

RCA

The Importance Of Genetics On Mortality and Morbidity Risk
 A Study Based On Half A Million Lives In The UK Biobank Cohort

Peter Banthorpe
SVP, Global Head of Research and Data Analytics

Richard Russell Lead Health Data Scientist

Stephen Courquin VP, UK Head of Actuarial Research

Institute and Faculty of Actuaries Highlights of the Life Conference 2018 March 2019

Agenda

- Genetic Data and Insurance
- Genomic Medicine Today and in the Next 5 to 10 Years
- Genetic Risk to Disease and Polygenic Risk Scores
- RGA / King's College London Research Collaboration
- Genetics and Risks of Anti-selection
- Key Messages

Genetic Data and Insurance

Genetics is a great case study for a potential future vision of risk selection

If the

Future of Medicine $=$ Medicine

Future of
Does

Precision

Risk
Selection
Precision
Underwriting

Precision Underwriting brings a range of ethical, legal, competitive and social concerns.

Genetics has always elicited a varied set of views across stakeholders

DNA and Insurance, Fate and Risk

Brendan Smialowski for the New York Times
As costs for DNA sequencing drop, hundreds
of thousands of Americans are undergoing the procedure to see if they are at risk for
inherited diseases. But while federal law bars mployers and health insurers from seeking the results, insurers can still use them in all but three states when considering applications for life, disability and long-term care coverage.

Should insurance companies be barred from seeing genetic information when considering ose policies so people can get the tests without fear that the results would be used against them?

debaters

Risks Are Too Small for Insurers to Worry ANGUS S. MACDONALD
PROFESSOR OF ACTUARIAL

Only the rarest hereditary disorders would create a major cost burden for insurers. They should agree to ignore genetic tests, and avoid a legal ban.

Questions Remain; Some Rules Should Be Clear
FRANCIS S. COLINS, NA
INSTITUTES OF HEALTH Even without barring insurers from seeing genetic tests, such tests should not be demanded of anyone. And research data must be kept private.

Let Insurers Have
 Data and Trust to Get It Right

SHAWN HAUSMAN. AMERICAN
COUNCIL OF LIFE INSURERS Advances in medicine have made it possible for insurers to offer coverage to more people, not fewer.

Guarantee Privacy to Ensure Proper Treatment JUREMY GRUBER COUNCIL FOR
RESPONSIBLE GENETCS If the promise of the genetic revolution is to If the promise of the genetic revolution genetic testing will not endanger their economic security.

It's Yet to Be Shown That Discrimination Exists
BARTHA MARIA KNoppers. mcgil.
Only rare conditions can be predicted with certainty, and insurers can already access a variety of hereditary information about

Increasing levels of interest in genetics and genomics from governments and regulators

Whole genome sequencing costs today

Growing opportunities for genetic anti-selection

No. 14

Genetic counsellors are the $14^{\text {th }}$ fastest growing occupation according to US Bureau of Labour Statistics (2016 to 2026)

40 billion

Gigabytes of new genomic data generated a year by 2030

Genetic anti-selection risk: are these beliefs still valid?

1. Genetic risk information will not be widely available in the near future
2. Monogenic mutations that confer significantly higher risk of disease are rare therefore the cost imposed on insurers by any associated adverse selection is deemed small
3. Most common diseases are multifactorial, and the genetic contribution to these diseases is modest
4. Genetic test results will not deliver significant risk information that is not already available from traditional clinical/biometric measures used in underwriting
5. The genetic contribution to disease is adequately captured by family history

Genomic Medicine Today and in the Next 5 to 10 Years

Genomics medicine today

Precision medicine: pharmacogenetics, cancer treatments
Prenatal and newborns screening

More accurate disease prognosis
Accurate diagnosis of rare disease and detection of disease recurrence

Motivating lifestyle modification

RGA

Genomic medicine in the next 5 to 10 years...

