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OSCULATION OF HIGH ORDER

BY HUBERT VAUGHAN, F.I.A.

INTRODUCTION

T H E principle of ordinary finite-difference interpolation, when values of
ux are given at η points, is to ascertain a polynomial of the (n — 1)th order
which will reproduce the given values. Since there are η coefficients in the
polynomial, to be determined from η values, there is only one solution. In
subdividing intervals by the ordinary central formulae, each segment of
interpolated values is smooth; and if all the given values actually do lie on
a polynomial curve of the assumed order, the interpolated terms will of course
all lie on the same polynomial curve from beginning to end. However, the
method is generally employed in cases where the given series is of polynomial
form only approximately and only when a limited range of values is considered ;
and in such a case the successive interpolated segments will not meet smoothly.
When the formula is based on an odd number of points, in fact, the segments
do not meet at all except by accident. In a central second-difference formula,
for example, the segment from u_.5 to u.5 is calculated from u_1 u0 and u1 and
the segment u.5 to u1.5 from u0, u1 and u2. If the third difference of the given
u'S does not actually vanish, we have two values for u.5 according to whether we
calculate it from the former data or the latter. When the formula is based on
an even number of points the successive segments do meet, since they pass
through the given points at each end ; but at the point of junction the slopes
will differ and a differential coefficient will have alternative values according
as it is taken to the right or left.

Sprague devised the osculatory principle to mitigate this difficulty. The
particular formula associated with his name is equivalent to accepting correct-
ness to one order of difference lower than normal, thus leaving at disposal the
coefficient of the highest order of difference in the formula. This coefficient is
then determined so that each segment passes through two of the given points
and has the required number of derivatives (two in the case of Sprague's own
formula) in common with the adjoining segments. The order of the poly-
nomial in Sprague's formula was specified as five, and this enabled the six
necessary conditions (three at each end of a segment) to be met.

Lidstone remarked (J.I.A. 42, 397) that

we can, by increasing the degree of the coefficient of the final term, introduce other
arbitrary constants, which enable us to satisfy further conditions, without introducing
any more terms in the result.

In particular, it is obvious that we can by this means arrange for osculation of
any desired order. (The term ' osculation of the rth order ' is used to indicate
the existence of r continuous derivatives, so that Sprague's formula has
osculation of the second order and King's has osculation of the first order.)

At first sight there seems to be an anomaly in this conclusion. Since we can
arrange for any number of continuous derivatives and each segment lies on
a polynomial arc and is presumably smooth, it might seem that by imposing
osculation of sufficiently high order we could produce a series that was
perfectly smooth from beginning to end. This, however, is too good to be
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true. Since each segment is calculated from only a small number of adjacent
values, the process could not lead to an interpolated series of one mathematical
form from end to end.

The object of this Note is to derive a general formula for osculation of any
order, and to examine what happens as the order of osculation becomes very
high and finally approaches infinity.

For simplicity in explanation the proof is given for a four-term formula, so
that when the order of osculation is unity the result is King's formula. In
other words, we proceed to deduce a generalization of that formula to provide
osculation of the rth order.

PROBLEM

To deduce a four-term central formula of polynomial interpolation, correct to
second differences, with osculation of rth order.

As in a previous Note (J.I.A. 80, 63) we commence by writing down the
ordinary formula correct to third differences

As pointed out in the previous Note, the only change we can make to this is
in the coefficient of Δ3. We will use j(x) to indicate the coefficient that will
satisfy our conditions.

Now, since we have (r +1) conditions to satisfy at the ends of each inter-
polated segment, there must be (2r + 2) coefficients at disposal in j(x), which
must therefore be a polynomial of order (2r +1) at least. The investigation is
confined to order (2r +1).

On the argument of the previous Note, we can write

where h(x) is such that

( 2 )

Hence

Now from the argument of our previous Note,j(x) and its first r derivatives
must vanish when χ = ο. Hence j(x) contains the factor xr+1. It follows from
(2) that j( 1— x) contains the factor x, and therefore j(x) the factor (1 — x).
Since then both j(x) and j(1 — x) contain the factor x(1— x), we may write
l(x)=j{x)/x{1 —x), where l{x) is a polynomial of degree {2r — 1), so that

Differentiating according to x, we find that
(3)

(4)
l'(x) is a polynomial of degree {2r — 2) containing the factor xr-1. From (4)

l'(1 —x) contains the factor xr-1 and therefore l'(x) the factor (1 — x ) τ - 1 .
Hence

no constant of integration being necessary since l(0) =0.

(S)

(I)
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The integral can be readily ascertained as a series but, though easy for small
values of r, for high values it would be laborious. We note, however, that the
form is that of an Incomplete Beta-function; so that after ascertaining the
value of k we can find the numerical values for l(x) by the use of Karl Pearson's
Tables of the Incomplete Beta-function.

