

# The Bigger Picture Practical Challenges of Reserve Risk

Kevin Chan FCAS FCIA Michael Ramyar FIA

## **Practical Challenges in Reserve Risk**

## Objectives of the paper

- Understand and agree on the challenges
- Better position to resolve those challenges
- Develop generally accepted approach

## Taster Topics

- Disconnection between Reserving and Reserve Risk
- How accurate is our reserve risk estimate?

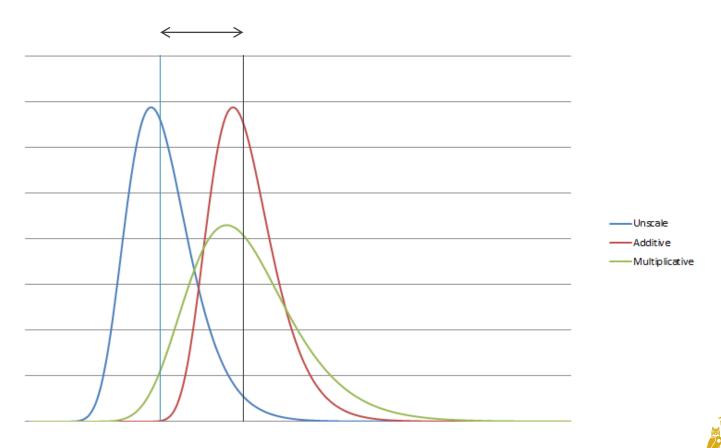


# Practical Challenges in Reserve Risk Disconnection between Reserving and Reserve Risk



## Scaling Issues

The mean of the Simulation process doesn't tie back to the expected mean


## Scaling/Calibration Methods

- Multiplicative, Additive or Mixed scaling
- What are they?
- Which is correct?
- More importantly Why does it exist?



