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ABSTRACT 

This note considers the mortality table functions, and shows that the usual formulae hold under less 
restrictive assumptions than those usually made. The foundations of the theory of multiple- 
decrement tables are also considered, in the context of probability theory. 
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1. INTRODUCTION 

The properties of the mortality table functions are usually derived under the 
assumption that l'x exists and is continuous (see Neill, Section 1.6). We shall show 
that the usual formulae hold under less restrictive assumptions, viz. that lx and µx 
exist and are continuous. The mathematical basis for this approach is similar to 
that used in connection with the force of interest in McCutcheon & Scott, Section 
2.4. We also consider the foundations of the theory of multiple-decrement tables, 
which we attempt to place in the context of probability theory. In particular, we 
prove the ‘identity of the forces’ (see Hooker & Longley-Cook, Section 20.7). 

Theorem 2. 1 

2 SOME MATHEMATICAL RESULTS 

Let I= [A.B) or ( – χ , B), where B may be Suppose that f(x) is continuous 
on I and that its right-hand derivative, f'+ (x), is zero on I. Then f(x) is constant. 

Proof (Adapted from Hobson, p. 365) 
Let us consider the case when I = the case when I = [A, B) is similarly 

dealt with. If the conclusion of the theorem be false, there must be a and b in I, 
with a < b, such that f(a) < f(b) or f(a) > f(b). 

Let us suppose that f(a) < f(b), the case when f(a) > f(b) being treated by a 
similar argument. For each k, let: 

which is continuous on I. Note that Let k be positive but so small that 

Let and and ξ = supM, which is clearly such that 
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a Let We have which shows that Now let 
Since for all and so Also: 

But this contradicts the fact that for all x in I. Q.E.D. 
This theorem leads easily to the following result, which is used in McCutcheon 

& Scott, Appendix 1. 

Theorem 2.2 
Let I be as in Theorem 2.1. Suppose that f(x) and f’+(x) are continuous on I. 

Then f(x) is differentiable on I. 

Proof 
For each x in I, let: 

where a is any number in I. An application of Theorem 2.1 shows that g(x) is 
constant, and is therefore equal to f(a). Hence: 

for all x in I, so f(x) is differentiable. (Its derivative is, of course, equal to f'+(x).) 
Q.E.D. 

3. APPLICATION TO LIFE TABLES 

For let: 

s(x) = the probability that a life aged survives to age x (3.1) 

which is usually called the ‘survivorship function’. For simplicity, let us suppose 
from now on that the limiting age, the case when requires minor 
modifications. We may also write: 

lx = lx s(x) (3.2) 

where lx is the radix of the life table (generally a large number such as 100,000.) 
Let s(x) be positive and continuous. (In some applications, generally not to life 
tables, but to tables of retirements, etc., s(x) may be discontinuous at certain 
points. In such cases we may apply the techniques given here over each section of 
the table, making special allowances at the discontinuities.) 

For let: 

tpx = Pr{a life aged x survives to age x + t}. (3.3) 



We also define: 

Table Functions 

= Pr{a life aged x does not survive to age x + t}. 

(If t = 1, we may write tqx = qx and tpx = px.) We assume that, for 
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(3.4) 

= lim 
Pr{a life aged x dies within time h} 

h 

(3.5) 

exists, and is a continuous function on We also assume that, for 

(3.6) 

It follows on. setting x1, = x, x2 = x and x3 = x + t, that. for each x,t such that 

Theorem 3.1 
For each x and t such that 

(3.7) 

(3.8) 

Proof 
By (3.5) and (3.7): 

Consequently. s(x) and are continuous on and Theorem 2.2 shows 
that s’(x) exists and equals It follows that: 

s’(x) = – s(x) 

which may easily be solved. Using the initial condition, = 1, we have: 
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Formula 3.8 now follows from this and formula 3.7. Q.E.D. 

It now follows easily (on substituting that: 

(3.9) 

Now let x and t be fixed, with As in Scott, lemma 1.1, we have: 

(3.10) 

uniformly for 

Example 3.1 (Gompertz’ law) 
Let us assume that, for say, s(x) is continuous and that: 

Pr{a life aged x dies within time h} = Bcx h + o(h). 

This implies that: 

i.e. Gompertz’ law holds for 25, and is clearly continuous. If we also 
suppose that formula 3.6 holds. Theorem 3.1 shows that, for 25 and t 0: 

4. THE MULTIPLE-DECREMENT TABLE 

Let us consider only two modes of decrement, and , and suppose that we are 
mainly interested in mode . (If there are more than two modes, all except mode 
may be combined.) It is supposed that each mode of decrement has the ‘life table’ 
functions etc., as in Section 3. Lives are considered to continue in 
existence with respect to a given mode after exit by the other mode of decrement. 
To avoid philosophical problems when one of the modes of decrement is death. 
one may, for example, take mode as exit by marriage and mode as exit by 
withdrawal from service among the bachelor employees of a large organisation, 
mortality being ignored. 

Let T1, T2 denote the times to exit by modes and respectively for a life aged 
x. It follows by formula 3.9 that T1, T2 have probability density functions 

are independent, and define: 
(t2 > 0) respectively. We assume that T1 and T2 
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t(ap)x = the probability that a life aged x, subject to both modes of decrement, 
survives to age x + t 

(4.1) 

by the independence of T1 and T2. (If t = 1, we may omit it.) We also define: 

t = the probability that a life aged x, subject to both modes of decrement, 
will exit by mode before age x + t, exit by mode not having previously 
occurred 

= Pr{T1 t and T1 T2} 

(4.2) 

Let x and t be fixed, with x + t. It follows, as in Scott, lemma 1.1, that: 

(4.3) 

uniformly for Incidentally, this proves the result known as 
the ‘identity of the forces’, viz.: 

(4.4) 

(See Hooker & Longley-Cook, Section 20.7.) 
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