

What if our immune systems could fight cancer?

Professor Ben Willcox

Cancer Immunology and Immunotherapy Centre University of Birmingham

Nay Wynn Hannover Re

Overview of the presentation

- Cancer and the history of cancer immunotherapy
- Cancer immunotherapy the current view
- Future trends in immunotherapy

Impact of immunotherapy on insurance

Conclusions and Q&A

Ben Willcox

Nay Wynn

Cancer and the history of cancer immunotherapy

Cancer – ancient disease, modern trend

- Cancer uncontrolled growth of our own cells
- Many different types
- First described ~ 2500 years ago, in papyri
- But generally rare in historical record: infectious disease dwarfs cancer as cause of death in western world – until recently

Edwin Smith papyrus

Victorian slums

Life expectancy: 1871: ~ 40 years

Cancer – ancient disease, modern trend

- Cancer increases after ~ 40 years
- Victorian life expectancy ~ 40 years
- Cancer therefore becomes more evident as life expectancy increases
- Advances in hygiene, childbirth healthcare, antibiotics, vaccination

What causes cells to divide out of control?

Accumulation of faults in our DNA

Environmental carcinogens e.g. tobacco, UV light

Inheritance

Natural cell processes

The 20 most common cancers in the UK

The current cancer treatment landscape

- Chemotherapy eg Hodgkin's Lymphoma (~80% 5-year survival due partly to chemotherapy); also testicular cancer
 - disadvantages: non-specific; infection; often resistance means effects are short-lived
- Radiotherapy eg prostate cancer (60% of men with early stage prostate cancer cured with radiotherapy)
 - disadvantages: non-specific; not so effective for metastases
- Surgery eg breast cancer, where surgery contributes to high 5-year survival rates
 - disadvantages: ineffective for metastases; may not be curative in advanced settings

Many diseases, different prognoses

- Some cancers still have a very poor prognosis: 'cancers of unmet need'
- Treatment for latestage disease is largely ineffective
- New treatment approaches required: cancer immunotherapy?

Your immune system: vital and exploitable

"Boy in the bubble" syndrome

Smallpox virus (Variola virus)

Edward Jenner 1796, vaccination 1979, eradication

- A precedent from infectious disease
- Can we harness the incredible power of the immune system to cure cancer?

Evidence for an immune response to cancer

Immuno-suppression (organ transplant, HIV/AIDS)

Institute and Faculty of Actuaries

Immune recognition of cancer: the challenge

Immune tolerance to self

Tumour immunosuppression

Tumour evolution to evade the immune system

Immunotherapy: a game-changer?

- "Tumour immunology has long had a bright future"
- "For those mice in the audience, it's good news..."
- "Immunotherapy earns its spot in the ranks of cancer therapy"
- "...a tipping point in the fight against cancer"

Cancer immunotherapy – the current view

Two game-changing approaches

• (i) Removing the brakes on the immune system

• (ii) Engineering 'smarter' immune cells

Checkpoint blockade: 'removing the brakes'

Unleashing killer T cells

Institute

and Faculty of Actuaries

Institute

and Faculty of Actuaries

Clinical trials in CB: durability, efficacy in late stage, multiple tumours

- N Engl J Med 2010; 363:711-23
- Patients with metastatic disease, ie previously treated
- Phase 3 study: Ipilumumab
- Improvement in overall survival

Clinical trials in CB: durability, efficacy in late stage, multiple tumours

(L) MRI lung scan, 51 year old patient, active tumour progression despite chemo (red arrows = metastases).

(R) < 3 months of anti-PD1 treatment

Lung cancer

- Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer
- N Engl J Med 2015; 373:123-135 July 9, 2015 Brahmer et al.

Conclusions

- Treatment efficacy in late stage when chemo fails
- Durability of response increased survival
- Impact in multiple tumours
- Only some patients respond well
- Side effects possible
- Clinical view: "Gobsmacked"

Biological mechanism: recognition of mutated self

Mutations matter

- The prevalence of somatic mutations across human cancer types.
- Signature of mutational processes in human cancer; Alexandrov et al, Nature 500, 415-21, (2013)

- The more mutated a tumour, the more visible it is to the immune system
- Future scope of identifying likely responders

Institute and Faculty of Actuaries

Current approvals

- Melanoma Ipilumumab approved for the treatment of previously-treated metastatic (advanced) melanoma (NICE, 2012)
 - "a major milestone in the treatment of advanced melanoma... a genuine step change in the management of this disease." Dr Paul Lorigan, Christie NHS Trust.
- Ipi and Nivo combo approved for advanced melanoma (NICE, 2016)
 - "The combination of nivolumab with ipilimumab gives us a glimpse of the future of cancer treatment" Prof Raj Chopra, ICR.
- Lung cancer strong Nivolumab efficacy data, currently being assessed by NICE

Checkpoint blockade: challenges

Arguably the most exciting area for pharma oncology research currently, but...