## Scaling/Calibration Methods

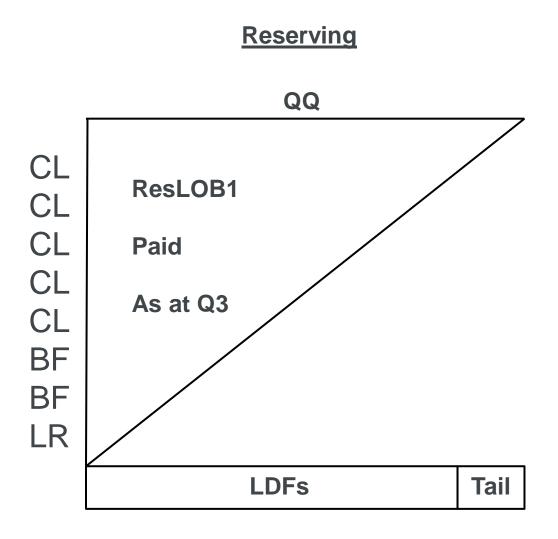
Additive, Multiplicative, Mixed



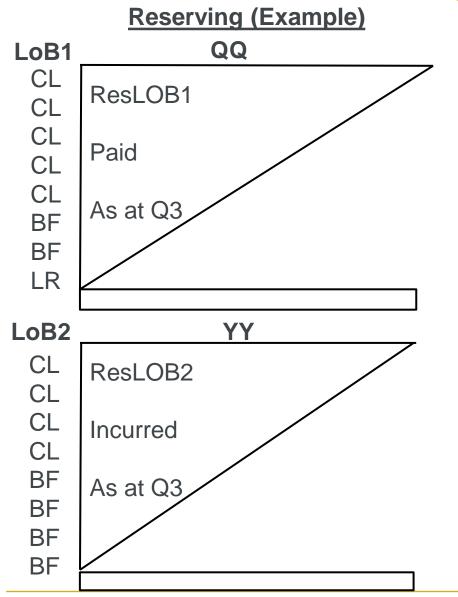
Institute

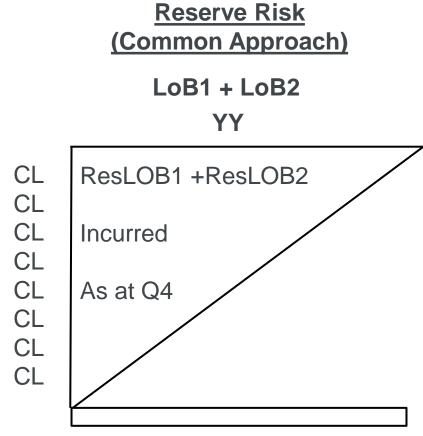
#### Inconsistencies in Data

- Granularity
- Triangle Period
- Cut-off Date
- Incurred / Paid
- Gross vs Net


#### Inconsistencies in Model

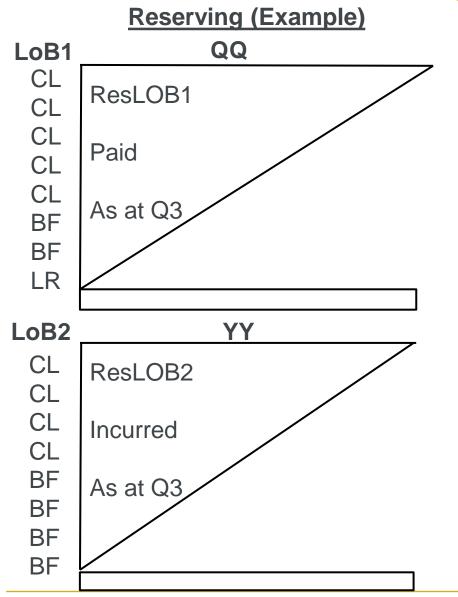
- Deterministic vs Stochastic
- Mix of Methods
- Non-triangle information

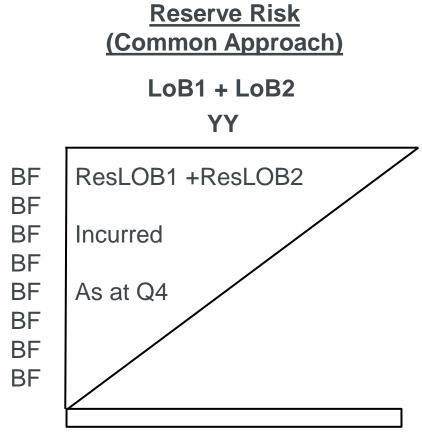

#### Inconsistencies in Parameters


- Mack assumes volume weighted all years
- Curve fitting, Tail factor, external LDFs
- Amplified with inconsistencies in Data and Model



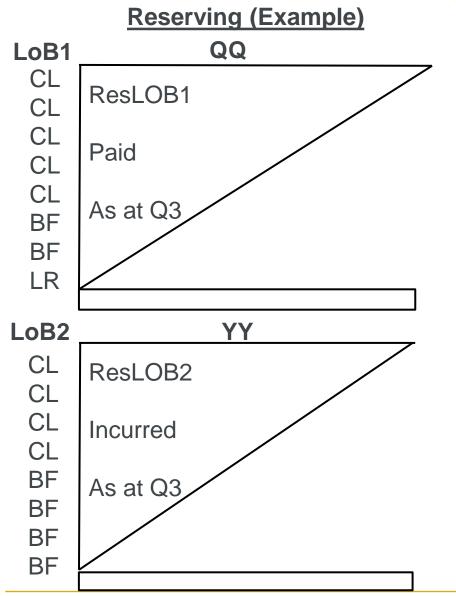


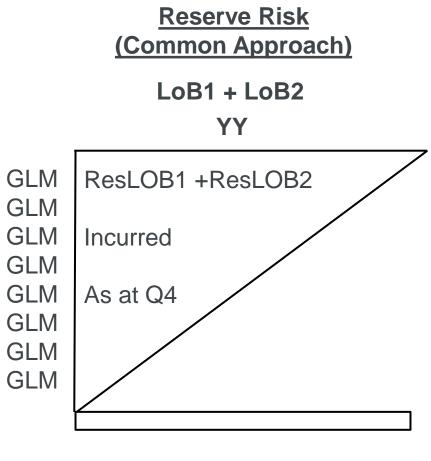





Mean reserves will never balance - hence scaling issues






Mean reserves will never balance - hence scaling issues







Mean reserves will never balance - hence scaling issues



### Which scaling method is correct?

- Multiplicative? Additive? Mixed?
- None are ideal
- Scaling issue should not occur in the first place!

