{n}} \ln m_{xt}$$

The remaining parameters can then be estimated subject to the parameter constraints

$$\sum_{x} \beta_{x}^{(0)} = 1, \ \sum_{x} \beta_{x}^{(1)} = 1 \ and \ \iota_{t_{1}-x_{k}} = 0 \ or \ \kappa_{t_{1}} = 0.$$

Effective starting values are obtained by setting $\beta_x^{(0)} = \beta_x^{(1)} = 1$ and fitting a restricted version of the model to generate starting values for ι_z and κ_t .

PROJECTIONS

Use separate ARIMA time series

$$\{\hat{\kappa}_{t}: t \in [t_{1}, t_{n}]\} \mapsto \{\hat{\kappa}_{t_{n}+s}: s > 0\},\$$

 $\{\hat{i}_{z}: z \in [t_{1} - x_{k}, t_{n} - x_{1}]\} \mapsto \{\hat{i}_{t_{n}-x_{1}+s}: s > 0\},\$

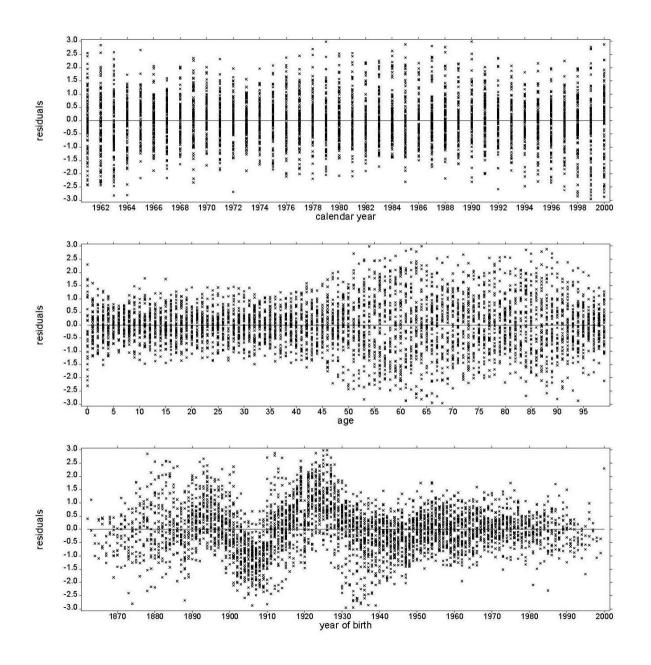
then

$$F(x,t_n+s) = \exp\{\hat{\beta}_x^{(0)}(\tilde{t}_{t_n-x+s} - \hat{t}_{t_n-x}) + \hat{\beta}_x^{(1)}(\dot{\kappa}_{t_n+s} - \hat{\kappa}_{t_n})\}, \ s > 0$$

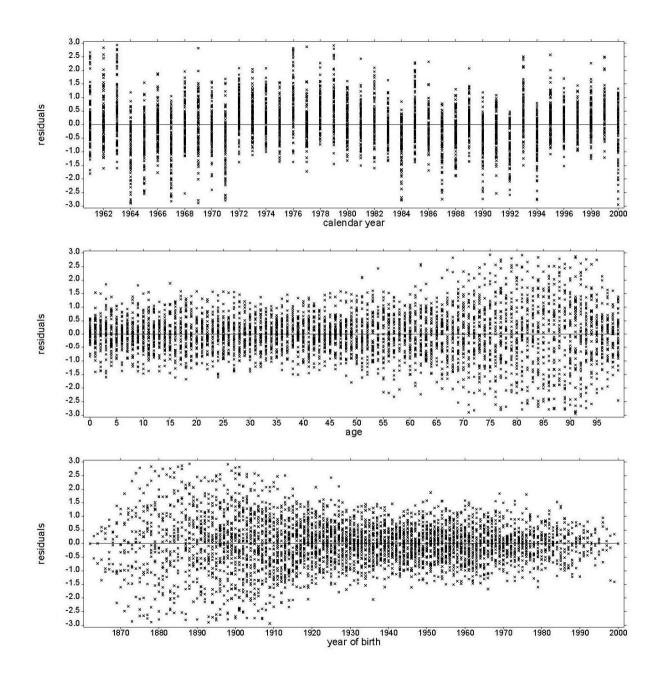
where

$$\tilde{l}_{t_n-x+s} = \frac{\hat{l}_{t_n-x+s}, \ s \leq x-x_1}{\hat{l}_{t_n-x+s}, \ s > x-x_1}.$$

