

Overview of Systems Thinking: what it is, its development in the history of science and why it is important.

Dr. Aled Jones Global Sustainability Institute

Science as philosophy

Brief history

Newton

Smith

Forrester

Ecological, economic & social applications (systems dynamics)

- World1 and World2 (Forrester)
- Limits to Growth (1972) World3
- Resource constraints: sharing a finite world (IFoA) (2013)...

Systems thinking and scientific methods Brief history

Systems Thinking Underlying principles

- Holistic
- Linkages and interactions between elements
- Disciplinary applications
 - social systems theory
 - systems biology
 - systems dynamics
 - systems ecology
 - systems engineering
 - systems psychology

Systems science Application

- Non linear complex systems
 - Small perturbations approximated using linear thinking
 - Large perturbations dominated by complex multi-interactions
- 'Divisibility' of the system
- (all pre-dating computers/models)

Systems models Fundamentals

- Stocks and flows
- Negative feedback (dampen)
- Positive feedback (magnify)
- Emergent behaviours (out of the aggregate rather than individual)
- What it isn't...
 - Near equilibrium
 - Deterministic
 - Single agent

Systems models Limitations

- Sensitivity to initial conditions
- Sensitivity to connecting functions (how does 'A' impact 'B')
- Sensitivity to impacts of perturbation (e.g. limits)
- Massively complex systems are massively complex

Systems models Applications

- Explore patterns & behaviours (not predictions)
- Non-divisibility of the system
- Explore larger perturbations away from equilibrium
- Emergent behaviour (financial cycles/crashes, civil unrest, ecology)
- Adaptive and learnt behaviours (inc. herding)
- Predictability small perturbations can cause large deviations

More about the **Complexity Map**

Systems thinking today

Model types

- Systems dynamics
- ABMs
- Chaos theory
- Fuzzy logic
- Genetic algorithms

Model applications

- First model use for GE manufacturing
- Industrial management
- Optimising fuel consumption
- Spread of epidemics

Systems thinking tomorrow

- Model development and use becoming mainstream
 - UK & EU research funding (e.g. CECAN, MEDEAS)
 - Economic risk (esp. herding and emergent risk)
- Model applications
 - Financial crisis
 - Stock markets and equity/commodity valuations
 - Social interactions (e.g. terrorism)
 - The weather...

Dr. Aled Jones aled.jones@anglia.ac.uk