#### Practical Approach to Reserve Risk

- Only with an understanding of the sources of that a sensible approach can be made
- E.g. Claim known with certainty should add no further uncertainty, additive may be more appropriate

#### Current Approach to Reserving & Reserve Risk

- Determine a mean and then fit a distribution around that mean
- Historical reason

#### Ideal Approach to Reserving & Reserve Risk

Determining a reserve distribution first and the mean is just a "by-product" for reserving



#### Short term solution

- Multiplicative, Additive, Mixed scaling
- Raise awareness of model/process limitations
- Importance of validation highlighted

#### Long term solution

- Complete consistency between reserving and reserve risk
- Incorporate more stochastic reserving methodologies into the reserving process



# Practical Challenges in Reserve Risk Accuracy of the Prediction Error



## Variance vs MSEP

#### Variance

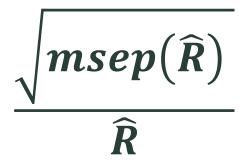
- 
$$Var(R) = E[(R - E(R))^2]$$

## Mean Square Error of Prediction (MSEP)

 $-\hat{R} \sim \text{Estimate of reserve}$ 

 $R \sim \text{Outcome of reserve}$ 

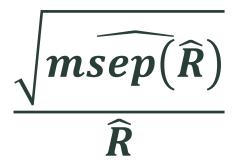
- 
$$MSEP(\hat{R}) = E[(R - \hat{R})^2 | D]$$


$$- MSEP(\hat{R}) = (\hat{R} - E(R|D))^2 + Var[R|D]$$

$$- CoV(\hat{R}) = \sqrt{msep(\hat{R})} / \hat{R}$$



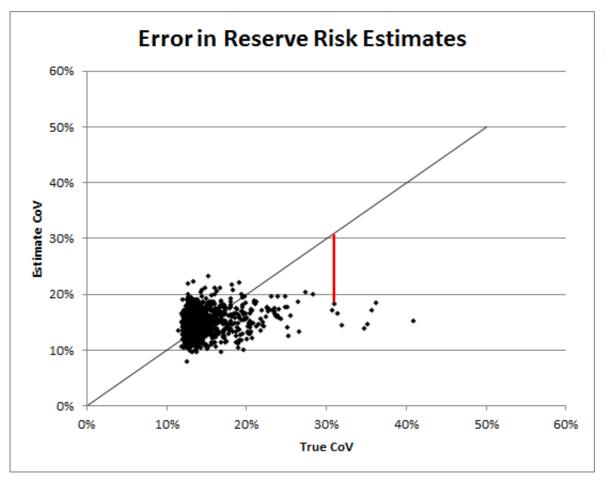
## **True CoV vs Estimate CoV**


#### **TRUE CoV**



Not calculable in reality

Parameters are unknown


#### **ESTIMATED CoV**



Formula (e.g. Mack)
Empirical (e.g. Mack Bootstrap)

- 1000 "True Mack" triangles from Mack Model with selected parameters
- Each triangles are different though same set of parameters
- Calculate True CoV using first principle
- Estimated CoV from Mack Formula or Bootstrap