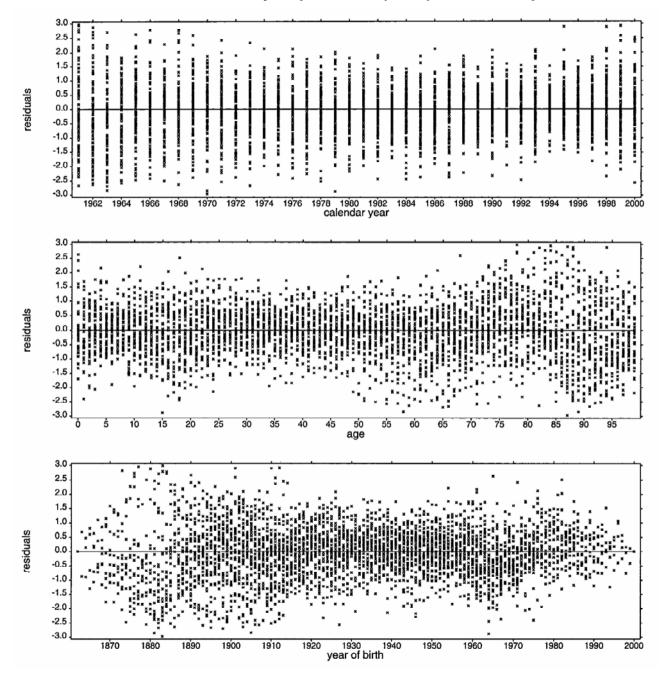
UK female mortality experience (LC) – residual plots