The personalisation journey

NHS
 England

5 million genomes in 5 years - January 2019

SPECTIATOR

theguardian

NHS to sell DNA tests to healthy people in push to find new treatments

Service will be free for patients with serious genetic conditions as health service in England aims to recruit 5 million volunteers

NEWS

Health
NHS to offer paid-for DNA tests if patients share data
Q 26 January 2019 f © $\boldsymbol{\square}$ < Share

NHS to sell patients genetic tests showing risk of killer diseases such as cancer and dementia

Sequencing will cost a few hundred pounds and patients will have to agree to DNA data being retained for research

‘Generation genome’: national programmes and spending

United Kingdom
Genomics England 2012-
Genomics England 2012-
100,000 Genomes: rare disease, cancer
£350M (USD\$485M)
Scottish Genomes £6M (USD\$8M)
Welsh Genomics for Precision Medicine
W6.8M (USD\$9M) Northern Ireland Genomic Medicine Centre £3.3M (USD\$4.6M)

```
Switzerland 
    Swiss Personalized Health Network 2017-2020
CHF68M (USD69M)
```

France
Genomic Medicine Plan 2016-2025 Rare disease, cancer, diabetes $\in 670 \mathrm{M}$ (USD\$799M)

Estonia
Estonian Genome Project 2000 -
Infrastructure and population-based
cohort
2017: $€ 5 \mathrm{M}$ for 100,000 individuals

Rethericon-NL 2016-2025 Rare disease
Health Research Infrastructure

Finland
National Genome Strategy 2015-2020 Infrastructure €50M (\$USD 59M)

Denmark
Denmark
Genome Denmark 2012
DK 86M (USD\$13.5M) FarGen 2011-2017 DK 10M (USD\$1.6M)
Infrastructure, population-based
United States of America
National Human Genome Research National Huma
Institute 2007-
Infrastructure and clinical cohorts USD\$427M
All of Us 2016-2025
Population cohort
USD\$500M (first two years)

```
Brazil 2015-
    Brazil Initiative on Precision Medicine
    Infrastructure, disease and population
    cohorts
```


Saudi Arabia

Saudi Human Genome Program, 2013 Infrastructure, clinical cohorts and SAR300M (IISDGeot SAR300M (USD\$80M)
cohort, pathogen project

Turkey

Turkish Genome Project 2017-2023 Infrastructure, clinical and population-

China Precision Medicine Inifiative $100,000,000$ genomes CNY60 billion (USD\$9.2 billion)

Qata

Qatar Genome 2015Infrastructure, population cohort

Infrastructure, rare disease and cancer AUD\$125M (USD\$95M)
Genomics Health Futures Mission 2018-2028 AUD\$500M (USD\$372M)

Genetic Risk to Disease and Polygenic Risk Scores (PRS)

RGA

Genetics 101: DNA, chromosomes and single nucleotide polymorphisms (SNPs)

Human DNA is packaged into 23 pairs of chromosomes

||IIIIIII||II||II|||||I

A single nucleotide polymorphism (SNP) describes variation in a single nucleotide position. E.g. here, a Thymine nucleotide exists instead of Cytosine, which is most commonly observed.

Genome wide association studies ('GWASes’)

Cases

(people without disease)

Compare DNA using DNA chip

Prevalence vs. penetrance of genetic variants

GWAS \rightarrow Polygenic risk scores

Cases (people with disease)
n
$n n n n$

Compare DNA using DNA chip

Sample of PRS in literature

Disorder	No. of Genetic Variants	Relative risk, comparing top 20\% to bottom 20% PRS	Reference
Coronary artery disease	$\mathbf{5 0}$	$\mathbf{2 . 0}$	Khera AV. et al. (2016), N Engl J Med.
Coronary artery disease	$\mathbf{4 9 , 3 1 0}$	$\mathbf{1 . 8}$ to 4.5	Abraham G. et al. (2016), Eur Heart J.
Type 2 diabetes	$\mathbf{1 0 0 0}$	$\mathbf{3 . 5}$	Läll K. et al. (2017), Genet Med.
Ischemic stroke	$\mathbf{1 0}$	$\mathbf{1 . 2}$ to $\mathbf{2 . 0}$	Hachiya T. et al. (2017), Stroke
Breast cancer	$\mathbf{7 7}$	$\mathbf{3 . 0}$	Mavaddat N. et al. (2015), J Natl Cancer
Inst.			

