

0

New experiences for mathematicians:

- Natural Numbers, How Many People?
- Integers, Differences between natural numbers
- Rational Numbers, fractions
 - Hippasus of Metapontum 5th Cen. BC:
 - Number & Geometry inseparable
- Real Numbers
 - Zero,
 - Negative numbers Middle Ages in the East

Imagine a number like 1.5
 Natural Numbers, How Many People? Integers, Differences between natural numbers Rational Numbers, fractions Hippasus of Metapontum 5th Cen. BC:
 Number & Geometry inseparable Real Numbers Zero, Negative numbers Middle Ages in the East
In what context is there a number between 1&2?
Imagine a number like 1.5
 Natural Numbers, How Many People? (No) Integers, Differences between natural numbers (No) Rational Numbers, fractions (Yes) Hippasus of Metapontum 5th Cen. BC:
 Number & Geometry inseparable Real Numbers (Yes) Zero, Negative numbers Middle Ages in the East In what context is there a number between 1&2?
● Imagine a number like V-1
 Natural Numbers, How Many Objects? (No) Integers, Differences between natural numbers (No)
Rational Numbers, fractions (Yes) Hippasus of Metapontum 5 th Cen. BC:
Number & Geometry inseparableReal Numbers (Yes)

Zero, Negative numbers Middle Ages in the EastIn what context is there a number between 1&2?

• In what context is there a number V-1?

	_		
7			ч
			п
			ы
v		6	4

Imagine a number like V-1

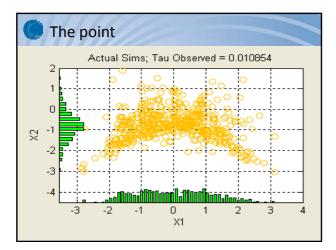
- Natural Numbers, How Many Objects? (No) No
- Integers, Differences between natural numbers (No) No
- Rational Numbers, fractions (Yes) No
 - Hippasus of Metapontum 5th Cen. BC:
 - Number & Geometry inseparable
- Real Numbers (Yes) No
 - Zero, Negative numbers Middle Ages in the East
- In what context is there a number between 1&2?
- In what context is there a number √-1? None

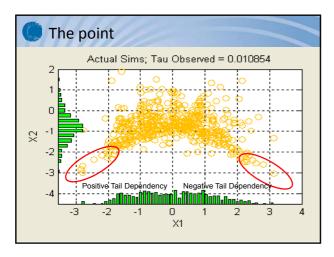
-	of the last	
•		
г.		
		4

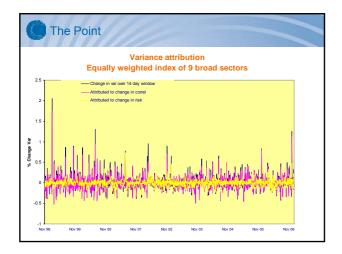
Imagine a number like V-1

- Hamilton ditched the imaginary notion by expanding definitions of numbers
- His Complex number system, is an ordered number pairs (a,b) approach.
- He redefined arithmetic operators to accommodate a(b+c) = a*b +a*c.
- Risk and economic systems may well need to be redefined as more general paired number systems
- Borrowing the free thinking ideas of Hamilton

	es Si	En.
•		
	4	


Example of systems


Number system	Portfolio Variance system
-inf +inf	>=0
Rules: Associative, Distributive a(b+c) = ab+ac, etc etc	Rules: Commutative, VAR(A+B),VAR(A*B), VAR(a(b+c)) ≠ VAR(ab+ac)?
Hidden dimension: Though complex number system	Correlation captures linkages between dimensions We can have hidden dimensions


٦
1

The point

- Anything is possible
- Imagine/expand a system
- Use it to show something
- There are things we want to show that we can't currently do.

Aller.			
\mathcal{L}	Weird	COVO	riance
The same	wellu	CUVa	Hance

• The rho thingy ?

$$\sigma_x^2 + \sigma_y^2 + 2\sigma_x \sigma_y \rho_{(x,y)}$$

• The square root of the covariance thingy?

$$\mu + \sqrt{H} \times z$$

Where $\mu = \text{mean}$

 \sqrt{H} = Square root of covariance

z = Uncorrelated random numbers

Weird Covariance

• The rho thingy ?

$$\sigma_x^2 + \sigma_y^2 + 2\sigma_x \sigma_y \rho_{(x,y)}$$

• The square root of the covariance thingy?

$$\mu + \sqrt{H} \times z$$
 Infinite ways to do this

Where $\mu = \text{mean}$

 \sqrt{H} = Square root of covariance

z - Uncorrelated random numbers

	3	ı.		
г.			٩	
н				
L.			ø	

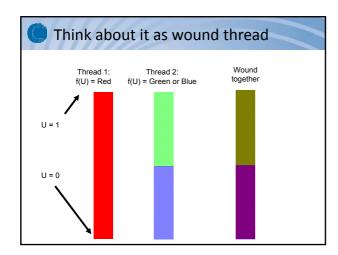
Imaginary Correlation

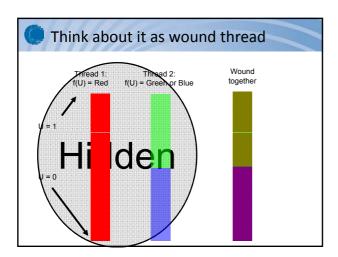
$$\sigma_x^2 \rho_{(x)}^2 + \sigma_y^2 \rho_{(y)}^2 + 2\sigma_x \sigma_y \rho_{(x)} \rho_{(y)}$$

