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0. Introduction

A tarif is a rule for the division of an insurance portfolio
into disjoint classes or cells, and an assignment of a premium
f to each cell c.
c

The premiums fc constitute a vector, the dimension of which

is equal to the number of cells. A tarif structure or a tarif
model is described by specifying a surface in this vector
space, on which the premium point with coordinates fc is

required to be situated. The dimensionality of this surface
is called the number of free parameters or the number of
degrees of freedom of the model.

The simplest structure is the one which assigns the same
premium to all cells. Its surface consists of the straight
line of points with all coordinates equal. The number of
degrees of freedom is obviously equal to one, the free
parameter being the common premium.

In the following we will assume that a basic subdivision
has already been done.
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1. The likelihood function of tarif construction

In general, when we want to construct or modify a tarif

the statistical material at hand will (or should) consist of,

for each cell c,

exposure ηc (e.g. number of policy years, or amount

insured times years at risk, or premiums)

claims frequency sc (number of claims per unit of exposure)

observed risk premiums pc (claims amount per unit of exposure)

We denote by

- λc the theoretical claims frequency for cell c

- μc the expected value of the size of an individual claim

in cell c (theoretical average claims size)

πc the theoretical risk premium in cell c, πc = λc uc .

We assume numbers of claims to bo Poisson distributed.

The probability of k claims in cell c is then

We denote by

- σc the standard deviation of the individual claims sizes

in cell c

and we assume that, given k claims, the total claims amount

in cell c has a Normal distribution with mean kuc and s.d.σc k

The likelihood function L corresponding to the observed

frequencies sc and risk premiums ρc (i.e. the a priori

probability of the statistical material) will then be as

follows, assuming the cells to be stochastically independent.

The observed k-value in cell c is ηc sc , and the observed total

claims amount is nc Pc .

-

-

-

-
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The function L should be maximized w.r.to the parameters

λc ,μc ,σc . This should be done under the constraints imposed

on the parameters by the tarif model chosen.

2. Likelihood theory for multiplicative rate making

In multiplicative rate making one specifies for

a multiplicative expression with one factor for each premium

argument which is taken into consideration. For simplicity

notation, we assume the number of premium arguments to be

three. The premium arguments may take on m1, m2 and m3

different values, respectively.

The number of cells is then m = m1 m2 m2 and the general

cell index c is replaced by

are required to be of the form

i.e. the likelihood function

should be maximized under the constraints

Here, p is the observed overall riskpremium, while ui, vj,wk

are nonnegative parameters. These are free parameters apart

from a proportionality normalization. The latter can e.g. be

of the form u1 =v1 =w1 from which it is seen that there are

l+(m1-l)+(m2-l)+(m3-l) = d free parameters of this kind.

(2)

(3)

(1)
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In addition we have the λijk as free parameters. when they

are also determined we get the μijk from

We now have (d+m) free parameters. Finally, the standard

deviations σijk are also assumed to be unknown. To be able

to estimate them from the observed data we have to make

simplyfying assumptions, e.g.

or

or, as an intermediate case,

In all three cases, the total number of free parameters, i.e.

the number of degress of freedom, will be d+m+l.

In order to estimate the parameters we should maximize (2)

taking into consideration the constraint (4) and one of

the alternative constraints (5), (6) and (7).

We adopt the following approximate procedure. In (2) the first

factor L1 (λ i j k) is maximized by putting theoretical frequencies

equal to the observed ones, i.e.

(6)

all equal, say

Then there remains the maximization of

and from (1)

(4)

(5)

(7)

(8)

proportional to

proportional to

From (4)



Under the constraint (5), σijk = σ, the maximization of L2

is equivalent to minimizing, with respect to ui vj wk

i.e Least squares with ηijk /sijk as weights.

Then is obtained by

Of the two constraints (6) and (7) we choose to treat (7)

in some more detail. Under this constraint, (8)-(10) yield

To maximize L2 or, equivalently, Log L2 we put the partial

derivatives of Log L2w.r. to

equal to zero. observing that

(9)

(10)

with

with

(11)

(12)



and the analogous equations vjd/dvj=0, wk d/dwk = 0

Rearranging, the system becomes

Summing e.g. the first set of m1 equations w.r. to i,
we find

i.e. the graduated total claims cost will be equal to
the observed one.

we get

and thus, from (12)

(13a)

(13b)



To solve the system (13), we may choose an initial value

for σ and then solve equations (13b) for ui vj wk (it can be

proved that there is one, essentially unique, solution).