PRS for coronary heart disease increases predictive power, even after adjustment for clinical risk factors

- A study by Abraham and colleagues* tested the clinical utility of a PRS for coronary heart disease (CHD), in terms of lifetime CHD risk and relative to traditional clinical risk
- PRS tested in independent cohorts (FINRISK and Framingham Heart Study [FHS]; combined $n=$ 16,802 with 1,344 incident CHD events)
- The PRS was tested alongside the best clinical risk factors as well as family history. After controlling for these risk factors, the PRS still proved to be a very powerful differentiator of CHD risk.

How PRS could be adopted into clinical medicine cancer screening

- Individuals with the highest 1% or 5% of PRS values could be offered:
- Regular screening
- Encouraged to participate in lifestyle modifications
- Prescribed therapeutic interventions
- For example, in the UK, mammogram screening is initiated at age 47, based on a 10-year risk of breast cancer in the average woman, but:
- Women in the top 5% of PRS-risk reach the average level at age 37
- Women in the lowest 20% of PRS-risk will never reach the average level

PRS make front page news - August 2018

FINANCIAL TIMES

THE A *

Genes put millions at triple risk of heart attack

The Altw Hork ©imes
Clues to Your Health Are Hidden at 6.6 Million Spots in Your DNA With a sophisticated new algorithm, scientists have found a way to forecast an individual's risks for five deadly diseases.

Genetic screening set to identify common serious conditions

Aim is to give people a risk score from birth for illnesses such as heart disease and breast cancer

[^0]
Forbes

artery disease, breast cancer A Harvard Scientist Thinks He Has a Gene any symptoms are evident. Test for Heart Attack Risk. He Wants to Give It Away Free.
Scientists hope to eventually
CC
The "polygenic risk test" use
 genome to look for small var
$=$ Mail Online
k Chaffin ${ }^{4,5,}$ Kri $\$ 50$ blood test could spot killer eep Natarajan ${ }^{2}{ }^{2}$ diseases from heart attacks to breast id Sekar Kathires cancer BEFORE symptoms show: Millions who are at risk due to their genes could be saved

Harvard Medical School developed the test called 'polygenic risk scoring'
It measures a person's risk of developing five life-threatening diseases based on their DNA
The diseases they currently measure are: coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer It could be administered at birth to spot at-risk people from the earliest age

PRS make front page news - August 2018

- Authors showed that common diseases can be predicted using PRSs for: coronary artery disease, type 2 diabetes, atrial fibrillation, breast cancer and inflammatory bowel disease

Risk in top 20\% vs. bottom 80\%:

2.55x
2.33x
2.43x
2.07x
2.19x

RGA Research Collaboration with King's College London

Prof. Cathryn Lewis (Senior Lecturer) Co-Principal Investigator

Dr Paul O'Reilly (Senior Lecturer) Co-Principal Investigator

Miss Jessye Maxwell (PhD Student) Project Research Assistant

Dr Beatrice Wu (Postdoctoral Researcher) Project Research Associate

RGA Research Collaboration with KCL

- RGA-funded one year research project at KCL
- Desire to inform the debate around significance of (lack of) access to genetic information by insurers in non-compulsory insurance markets
- Collaborative agreement meets the principles set out in the UK Biobank Access Procedures, including commitment to publish all findings and results from the project so that they are available for other researchers to use for health-related research that is in the public interest
- Only approved King's College London research staff have access to UK Biobank data

Why UK Biobank?

Breadth and Depth

Data on UK Biobank participants

https://www.ebi.ac.uk/about/news/feature-story/biobanks-genetic-datademand. Accessed 12 May 2018

Long-term follow up of multiple outcomes

Genotyping on all 500k participants

‘Underwriting’ UKB participants and predicting disease incidence

'Standard' Risk (disease-

```
'Underwriting'
    Process
- Prevalent
    disease in
    hospital records
        +
- Self-reported
    illness at
    baseline verbal
    interview (with
    nurse)
```

free at baseline)
c. 340 k individuals

Non-Standard Risk (c. 160k individuals)

Prediction

Model

- Phenotypic risk factors (age, gender, smoking, family history, BMI, BP, etc.)