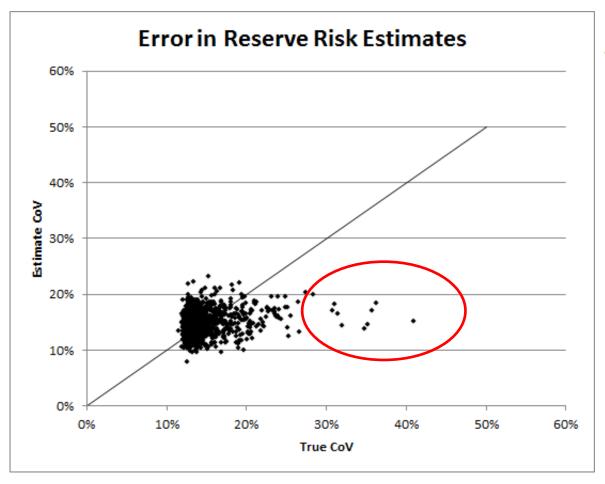




Each triangle has a different CoV



|   | 2/1  | 3/2  | 4/3  | 5/4  | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |
|---|------|------|------|------|------|------|------|------|------|
| f | 2.20 | 1.40 | 1.20 | 1.10 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 |
| σ | 300  | 150  | 100  | 75   | 50   | 20   | 5    | 0    | 0    |


|      |   | Development |      |      |      |      |      |      |      |      |  |  |  |  |
|------|---|-------------|------|------|------|------|------|------|------|------|--|--|--|--|
|      | i | 2/1         | 3/2  | 4/3  | 5/4  | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |  |  |  |  |
|      | 1 | 2.39        | 1.47 | 1.21 | 1.08 | 1.01 | 1.01 | 1.02 | 1.00 | 1.00 |  |  |  |  |
|      | 2 | 2.11        | 1.47 | 1.19 | 1.16 | 0.99 | 1.05 | 0.99 | 1.00 |      |  |  |  |  |
|      | 3 | 2.34        | 1.34 | 1.18 | 1.15 | 1.00 | 0.99 | 1.02 |      |      |  |  |  |  |
| 5    | 4 | 2.01        | 1.41 | 1.24 | 1.08 | 1.01 | 1.05 |      |      |      |  |  |  |  |
| Year | 5 | 1.89        | 1.31 | 1.16 | 1.24 | 1.13 |      |      |      |      |  |  |  |  |
| _    | 6 | 1.75        | 1.46 | 1.16 | 1.03 |      |      |      |      |      |  |  |  |  |
|      | 7 | 2.41        | 1.38 | 1.23 |      |      |      |      |      |      |  |  |  |  |
|      | 8 | 2.56        | 1.45 |      |      |      |      |      |      |      |  |  |  |  |
|      | 9 | 1.97        |      |      |      |      |      |      |      |      |  |  |  |  |
|      |   |             |      |      |      |      |      |      |      |      |  |  |  |  |

| $\hat{f}$     | 2.16  | 1.41 | 1.20 | 1.12 | 1.03 | 1.03 | 1.01 | 1.00        | 1.00 |
|---------------|-------|------|------|------|------|------|------|-------------|------|
| $\hat{f} - f$ | -0.04 | 0.01 | 0.00 | 0.02 | 0.02 | 0.02 |      | <b>0.00</b> |      |

|   | 2/1  | 3/2  | 4/3  | 5/4  | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |
|---|------|------|------|------|------|------|------|------|------|
| f | 2.20 | 1.40 | 1.20 | 1.10 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 |
| σ | 300  | 150  | 100  | 75   | 50   | 20   | 5    | 0    | 0    |

|      |   | Development |      |      |      |      |      |      |      |      |  |  |  |
|------|---|-------------|------|------|------|------|------|------|------|------|--|--|--|
|      | i | 2/1         | 3/2  | 4/3  | 5/4  | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |  |  |  |
|      | 1 | 1.89        | 1.36 | 1.28 | 1.08 | 1.02 | 1.00 | 1.00 | 1.00 | 1.00 |  |  |  |
|      | 2 | 1.86        | 1.48 | 1.14 | 1.18 | 1.06 | 1.01 | 1.00 | 1.00 |      |  |  |  |
|      | 3 | 2.10        | 1.30 | 1.21 | 1.20 | 1.01 | 0.99 | 1.00 |      |      |  |  |  |
| 5    | 4 | 2.33        | 1.43 | 1.13 | 1.03 | 1.03 | 1.01 |      |      |      |  |  |  |
| Year | 5 | 2.34        | 1.34 | 1.26 | 1.11 | 0.97 |      |      |      |      |  |  |  |
| _    | 6 | 2.38        | 1.45 | 1.10 | 1.08 |      |      |      |      |      |  |  |  |
|      | 7 | 2.41        | 1.37 | 1.10 |      |      |      |      |      |      |  |  |  |
|      | 8 | 2.11        | 1.32 |      |      |      |      |      |      |      |  |  |  |
|      | 9 | 2.75        |      |      |      |      |      |      |      |      |  |  |  |
|      |   |             |      |      |      |      |      |      |      |      |  |  |  |