- Huge expense ~ \$100,000 per year per patient does the NHS have the funds to approve all viable therapies?
- Only some patients respond well (durable, complete response) how to identify these patients?
- Side effects can be severe

CAR immunotherapy: engineering smarter immune cells

• CAR = Chimeric Antigen Receptor

CAR therapy in B cell tumours: game changer

Emily Whitehead - "The girl that lived"

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

NEJM, October 2014

CRUK website blog, October 2014

Conclusions

- Relapsed, refractory ALL patients treated
- Complete remission in 90% of patients
- Very effective tumour clearance
- "On target" side effects, can be severe
- Long-lasting responses...potential cures

CAR immunotherapy: challenges

- Can you expand the success of CAR therapy beyond haematological malignancies?
- What molecular targets will allow safe and specific targeting of tumours?
- Can the cost of a cellular therapy be absorbed into the NHS?

Future trends in immunotherapy

Trends in checkpoint blockade: 'removing the brakes'

- Combination approaches to increase the proportion of patients who will respond:
 - Ipilumumab + Nivolumab (melanoma) major improvement in response rate
 - Numerous combinations to test (CB + CB; CB + chemo; CB + targeted therapy; CB + other immunotherapy)
- Improved stratification of likely responders
 - Eg Colorectal cancer MSI-hi subgroup (15% show high response rate)
 - Improved prediction of where durable responses will be observed conversion of some conditions from critical to curable

TREND: increasing number of patients/tumours/tumour subgroups where durable responses are observed

Trends in CAR immunotherapy: 'engineering smarter immune cells'

- More sophisticated CAR targeting approaches
 - A trend away from single targets (eg CD19) towards multiple CAR targets to define tumour and tissue type
 - Different strategies (eg targeting the tumour's 'support structure')
- Extended success of CAR immunotherapy across haematological tumours
 - Adoption in some CD19-positive B cell tumours
 - Application in other tumours eg Myeloma?
- Ongoing CAR trials in multiple solid tumours

TREND: increasing number of patients/tumours/tumour subgroups where CAR therapy can induce durable responses

New immunotherapy approaches

Personalised vaccines

Healthcare provision trends

- Increasing array of expensive, potentially much more effective treatments for cancer
- Challenging regulatory decisions (NICE/NHS) based on efficacy vs cost considerations
- Approved therapies will lag behind availability of effective immunotherapies (e.g. Nivolumab, lung cancer)

Impact of immunotherapy on insurance

Immunotherapy is a treatment

Diagnosis of disease required before the treatment is applied

CI claim payment is likely to be made

No impact on CI pricing (base rates and trends)

Immunotherapy as a prophylactic treatment

- Immunotherapy needs to:
 - become cheaper
 - lead to better patient outcomes
- "Prevention is better than cure"
- Example: Human Papilloma
 Virus vaccine Introduced to all girls aged 12 to 13 in 2008.

Cervical cancer incidence in England

Source (excluding the projection)) comes from the Office of National Statistics

Viruses causing cancer and diseases linked to the immune system

- Human Papilloma Virus
- Hepatitis B and C virus
- Epstein-Barr virus
- HIV
- Aplastic anaemia
- Bacterial meningitis
- Crohn's Disease
- Devic's disease
- Encephalitis
- Major organ transplant

- Multiple Sclerosis
- Rheumatoid Arthritis
- Systemic Lupus Erythmatosus (SLE)

- Impact on CI price from reducing incidence rates to zero over the next:
 - 30 years: **3% reduction**
 - 20 years: 4% reduction

The development costs & access challenge

30 May 2017

CI Product Considerations: prohibitive costs for individual

- From 2015 to 2016, there
 was an 8 fold increase in
 amount of money raised
 for obtaining cancer
 treatments abroad
- Travel to USA, Mexico & Germany top 3 treatment destinations
- Immunotherapy most common individual treatment

Source: JustGiving 2017

Reduced income

Thirty per cent of people with cancer experience a loss of income as a result of their cancer, with those affected losing, on average, £860 a month.

- Reduced income
- Increased costs
 - Out/In-patient costs

The cost of travel to and from appointments affects 69% of people with cancer and costs them, on average, £170 a month.

- Reduced income
- Increased costs
 - Out/In-patient costs
 - Day to day living costs

Over a quarter (28%) of people with cancer couldn't keep their home adequately warm in winter in the past 12 months because of the cost.

- Reduced income
- Increased costs
 - Out/In-patient costs
 - Day to day living costs
 - Prescription costs

Over a fifth of respondents were affected by costs for over-the-counter or prescription medicines, costing on average £8 a month.

Cost	% of people affected	Average cost to those affected (£/month)
Over-the-counterprescription medicines	er/ 22%	8
Dietary supplements	12%	16
Dressings	10%	7
Private treatment or healthcare	nt 4%	112
Dental surgery or care	11%	28
Nursing care provided in a person's home	1%	N/A*
Personal care provided in a person's home	5%	56
Total	41%	41

- Reduced income
- Increased costs
 - Out/In-patient costs
 - Day to day living costs
 - Prescription costs
 - Clothing and accessories such as wigs

Costs incurred by respondents to our survey		
Cost	% of people affected	Average cost to those affected (£/month)
Wigs, hairpiece head coverings	s, 10%	23
Fabric supports	5%	14
Clothing	29%	31
Modifying the home	4%	326
Specialist equip for home or car provided in a	е	
person's home	6%	28
Total	37%	70

CI Product Considerations: hybridisation

- Incorporate benefits provided from other products, such as PMI, major medical expenses and hospital cash style plans to meet the cost of:
 - medical treatments
 - travel expenses
 - non-medical additional costs
 - income replacement costs

Conclusion

Questions

Comments

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