$+$

- Genetics (PRS for disease)

PRS to predict incidence of breast cancer (RGA-KCL study results)

Total Participants: 199,322
Number of breast cancers: 3,947 (1.98\%)

	Full cohort:

Total Participants: 143,898
Number of breast cancers: 2,835 (1.97\%)

	$\stackrel{\circ}{\square}$	Decreased risk
Percentile	Standard cohort: Hazard ratio (95\% CI)	
0-1	0.44 (0.25-0.79)	
1-5	0.68 (0.53-0.87)	
5-10	0.66 (0.52-0.83)	
10-20	0.69 (0.58-0.82)	
20-40	0.9 (0.8-1.02)	
40-60	1 (reference group)	
60-80	1.25 (1.12-1.41)	
80-90	1.58 (1.38-1.8)	
90-95	1.74 (1.49-2.05)	
95-99	2.04 (1.73-2.4)	
99-100	2.71 (2.08-3.53)	Increased risk

PRS to predict incidence of cardiovascular disease (RGA-KCL study results)

Total Participants: 373,022
Number of CAD events: 6,430 (1.72\%)

Total Participants: 260,791 Number of CAD events: 3,489 (1.34\%)

		Decreased risk
Percentile	Standard cohort: Hazard ratio (95\% CI)	
0-1	0.51 (0.31-0.82)	
1-5	0.43 (0.33-0.56)	
5-10	0.7 (0.58-0.86)	
10-20	0.75 (0.65-0.87)	
20-40	0.86 (0.77-0.96)	
40-60	1 (reference group)	
60-80	1.27 (1.14-1.41)	
80-90	1.57 (1.4-1.77)	
90-95	1.56 (1.35-1.82)	
95-99	2.2 (1.9-2.54)	
99-100	3.46 (2.79-4.29)	Increased risk

Genetics and Risks of Antiselection

Research into anti-selection risk from genetics

- There have been several research papers.....
- Alzheimer's disease anti-selection (Zick et al., 2005)
- Huntington's disease anti-selection (Oster et al., 2009)
- Work of GIRC / Angus MacDonald
- CIA Genetic Testing (Mortality and Morbidity)
- SOA reproduction of CIA work for US Markets
- Australian paper, May 2017
-suggesting a wide range of possible impacts
- Many modelling assumptions being made

Research into anti-selection risk from genetics: assumptions

Predicting impact of PRSs is still early

- Many scientific, clinical, and social obstacles must still be overcome to bring PRSs into clinical practice
- Genetic loci associated with disease will continue to be found and could confer additional predictive power
- Correlations with other health and lifestyle factors could be more significant than high penetrance genes
- Correlations between PRS for different conditions
- Risk of developing a disease may be correlated with severity of disease
- Application of PRS to non-Caucasian populations
- Preventative or mitigating actions, such as:
- Screening programs based on PRS may limit mortality impact
- Impact of preventative lifestyle actions unknown
- Pharmacogenomics, precision medicine etc.

Potential for anti-selection - example in breast cancer

Total Participants: 199,322
Number of breast cancers: 3,947 (1.98\%)

	Full cohort:

Total Participants: 143,898
Number of breast cancers: 2,835 (1.97\%)

		Decreased risk
Percentile	Standard cohort: Hazard ratio (95\% Cl)	
0-1	0.44 (0.25-0.79)	
1-5	0.68 (0.53-0.87)	
5-10	0.66 (0.52-0.83)	
10-20	0.69 (0.58-0.82)	
20-40	0.9 (0.8-1.02)	
40-60	1 (reference group)	
60-80	1.25 (1.12-1.41)	
80-90	1.58 (1.38-1.8)	
90-95	1.74 (1.49-2.05)	
95-99	2.04 (1.73-2.4)	
99-100	2.71 (2.08-3.53)	Increased risk

Potential for anti-selection - example in breast cancer. Scenario 1:

Percentile	\% in general population	Hazard ratio for breast cancer	Probability of purchasing insurance *	\% in new risk pool						
0-1	1\%	0.44	0.44x	0.4\%						
1-5	4\%	0.68	0.68x	2.4\%						
5-10	5\%	0.66	0.66x	3.0\%						
10-20	10\%	0.69	0.69x	6.2\%						
20-40	20\%	0.9	0.9x	16.1\%						
40-60	20\%	1	1x	17.9\%						
60-80	20\%	1.25	$1.25 x$	22.4\%						
80-90	10\%	1.58	1.58x	14.1\%						
90-95	5\%	1.74	$1.74 x$	7.8\%						
95-99	4\%	2.04	2.04x	7.3\%						
99-100	1\%	2.71	2.71x	2.4\%						

- +12.6\% increase in
incidence
- Further +2.2\% if
include BRCA1/2
mutations (assuming
0.2% prevalence and $5 x$
odds ratio)

Potential for anti-selection - example in breast cancer. Scenario 2:

Percentile	\% in general population	Hazard ratio for breast cancer	Probability of purchasing insurance *	\% in new risk pool
$0-1$	1%	0.44	$0.73 x$	0.7%
$1-5$	4%	0.68	$0.84 x$	3.2%
$5-10$	5%	0.66	$0.83 x$	3.9%
$10-20$	10%	0.69	$0.85 x$	8.0%
$20-40$	20%	0.9	$0.96 x$	17.9%
$40-60$	20%	1	$1 x$	18.9%
$60-80$	20%	1.25	$1.13 x$	21.3%
$80-90$	10%	1.58	$1.29 x$	12.2%
$90-95$	5%	1.74	$1.37 x$	6.5%
$95-99$	4%	2.04	$1.53 x$	5.7%
$99-100$	1%	2.71	$1.87 x$	1.8%

-+6.6\% increase in incidence

- Further +1.2\% if include BRCA1/2 mutations (assuming 0.2% prevalence and $5 x$ odds ratio)

Potential for anti-selection - example in breast cancer. Scenario 3:

Percentile	\% in general population	Hazard ratio for breast cancer	Probability of purchasing insurance *	\% in new risk pool
$0-1$	1%	0.44	$1 x$	0.9%
$1-5$	4%	0.68	$1 x$	3.6%
$5-10$	5%	0.66	$1 x$	4.5%
$10-20$	10%	0.69	$1 x$	9.1%
$20-40$	20%	0.9	$1 x$	18.2%
$40-60$	20%	1	$1 x$	18.2%
$60-80$	20%	1.25	$1.13 x$	20.4%
$80-90$	10%	1.58	$1.29 x$	11.7%
$90-95$	5%	1.74	$1.37 x$	6.2%
$95-99$	4%	2.04	$1.53 x$	5.5%
$99-100$	1%	2.71	$1.86 x$	1.7%

- $+5.0 \%$ increase in incidence
- Further +1.1\% if include BRCA1/2 mutations (assuming 0.2% prevalence and $5 x$ odds ratio)

Key Messages

Genetic anti-selection risk: are these beliefs still valid?

1. Genetic risk information will not be widely available in the near future
2. Monogenic mutations that confer significantly higher risk of disease are rare therefore the cost imposed on insurers by any associated adverse selection is deemed small, while genetic risk information remains not widely available
3. Most common diseases are multifactorial, and the genetic contribution to these diseases is modest much greater than previously thought
4. Genetic test results will net deliver significant risk information that is not already available from traditional clinical measures used in underwriting
 history

Closing Remarks

- Polygenic risk scores increase our concerns about anti-selection risk from genetic information asymmetry. It is a classic emerging risk for our industry
- Advances in genomic medicine will undoubtedly improve disease diagnosis and ultimately disease prognosis which will drive improvements in life expectancy and healthy life expectancy
- Genetic data is one example of data that has the potential to enable "Precision Underwriting". There are a range of social, ethical, regulatory and competitive issues that need to be addressed before that happens

Thank you for your attention

Any Questions?

Institute
and Faculty
of Actuaries

[^0]: Clare Elwell and Clive Cookson AUGUST 14, 2018