Putting the values obtained for ui vj wk into (13a), we

get a new value for σ and repeat the procedure. The process

is stopped when two successive σ-values are equal.

From (11) and (13a) we then have

and

(14)

(15)

As earlier pointed out, the number of degrees of freedom is

(m1+m2+m3-2)+m+l. The three terms in this sum correspond,

respectively, to the factors u, v and w, to the estimated

frequencies and to σ.

If we want to test e.g. the hypothesis that all wk can be

put equal to one, i.e. the third factor variable has no

influence, we have to solve the system (13) putting all wk=l

(the third line of (13b) should be omitted, of course).

If the estimates obtained are denoted by two "hats", the likeli-

hood test statistic becomes

It is approximatively chi-square distributed with degrees

of freedom equal to

Const

Const



For comparisons of one factor model with a more specialized

one, the important part of 2LogL. is, therefore, minus m times

the sum of

LogQA

and, for each factor variable,

the arithmetic mean of the logarithms of the factors

The relevant part of the number of degrees of freedom equals
the total number of factors minus the number of factor
variables plus one.

3. An example of multiplicative rate making practise

In practical work the theory above has been used in the follo-
wing simplified, and somewhat rough, way.

To solve the system (13), we put the initial value for σ

equal to zero. Equations (13b) are then solved with their

right-hand members equal to zero. This means putting the partial

derivatives of QA w.r. to ui,vj,wk equal to zero. The estimates

obtained are thus those which minimize QA

We then compute σ2 from (13a) and assume that if this σ2

was inserted in (13b), and (13b) was solved for ui,vj,wk ,

we would get roughly the same σ2 back from (13a). In reality,

we would, of course, obtain a larger σ2 as QA would increase

somewhat from its minimum value.

Thus we assume that the iteration would (approximately) stop

after one further step, and so we do not have to carry it

through to obtain σ2 :

From (12) and (13b) with right hand members equal to zero,
we get

 minimum

i . e .

QA = 2 (graduated - observed claims cost)



where the graduation is done by those factors u,v,w which

minimize QA . This coincides with the original Boehm-Mehring

program [] for fitting a multiplicative model.

As QA is positive, the factors u,v and w thus far obtained

overestimate the observed claims cost. Instead of carrying

through the iterations to the end, we now adopt Jung's [ ]

approach to estimate the factors. This means that we put not

only the total graduated claims cost equal to the observed one,

but do so also for each marginal sum.

(14)

These equations have one, assentially unique, solution [ ].

This gives us our estimates u,v and w.

The quantities QA, u, ν and w thus obtained are then used e.g.

to construct likelihood ratio tests according to the previous

section.

4. The hypothesis of no risk premium differentiation

The simplest tarif model is to assign the same premium to

all cells. This may be considered as a multiplicative model

with all factors equal,

 for all i,j,k

where u is the only factor to be estimated. The exact

likelihood estimate according to section 2 will make graduated

and observed claims costs equal, and so



The important part of Log L2 is - mLogQA and the corresponding

number of degrees of freedom is equal to one.

If we use, instead, the practical approach of section 3,

Q is obtained as the minimum of
A

As estimate of the unknown factor u we still use u = 1.

The simple hypothesis of no premium differentiation between
cells can then be tested against a more complicated model
by taking the difference between the (important part of)

Log L2 for the latter and the -mLogQA of this section. Also,

one minus the quotient between the two QA's may be taken

as a descriptive measure of the variance reduction that is
accomplished by the more complicated model.

w.r.to. u. This yields

and



Appendix 1 

(1) exposures n 
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Description of the multiplicative ratemaking model. 
(Free translation from a description by G Andreasson,Oct 1968, 

augumented by B Ajne and G Green, Dec 1972 ) 

1. The model 

Assume that, within a certain branch of insurance, we have 

tarif arguments U,V,W,..In motor they could be e.g . 

make of car, age of car, geographical district etc. In fire 

we could have e.g. building material (stone, wood,...), year 

of erection, geographical location etc. 