UK female mortality experience (AC) – residual plots



UK female mortality experience (APC) – residual plots



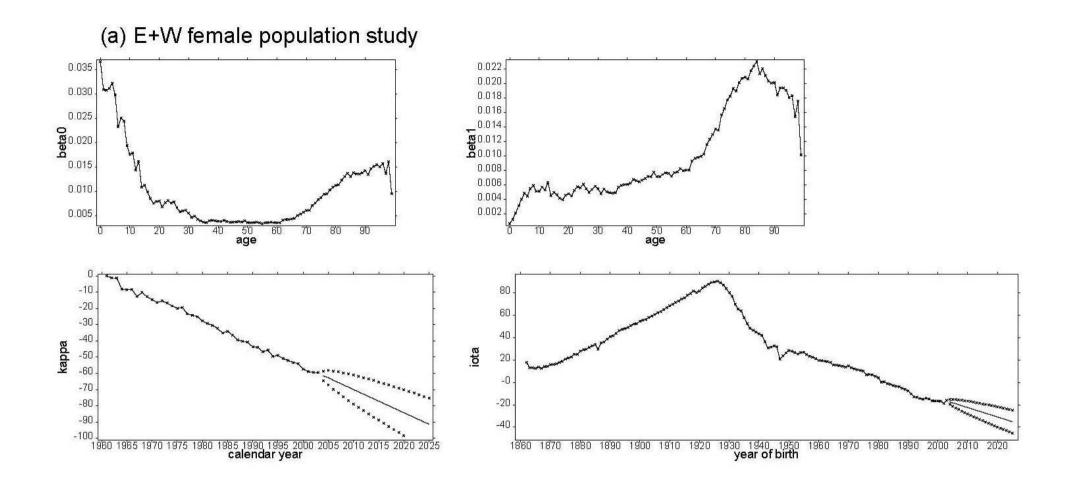
APPLICATIONS

Time Series Forecasts

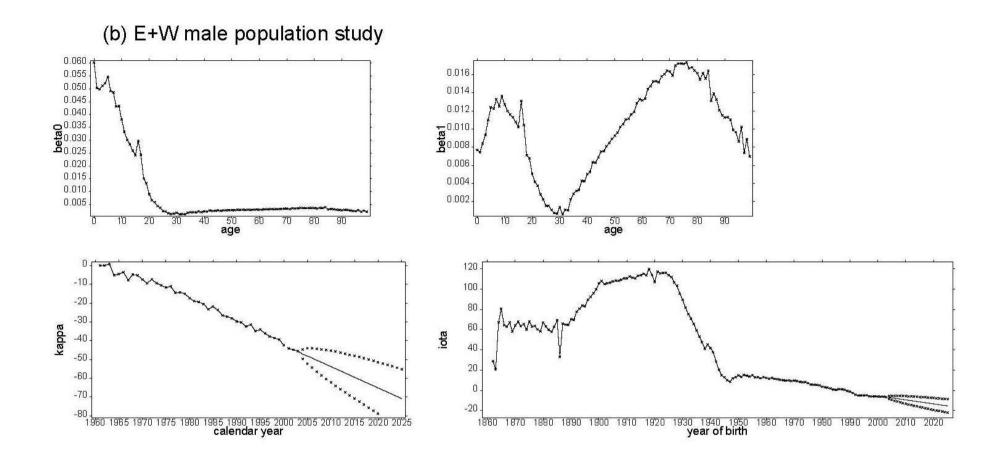
• For
$$\kappa_t$$
: $y_t = a_0 + a_1 t + \sum_{i=1}^p \phi_i y_{t-1}$ with p=2
$$= \kappa_t - \kappa_{t-1}$$

 $(a_1 \neq 0 \text{ for males}; a_1 = 0 \text{ for females})$

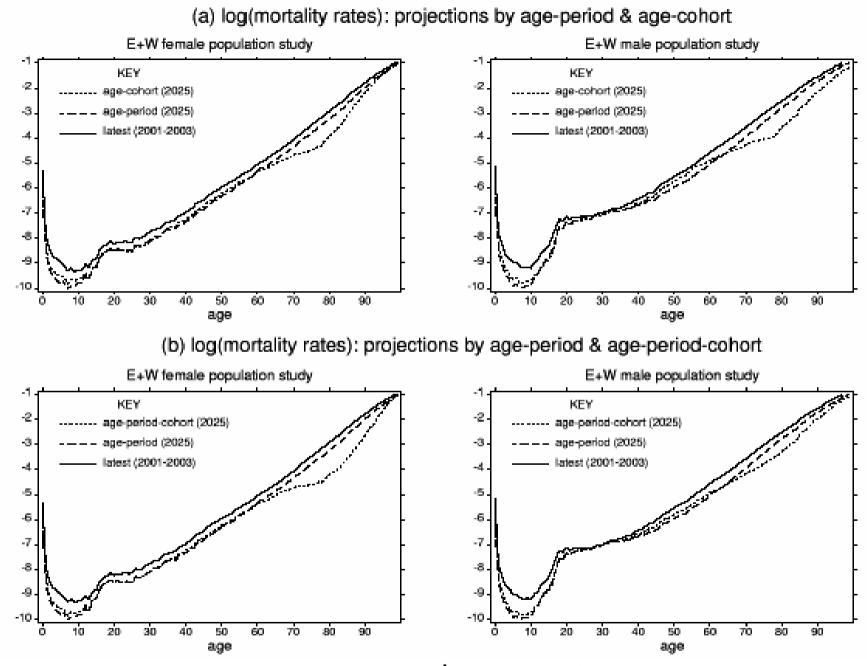
• For t_z ARIMA (1,1,0)



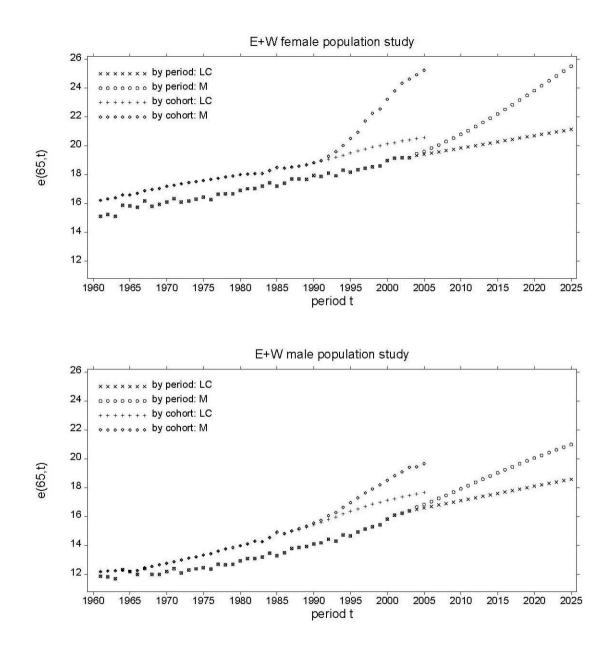
England and Wales population, parameter estimates, APC model: (a) females; (b) males