| $\hat{f}$       | 2.24 | 1.38  | 1.17  | 1.11 | 1.02 | 1.00  | 1.00 | 1.00 | 1.00 |
|-----------------|------|-------|-------|------|------|-------|------|------|------|
| $\hat{f}$ – $f$ | 0.04 | -0.02 | -0.03 | 0.01 | 0.01 | -0.01 |      | 0.00 |      |



Each triangle has a different CoV

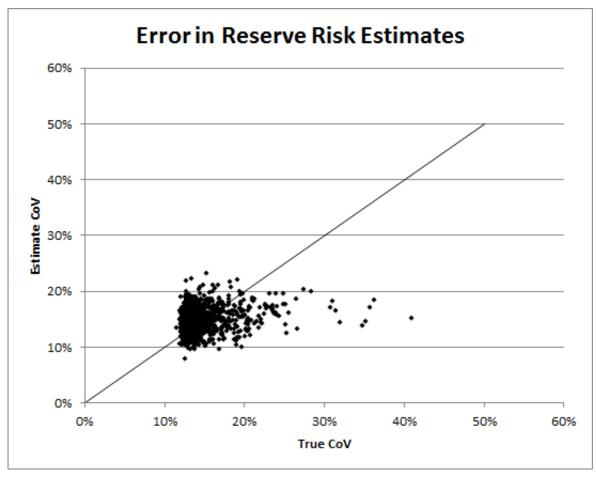


## **Extreme Triangle**

|   | 2/1  | 3/2  | 4/3  | 5/4        | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |
|---|------|------|------|------------|------|------|------|------|------|
| f | 2.20 | 1.40 | 1.20 | 1.10       | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 |
| σ | 300  | 150  | 100  | <b>7</b> 5 | 50   | 20   | 5    | 0    | 0    |
|   |      |      |      |            |      |      |      |      |      |

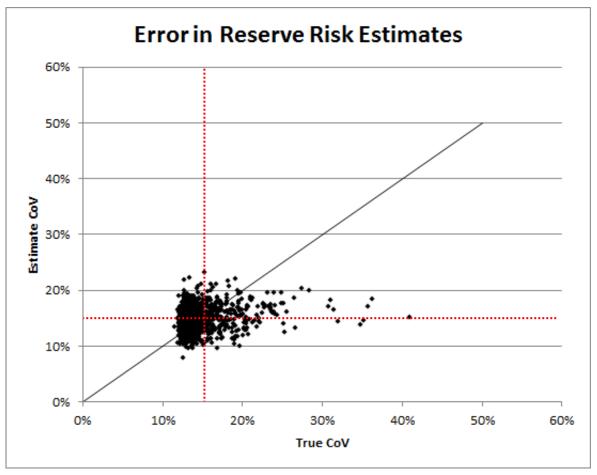
| Devel | lop | me | ent |
|-------|-----|----|-----|
|       | _   |    |     |

|      | i | 2/1  | 3/2  | 4/3  | 5/4  | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |
|------|---|------|------|------|------|------|------|------|------|------|
|      | 1 | 2.36 | 1.45 | 1.24 | 1.05 | 1.04 | 1.02 | 1.00 | 1.00 | 1.00 |
|      | 2 | 2.75 | 1.33 | 1.25 | 1.21 | 0.81 | 1.01 | 1.00 | 1.00 |      |
|      | 3 | 2.51 | 1.45 | 1.19 | 1.13 | 1.02 | 1.00 | 1.00 |      |      |
| 5    | 4 | 2.46 | 1.34 | 1.20 | 1.06 | 1.00 | 1.01 |      |      |      |
| Year | 5 | 1.90 | 1.40 | 1.26 | 1.14 | 0.97 |      |      |      |      |
| _    | 6 | 2.28 | 1.57 | 1.28 | 1.03 |      |      |      |      |      |
|      | 7 | 2.31 | 1.51 | 1.11 |      |      |      |      |      |      |
|      | 8 | 2.35 | 1.42 |      |      |      |      |      |      |      |
|      | 9 | 2.05 |      |      |      |      |      |      |      |      |