We also have statistical eqxperience consisting of 

i j k . . . .  

e.g. number of policy years or total sum insured for risks 

in "cell" i, j, k, .... 

(2) (relative) risk measures p i j k . . . .  

e.g. claims' cost, per policy year or as a proportion of 

SUm insured. 

The model assumption is now 

, where p is defined by (3) on p.2

i.e. the influence of the tarif arguments U, V, W,.... is 

assumed to be multiplicative. If the tarif arguments 

have I, J, K, .... levels, this means that we have replaced the 

estimat ion of the I . J . K l .... cell

estimation of I+J+K + .... risk factors ul...uI, vl...vJ, 

risk premiums by the 

wl...wK,... 

( I, J, K are denoted by m1, m2 and m3 in the main paper ) 



Thus the model assumption implies a considerable reduction of

the number of parameters to be estimated from the data. It

also supplies a convenient logic for the construction of

tarifs, perhaps to a larger extent than an additive model would

do as in insurance one is used to express differences in

percentages rather than in absolute amounts. Finally, one also

gets a possibility to study, via the risk factors, the influence

of one tarif argument isolated from those of the others.

2. Fitting the model to the data.

Assume for simplicity that we have three tarif arguments U, V, W.

Denote by ρ the overall risk measure defined by

Introduce the normalized risk measures rijk defined by

Thus

The computation starts out from the normalized risk measures,

i.e. we start with the estimation problem

Two ways have been used to estimate the u's, v's an w's from the

r's. The first is the chi square minimum method according to

which the following expression should be minimized w.r.to

ui , v j, ,w,k

((7) corresponds to QA in the main paper )

(3)

(7)

(4)

(5)

(6)



Equating the partial derivatives to zero yields a system of

The second way could be called the method of unbiased estimation

of marginal riskmeasures, which means putting the graduated

marginal risk measures equal to the observed ones:

for i = 1...I, and corresponding equations for each fixed j and

each fixed k. These equations can be put into the following form,

which differs from (8) in that the quantities r2ijk have been

replaced throughout by rijk uivj wk :

Both (8) and (8') are well apt to solution by iteration. Initial

values may conveniently be chosen to be the observed marginal

risk measures, viz.

( This is system (13b)

of the main paper

with σ = 0 )

I + J + K equations for the I + J + K unknown quantities ui , vj wk :

(8)

(7')
( Eq.(14) of main

paper)

(8')



According to experience the iteration process converges rapidly,

ten steps usually being quite sufficient. In principle the

iteration is stopped when the m:th and (m+l):th iteration yields

the same result to a certain number of significant fig-ares,

(10)

Hence we get the estimates

(11)

and finally

3. Testing the goodness of fit.

If the graduation is done according to formulas (7)-(8), chi square

minimum, the fit of the model to the data can be tested by computing

the quantity S defined by

According to main paper, section 3,

min χ2 = 2 obs claims χ (S-l)

i.e. graduated total claims cost divided by observed total claims

cost. From (7) it can be proved that S is always greater than one,

and the deviation (S-l) can be used as a measure of the "badness"

of fit (S=l means perfect fit).

(9)

(12)

(13)



and their deviations from one may be used to judge the balance of

the graduation.

For the method of graduation described by formulas (7')—(8') all

S-values w i l l naturally be equal to one, but for rounding off

errors. However, they are s t i l l computed as a check.

4. Experience with the multiplicative model.

The multiplicative rate making model has, from the late sixties and

onwards, found a fairly extensive use in the graduation of swedish

claims' statistics within Motor Insurance.

It is also used, at least in one swedish company, to revise tarifs

within Home-owner's Comprehensive, House-owner's Comprehensive,

Combined Shop Insurance, Pleasure Boat Insurance etc.

The swedish fire tarif has a multiplicative structure and thus,

is well suited for multiplicative graduation. However, some care

has to be taken as to the large fire claims, the influence of

which has to be smoothed before the graduation.

Often the graduation according to (7)-(8) is used to test the

model, while if the fit is considered satisfactory, formulas

(7')-(8') are used to actually estimate the risk factors.

The later method pays a l i t t l e more attention to the smaller

risk groups and also fulfills the condition of equity for the

tarif arguments taken one at a time.