England and Wales population, parameter estimates, APC model: (b) females; (b) males



Latest and projected $log \mu_{xt}$ age profiles: (a) LC and AC modelling; (b) LC and APC modelling



Life expectations at age 65 for a range of periods, computed by period and by cohort under age-period (LC) and age-period-cohort (APC) modelling

RISK MEASUREMENT AND PREDICTION INTERVALS

- uncertainty in projections needs to be quantified i.e. by prediction intervals
- but analytical derivations are impossible
- 2 different sources of uncertainty need to be combined
 - errors in estimation of parameters of Lee Carter model
 - forecast errors in projected ARIMA model
- indices of interest (e.g. hazard rates, annuity values, life expectancies) are complex non linear functions of $\alpha_x, \beta_\chi, \kappa_t$ and ARIMA parameters.

DIFFERENT SIMULATION STRATEGIES

A) Semi-parametric (Poisson) Bootstrap: generates new data sets

Let d_x be fitted number of deaths.

Simulate response $d_x^{(j)}$ from Poisson (d_x)

Compute $\mu_{x}^{(j)}$

Fit model: obtain estimates of $\alpha_x^{(j)}, \beta_x^{(j)}, \kappa_t^{(j)}$

Compute $\dot{\kappa}_{t_n+k}^{(j)} \left[= \hat{\kappa}_{t_n} + k\hat{\theta}^{(j)} \text{ for ARIMA (0,1,0)} \right]$

Repeat for j = 1, ..., N

DIFFERENT SIMULATION STRATEGIES (Continued)

C) Residuals Bootstrap: generates new data sets

Let r_x be the deviance residuals

Sample with replacement to get $r_x^{(j)}$

Map from $r_x^{(j)}$ to $d_x^{(j)}$ for each x

Compute $\mu_{x}^{(j)}$

Fit Model: obtain estimates of $\alpha_x^{(j)}, \beta_x^{(j)}, \kappa_t^{(j)}$

Compute $\dot{\kappa}_{t_n+k}^{(j)} \left[= \hat{\kappa}_{t_n} + k\hat{\theta}^{(j)} \text{ for ARIMA (0,1,0)} \right]$

Repeat for j = 1,...,N

DIFFERENT SIMULATION STRATEGIES (Continued)

B) <u>Parametric Monte Carlo Simulation: generates new parameter</u> <u>estimates from fitted parameter estimates</u>

Simulate $e^{(j)}$ vector of N(0,1) errors Let C be the Cholesky factorisation matrix of the variance- covariance matrix (needs to be invertible)

Compute simulated model parameters

$$\theta^{(j)} = \hat{\theta} + \sqrt{\varphi} C e^{(j)}$$

where φ is optional scale parameter

Compute $\dot{\mathcal{K}}_{t_n+k}^{(j)}$

Repeat for j = 1,...,N

JOINT MODELLING

Attempt to model variable dispersion parameter (rather than fixed φ)

2 stage process (LG model)

1. Model D_{xt} as independent Poisson response

Define
$$R_{xt} = \omega_{xt} \frac{\{D_{xt} - E(D_{xt})\}^2}{E(D_{xt})}$$
 the resulting squared Pearson residuals

2. Define R_{xt} as independent gamma responses

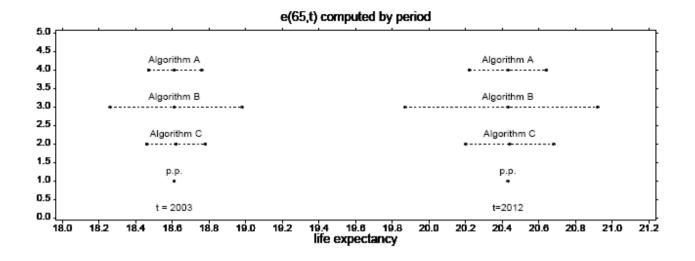
$$E(R_{xt}) = \phi_{xt}, \ \operatorname{Var}(R_{xt}) = \tau \frac{\operatorname{V}\{E(R_{xt})\}}{\omega_{xt}}; \ \operatorname{V}(u) = u^{2}$$

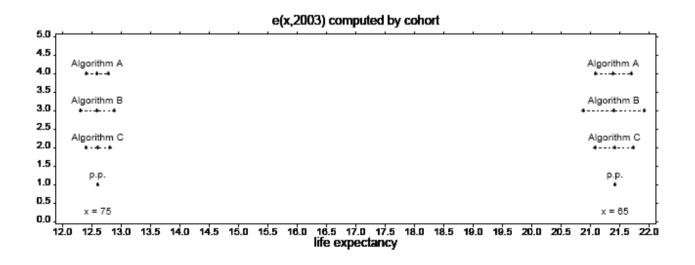
and log link and linear parametric structure in age.