| $\hat{f}$     | 2.33 | 1.43 | 1.22 | 1.10 | 0.96  | 1.01 | 1.00 | 1.00 | 1.00 |
|---------------|------|------|------|------|-------|------|------|------|------|
| $\hat{f} - f$ | 0.13 | 0.03 | 0.02 | 0.00 | -0.05 | 0.00 | 0.00 | 0.00 | 0.00 |

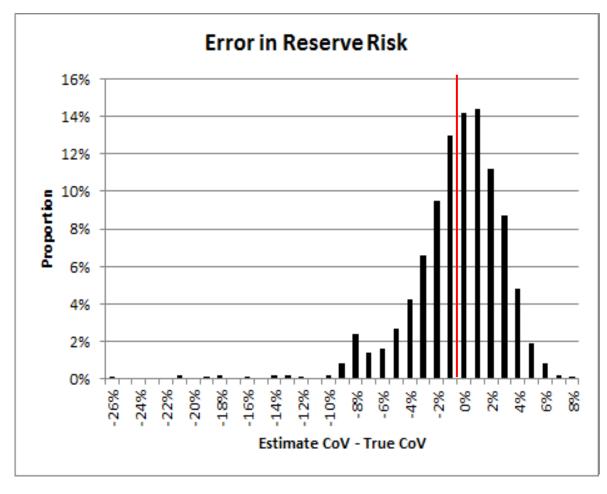
## **Extreme Triangle**

|   | 2/1  | 3/2  | 4/3  | 5/4        | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |
|---|------|------|------|------------|------|------|------|------|------|
| f | 2.20 | 1.40 | 1.20 | 1.10       | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 |
| σ | 300  | 150  | 100  | <b>7</b> 5 | 50   | 20   | 5    | 0    | 0    |
|   |      |      |      |            |      |      |      |      |      |


|      | Development |      |      |      |      |      |      |      |      |      |  |  |  |
|------|-------------|------|------|------|------|------|------|------|------|------|--|--|--|
|      | i           | 2/1  | 3/2  | 4/3  | 5/4  | 6/5  | 7/6  | 8/7  | 9/8  | 10/9 |  |  |  |
|      | 1           | 2.09 | 1.42 | 1.12 | 1.13 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 |  |  |  |
|      | 2           | 1.96 | 1.43 | 1.14 | 1.05 | 0.97 | 1.08 | 1.01 | 1.00 |      |  |  |  |
|      | 3           | 1.63 | 1.38 | 1.18 | 1.11 | 0.99 | 1.01 | 0.99 |      |      |  |  |  |
| 5    | 4           | 2.15 | 1.19 | 1.28 | 1.01 | 1.07 | 0.95 |      |      |      |  |  |  |
| Year | 5           | 1.95 | 1.37 | 1.18 | 1.16 | 1.01 |      |      |      |      |  |  |  |
| _    | 6           | 2.19 | 1.36 | 1.16 | 1.06 |      |      |      |      |      |  |  |  |
|      | 7           | 2.08 | 1.44 | 1.12 |      |      |      |      |      |      |  |  |  |
|      | 8           | 2.18 | 1.35 |      |      |      |      |      |      |      |  |  |  |
|      | 9           | 2.21 |      |      |      |      |      |      |      |      |  |  |  |
|      |             |      |      |      |      |      |      |      |      |      |  |  |  |