Formula (5), in the Beta notation, becomes

From (3)

Therefore

This completes the solution; the formula for rth-order osculation is
(6)

NUMERICAL VALUES OF j(x) IN PARTICULAR CASES

To illustrate the effect of osculation the numerical values of j(x) have been
calculated for certain cases at the points .2, .4, .5, ·6 and .8, and are shown
in the table below in comparison with corresponding values for ordinary
third-difference interpolation and for ordinary central second-difference
interpolation.

For second-difference interpolation the values at .2 and .4. are, of course,
zero. At the points ·6 and ·8, however, the interpolated terms would be
calculated from u0, u1 and u2 in lieu of u_1 , u0 and u1, making the formula

To compare with the four-term formulae, on the basis we are using, it is
therefore necessary to treat the coefficient of Δ 3 as zero for the first half of
the segment and as 1/2x(x — 1) for the second half. At the centre it can, as
remarked in our introduction, be taken either way; and the value there is
0 or -·125.

The highest order of osculation for which the calculation could be made
from Pearson's Tables was the fiftieth.

Table of j(x)

Ordinary third
Qinerence

1st order oscula-
tion

2nd order oscula-
tion

7th order oscula-
tion

50th order
osculation

Central second
difference

•0

0

0

0

0

0

0

•2

— .0320

—.0160

- .0083

— •0006

— .0000

0

•4

—.0560

—.0480

— .0422

-•0275

— .0026

0

•s
- .0625

—.0625

— .0635

- .0625

— .0625

— .1250
or 0

•6

— .0640

— .0720

- .0778

- . 0 9 2 5

-.1174

— .1200

•8

— .0480

— .0640

-.0717

-•0794

— .0800

— ·0800

1·0

0

0

0

0

0

0

x=
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Examination of the table, especially if each line of the table is graphed and
the points joined to make a curve, will illustrate the known fact that osculation
is purchased at the price of a certain waviness within the segment. As the
order of osculation increases the wave becomes more pronounced.

Comparison with the last line of the table also suggests an answer to our
question as to what occurs as r approaches infinity. The indication is that at
infinity we simply return to ordinary central second-difference interpolation.

The position then is that as the order of osculation increases we certainly
secure a more and more complete correspondence of the segments at the
points of junction ; but the fact that the polynomial is of higher order permits
the curve to take a more pronounced wave, until (for an infinite order of
osculation) the curve in effect shakes apart, that is the value of j(x) in the centre
alters from 0 to — .1250 in an infinitely small space. The junction of a segment
of interpolated terms with the segments to the left and right is perfect when
the order of osculation is infinite ; but these adjoining segments are not fully
reconcilable, and an adjusting wave is necessary in order to pass from the
conditions at one end to those at the other. At infinity this wave becomes in
effect a discontinuity. This, then, is the resolution of the paradox mentioned
in our introductory remarks. It is, however, necessary to establish the above
limit mathematically, and this we now proceed to do.

LIMIT OF j(x) WHEN r IS INFINITE

For convenience we write 2(r) for 

No matter how close χ may be to 1/2 (provided that χ 1/2) we can always find
a positive value of r (say t) so large that the above expression is less than 1,
and though t may be a large number it will not be infinite. As r increases the
value of the expression decreases for finite values of r and comes to a minimum
at infinity. We can therefore say that z(t + m) > sm Z(t), where s is less than
unity. z(t) is finite and the limit of sm is zero; moreover, z(r) cannot be
negative ; hence the limit of z(r) is zero (unless χ = ·5).

We can now pass to l{x) which, as we have shown in formula (5), can be
expressed as a definite integral between the limits ο and x. Since l'(x) = -½z(r),
and since y r (1 —y)r increases with y in the range (0, ½), we have for fixed r
ο l'(y) l'(x) for 0 y x < ½. Therefore 0 l(x) xl'(x). When x<½ and r ,
the limit of xl'(x) and hence of l(x) and therefore also of j(x) is zero.

In interpolating values from u0 to u.5 by a formula with osculation of
infinite order, the coefficient of Δ3 therefore disappears and the result is the
same as an ordinary central second-difference interpolation calculated from
u-1, u0 and u1.

Now j(x) +j(1 —x) =½x(x -1) for all values of r. If x lies between .5 and 1,
(1 — x) < .5, and j(1 —x) vanishes as r . The limit of j(x) is therefore ½x(x — 1).
As shown above, the interpolation formula then becomes the ordinary second-
difference formula based on u0, u1 and u2.
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Osculation of infinite order, in a four-term formula correct to second
differences, is therefore equivalent to ordinary central second-difference
interpolation.

(When χ = ·5 exactly, the interpolated term by ordinary second differences
can be either of two values. The value by the osculatory formula, whatever
the value of r, is half-way between the two.)

THE USEFUL DEGREE OF OSCULATION

It is clear that a very high order of osculation is not of general utility. In
a previous investigation it was found that, on a test based on minimum squares
of differences, Shovelton's formula (first-order osculation) appeared rather
better than Sprague's. It appears desirable in actuarial work not to go beyond
osculation of the second order, and perhaps not beyond the first order.