NEGATIVE BINOMIAL MODELLING

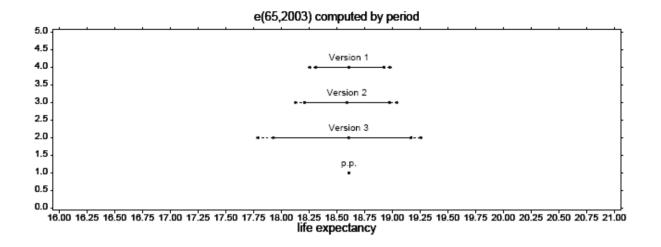
Extend Poisson model (with no scale parameter $\phi = 1$) Variance function in GLM becomes:

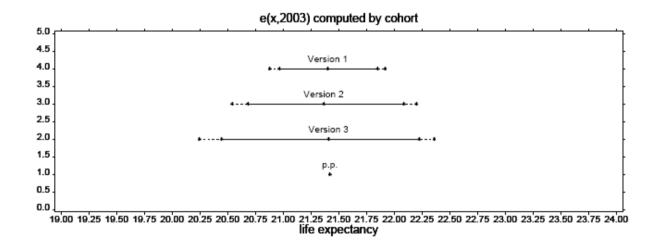
$$V(u) = u + \lambda_x u^2$$



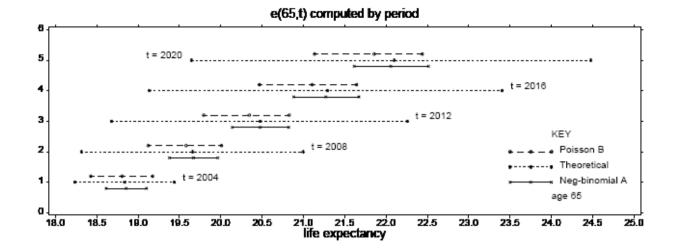


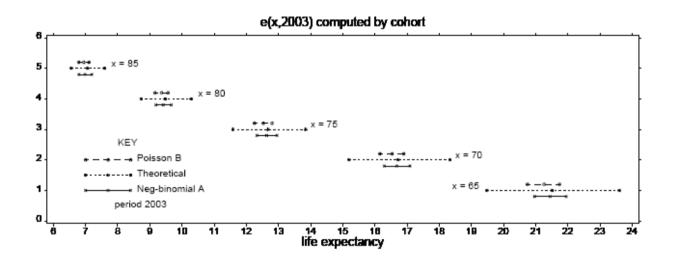
UK 1983-2003 male pensioner mortality experience (ages 51-104). Poisson LC: age-period (log-bilinear) fitted parametric structure. Life expectancy: comparison of 2.5, 50, 97.5 precentile based PIs using three different simulation algorithms, with point predictor (p.p.).



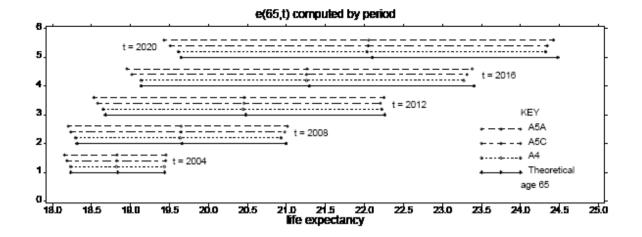


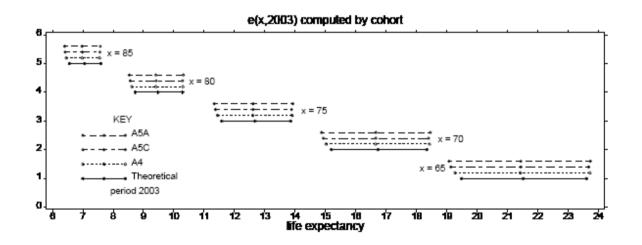
UK 1983-2003 male pensioner mortality experience (ages 51-104). Poisson LC: age-period (log-bilinear) fitted parametric structure, with and without the inclusion of a free-standing (constant) scale parameter. Life expectancy: comparison of 2.5, 50, 97.5 precentile based PIs using different versions of simulation Algorithm B, with point predictor (p.p.).