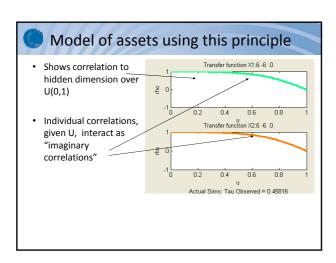
- Looks right, could be a paired number, or something tied to a hidden dimension
- Operators on imaginary correlation need to be defined to tie up with a 'Variance System'

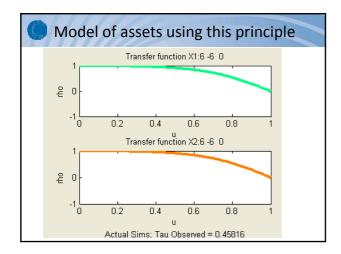
	and the	E
•		
-	-50	85

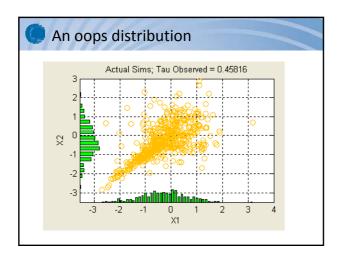
Why?

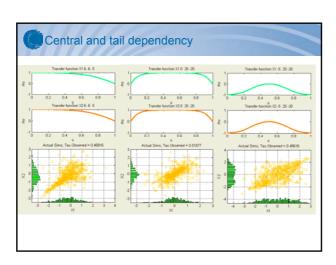

- I want to define 'a priori' different dependency structures across n assets.
- A copula would then fall out.
 - Can't currently do this....
- My guess at a process to do this uses a hidden dimension.
- The D distribution. D for dependency driven

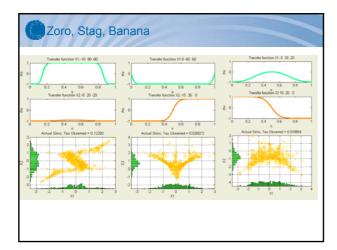


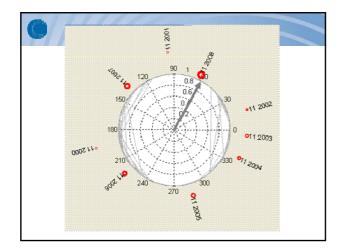

D distribution

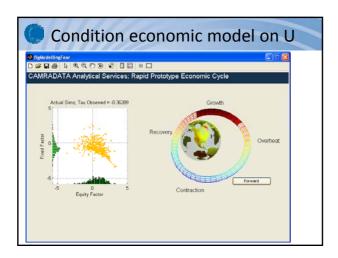

$$x = \mu_{f(u)} + \sigma_{f(u)} z$$

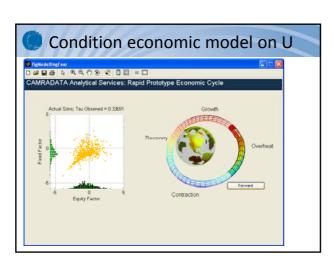

- There is a hidden dimension controlled by U(0,1)
- Each asset has a relationship to the hidden dimension f(U).
- All other dependencies are ignored.
- Things happen in the world which effect Returns and Risks
- Manifests itself as correlation

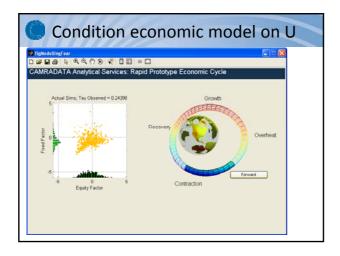


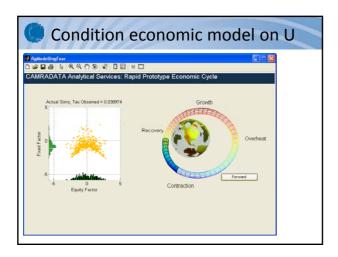


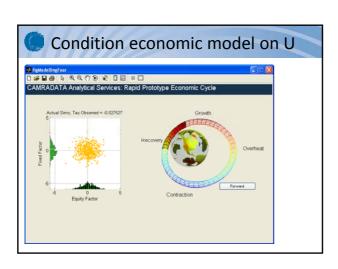


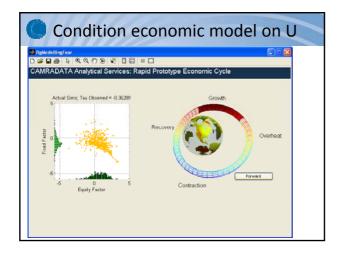



The passage of Time


- Are investment returns related to calendar years or calendar months?
- They are closely related to the pendulum of the economic clock & economic policy
- The clock may go backwards or skip
- How do you measure the clock?


Could U be the economic cycle? Colour: US GDP, 1951 to present Cooling Warming





Contact	
martyn.dorey@camradata.com	