Also the following marginal quotients are computed.

(14)



Also, in practical tarif work the estimated risk factors are

often rounded off to get a nice-looking tarif , or are smoothed

by a straight line or otherwise in order to avoid too great

discontinuities between closely related riskgroups.

If there are conditions a priori on the structure of the tarif

these should if possible be introduced as side conditions in

the computations leading to the estimated risk factors. In especial

if a priori conditions are so restrictive as to leave free only

the influence of one tarif argument, multiplicative graduation

is no longer necessary.



















Home-owner's comprehensive as an illustration of multiplicative rate
making.

1. Short description of home-owner s comprehensive

Home-owner's comprehensive in my company consists of two
parts, viz. insurance for the building and a combined
householder's insurance. The latter usually covers private
property within the house (carpets, furniture, TV-sets etc)
against fire, water damage and burglary. It also includes
cover for personal liability (as a private person, not as
a house-owner) and some other things, depending on which
one of three alternatives the policyholder has chosen.

In the following we will only consider the insurance for
the building. It covers fire, storm, damage to windows,
water damage and machinery breakdown, damage to the house
in connection with burglary, and liability as a house-owner
(e.g. snow from the roof causing personal damage). The two
dominating risks are fire and water damage, as seen from
the following table. Storm may now and then, every tenth
year or so, pop up and show noteworthy figures.

Table 1. Fire and water damage claims as a percentage of total
claims cost. Building insurance within home-owner's
comprehensive.

Year of incurrence 73 74 75 76 77 78 79 80

Fire, % 25 31 29 29 23 28 25 25
Water damage, % 52 58 57 57 54 58 64 62

Fire + water, % 77 89 86 86 77 86 89 89

2. Tarif structure of building insurance

In 1979, realizing the increasing impact of water damage
claims as a conequence of the increased standard in the house-
holds, we revised the tarif structure. Thus the premium
was split into two parts and a new premium argument (the number
of "water units", see below) was introduced.

p = P1+ P2

P1 covers water damage and liability

P2 covers remaining risks



Both premiums are loaded for expenses. P1 is split into

a fixed and a variable part

V. covers water damage and variable expenses. It is of the form

where p1 is the total number of points of type one in our

points system, see appendix 1. An increase of p1 by 30 points

thus means a doubling of V1.

We have eight premium arguments, of appendix 1, viz.

1. Byggnadsyta (area covered by the building, length times width)

in m2. The corresponding number of points of type 1, P11, is

proportional to the logarithm of the area. This means that

V1 is proportional to the area itself, i.e. we take out

a premium per square metre of building area.This is thus our

measure of exposure.

2. Hustyp, type of house. Corresponding points p12 (and p22

for P2, see below) are given in a separate table not shown here.

3. Material (in outer walls), stone or wood, and

4. Byggnadsar, the year when the building was finished (eight

classes). These two arguments are given combined points,

p134 and Ρ234 shown in separate tables.

5. Antal vatenheter, number of water units. You have to count

the total number of units connected to the water supply

system of the house such as sinks, dishing machines, wash

basins, washing machines, WC's, baths, separate shower baths

and - if indoors - swimming pool (two units). Points, p51

and P52 as functions of the number of water units are in

separate tables.

 covers the liability risk premium and fixed expenses.F1

1



6. Uppvärmningssätt, method for warming up the house (circulating
water, electrical radiators, other, none - the form is
used also for summer houses), and

7. Komm vatten, if water supply from a central water plant
of the district or not. Points, p167 and p267, in separate
tables.

8. Belägenhet, the geographical location of the house (eight
choices for permanent resedence). Points, p18 and p28

in separate tables.

Thus

so that the variable premium V1 is a product with one factor

for each premium argument - arguments 3 and 4 and also 6 and 7
being combined, though (multiplicative tarif model).

The premium P2 has no fixed part (this is customary for fire

dominated premiums) and so is of the form

where p2 is the sum of points of type two, p2 x.

All premium arguments, with their values, are reprinted on
the policy. The policy holder can thus check that the premium
is founded on correct information.

3. Statistical analysis of the tarif structure.

The introduction of a new tarif structure in 1979 was preceded
by statistical analyses, with some guessing involved as to
the appearance in our portfolio ot the new premium argument
water unit.