UK 1983-2003 male pensioner mortality experience (ages 51-104). LC: age-period (bilinear) structure in combination with random walk. Life expectancy: comparison 2.5, 50, 97.5 precentile based PIs using (i) Algorithm B, Poisson (version 1). (ii) By theory (Denuit (2007)) (iii) Algorithm A, negative binomial.

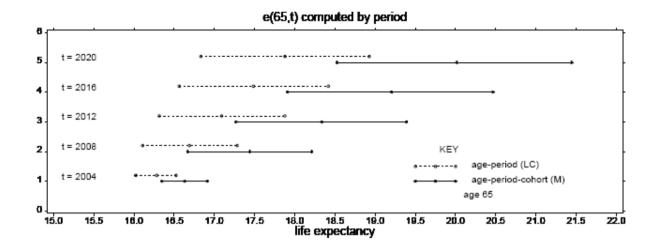


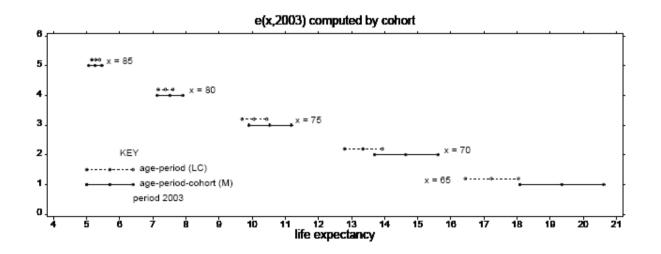


UK 1983-2003 male pensioner mortality experience (ages 51-104).

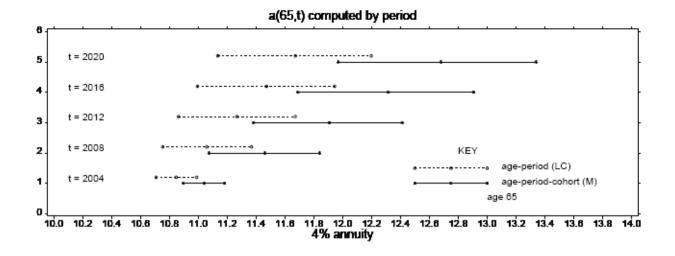
Poisson LC: age-period (log- bilinear) structure, with period random walk.

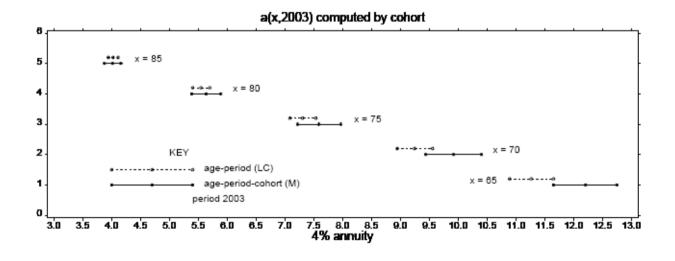
Comparison of life expectancy predictions (various age-period start points) based on 2.5, 50, 97.5 percentiles: (i) By theory. (ii) By bootstrapping the prediction error in the period component time series (Algorithm A4). (iii) By bootstrapping the time series prediction error and including model fitting simulated error (Algorithms A5A or A5C).





E+W male mortality: comparison life expectancy predictions using (i) age-period-cohort and (ii) age-period Poisson structures. Predictions with intervals by bootstrapping the time series prediction error in the period (and cohort) components, and selecting the resulting 2.5, 50, 97.5 percentiles.





E+W male mortality: comparison 4% fixed rate annuity predictions using (i) age-period-cohort and (ii) age-period Poisson structures. Predictions with intervals by bootstrapping the time series prediction error in the period (and cohort) components, and selecting the resulting 2.5, 50, 97.5 percentiles.

FINAL COMMENT

- Other approaches to prediction intervals for Lee-Carter models Bayesian methods
- Adding simulation techniques to APC model
- Extreme ages extrapolation methods needed where data are scarce
- Problems with forecasting structural changes
- Time series methods and their application to long forecasting periods

FINAL COMMENT (continued)

- Effect of β_x on smoothness of projected age profiles: need for smoothing of estimates
- Assessing performance of forecasting methods.
- Quality of data sources and appropriateness for particular applications: "basis risk".
- Model error essential to investigate more than one modelling framework.
- Sources of uncertainty process, parameter, model, judgement. Not all sources of uncertainty can be quantified.

REFERENCES

Booth, H, (2006) Demographic Forecasting: 1980 to 2005 in review. *International Journal of Forecasting*, **22**, 547-581.

Booth, H, Maindonald, J. and Smith, S. (2002) Applying Lee-Carter under conditions of Variable mortality decline. *Population Studies*, *56*, 325-336.

Brouhns, N., Denuit, M. and Vermunt, J.K. (2002a) A Poisson log-bilinear regression approach to the construction of projected life-tables. *Insurance: Mathematics and Economics* **31**, 373-393.

Brouhns, N., Denuit, M. and Vermunt, J.K. (2002b) Measuring the longevity risk in mortality projections. Bulletin of the Swiss Association of Actuaries, 105-130.

Brouhns, N., Denuit, M. and van Keilegom, I. (2005). Bootstrapping the Poisson log-bilinear model for mortality forecasting. *Scandinavian Actuarial Journal*, **3**, 212 – 224.

Davison, A. and Hinkley, D. (2006). Bootstrap methods and their applications. Cambridge University Press.

Delwarde, A., Denuit, M. and Partrat, C. (2007). Negative binomial version of the Lee-Carter model for mortality forecasting. *Applied Stochastic Models in Business and Industry* **23**, 385 – 401.

Denuit, M. (2007). Distribution of the random future life expectancies in log-bileniear mortality projection models. *Lifetime Data Analysis 13*, 381-397.

Denuit, M., Haberman, S. and Renshaw, A. (2008). A note on the distribution of random future life expectancies in Poisson log-bilinear mortality projections. In preparation.

REFERENCES (continued)

Haberman, S. and Renshaw, A. (2008). On simulation-based approaches to risk measurement in mortality with specific reference to binomial Lee-Carter modelling. Presented to Society of Actuaries' Living to 100 Symposium. Orlando, Florida, USA.

Koissi, M-C., Shapiro, A.F. and Hognas, G. (2006). Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence intervals. *Insurance Mathematics and Economics*, **38**, 1 – 20.

Lee, R.D. (2000) The Lee-Carter method of forecasting mortality, with various extensions and applications (with discussion). *North American Actuarial Journal* **4**, 80-93.

Lee, R.D. and Carter, L.R. (1992) Modelling and forecasting the time series of U.S. mortality (with discussion). Journal American Statistics Association, 87, 659-671.

Li, S-H, Hardy, M and Tan, K. (2006). Uncertainty in mortality forecasting: an extension to the classical Lee-Carter approach. University of Waterloo working paper.

Pitacco, E. Denuit, M., Haberman, S and Olivieri A-M (2008). Modelling longevity dynamics for pensions and annuity business. Oxford University Press. In preparation.

Renshaw, A.E. (1992). Joint modeling for actuarial graduation and duplicate policies. *Journal of Institute of Actuaries* **119**, 69 – 85.

Renshaw, A.E. and Haberman, S. (2003a) Lee-Carter mortality forecasting: a parallel generalised linear modelling approach for England and Wales mortality projections. *Applied Statistics*, **52**, 119-137.

Renshaw, A.E. and Haberman, S. (2003b) On the forecasting of mortality reduction factors. *Insurance: Mathematics and Economics* **32**, 379-401.

REFERENCES (continued)

Renshaw, A.E. and Haberman, S. (2003c) Lee-Carter mortality forecasting with age specific enhancement. *Insurance: Mathematics and Economics* **33**, 255-272.

Renshaw, A.E. and Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. *Insurance: Mathematics and Economics* **38**, 556-570.

Renshaw, A.E. and Haberman, S. (2008). Simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling. *Insurance: Mathematics and Economics.* To appear.

Tuljapurkar, S., Li, N. and Boe, C. (2000) A universal pattern of mortality decline in the G7 countries. *Nature*, **405**, 789-792.

Wilmoth, J.R. (1993) Computational methods for fitting and extrapolating the Lee-Carter model of mortality change. *Technical Report. Dept. of Demography, University of California, Berkeley.*