Analyses were again carried out in 1980 and 1981. We will
use part of the latter as an illustration of multiplicative
rate making. I will mainly refer to the paper "Description
of the multiplicative ratemaking model" which is included
as appendix 1 in the material previously sent out.



Appendix 2 shows a multiplicative graduation of observed

water damage risk premiums. These are the base for the variable

premium V1.

Claims are censored at 50 KSEK, i.e. for each claim only

the amount up to this point is taken into account.

The column N-WERTE shows exposures, marginal for each premium

argument value and total, in hundreds of square metres of

building area. The total exposure amounts to 424605, corres-

ponding to some 400000 policy years (100000 policies during

the four years of incurrence 1976-79).

P-WERTE are observed marginal and total risk premiums in

KSEK per 100 square metres building area. Thus the total

observed claims cost is

424605 χ 0.19759 = 83 898 KSEK

S-WERTE are the marginal and total quotients between graduated

and observed claims costs referred to in the Description.

As they are greater than one it is evident that the graduation

has been done according to formulas (7)-(8) there. The total S,

the deviation of which from one is our primary measure of

goodness-of-fit, amounts to 1.552328.

FAKTOR F gives the factors for the different premium argument

values. As explained in section 3 of the theoretical paper

(main paper) we do not actually use these factors, but

the factors obtained from graduation according to formulas

(7') and (8') in the Description. These are shown in appendix 3.

The N-WERTE and P-WERTE are the same as before, but the S-WERTE

are now all equal to one as they should.

The following figures may be shown

No of premium argument values No of cells

8 7 6 3 2 7 14112

Degrees of freedom Σ mi- 6+1 = 28

m1 m2 m3 m4 m5 m6 m



2
Q = min χ = 2 χ obs claims χ (S-l) =
A

= 2 χ 83898 χ 0.552328 = 92678

(S taken from appendix 2)

In the model underlying the analysis this means that for each

cell the standard deviation of the distribution of individual

claims sizes equals 2.5627 times the square root of the average

claims size.

Twice the log likelihood of the graduation, according to section

3 of the theoretical paper, is computed as

constant + log (S-l) = C-0.593613

and adding, for each premium argument, the arithmetic mean

of the logarithms of its factors,

which gives, in addition -0.053594

finally multiplication by -m = -14112 should be carried out

which gives twice the likelihood (apart from general additive

constants) as -14112 (C - 0.647207).

4. Comparisons between tarif structures

In the analysis described above, material and age of building

were combined while the remaining premium arguments were

supposed to have independent multiplicative factors in the risk

premium.

Several analyses were carried out, in which different groups

of arguments were combined. As an illustration the loglikeli-

hood for one additional such analysis is given below together

with the loglikelihood above and the loglikelihood for the struc-

ture with no premium differentiation at all between cells,

i.e. all factors equal to one.



d.f.

S
log (S-l)

Sum of means
of logfactors

2xLoglikelihood
/-14.112

(i)

No premium
differentiation

1

1.789470
-0.236393

0

C-0.236393

(ii)
Material and
Age combined

28

1.552328
-0.593613

-0.053594

C-0.647207

(iii)

Material and
Age and No.
of water units
combined

70

1.505716
-0.681780

0.013516

C-0.668264

To test (i) against (ii) the difference between twice
the loglikelihoods is taken and compared to chi-square with
28-1 = 27 d.f.

14112 (0.647207-0.236393) = 5797

which is highly significant.

The corresponding difference for testing (ii) against (iii),
with 42 d.f., is

14112 (0.668264-0.647207) = 297.2

which is highly significant (above the 99.9 percentile), too,
though to a lesser extent.

The reduction of (S-l), compared to no premium differentiation,
is 30 % for structure (ii) and 36 % for structure (iii).

5. What happened to the tarif?

In spite of the foregoing result, Water units were not combined
with Material and Age in tarif 82. Reasons of complexity and
statistical instability could be invoked against a structure
with many parameters.

Material and Age are combined, however, and so are the arguments
for Warming up method and Central water plant.

In appendix 4, the tarif factors for no. of water units are
compared to those in the statistical analysis of appendix 3.
As seen, the tarif does not incorporate the full effect of
the observed differientation. Confidence intervals may be
pretty wide, though.