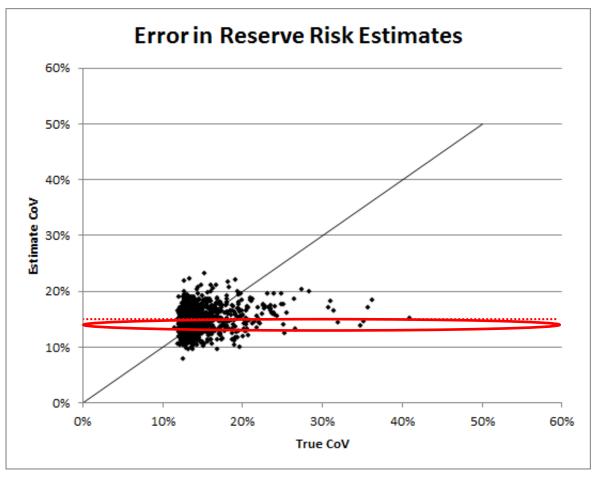
| $\hat{f}$     | 2.05  | 1.37  | 1.17  | 1.08  | 1.00  | 1.01 | 1.00 | 1.00 | 1.00 |
|---------------|-------|-------|-------|-------|-------|------|------|------|------|
| $\hat{f} - f$ | -0.15 | -0.03 | -0.03 | -0.02 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 |




- Each triangle has a different CoV
- True CoV has a wider range

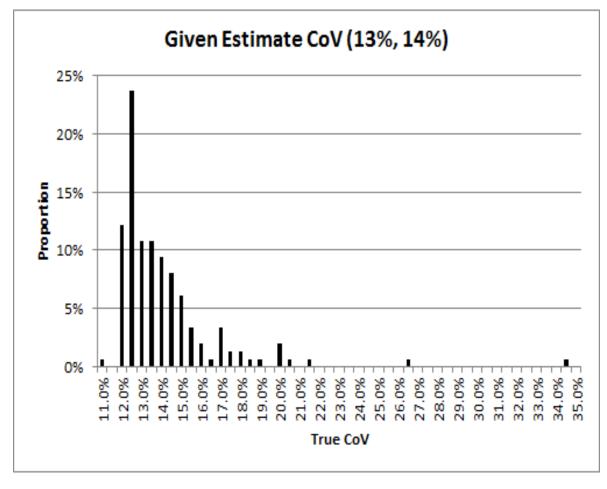





- Each triangle has a different CoV
- True CoV has a wider range
- Correct on average

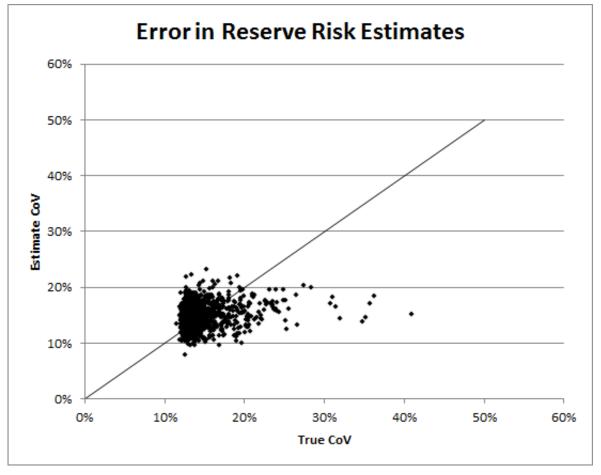





- Each triangle has a different CoV
- True CoV has a wider range
- Correct on average



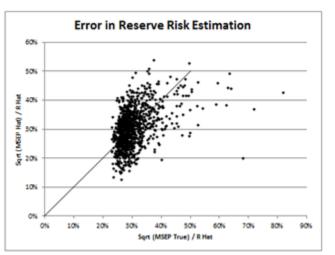



- Each triangle has a different CoV
- True CoV has a wider range
- Correct on average
- Cross Section





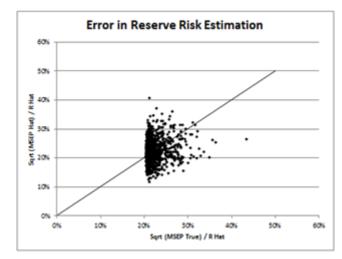
- Each triangle has a different CoV
- True CoV has a wider range
- Correct on average
- Cross Section





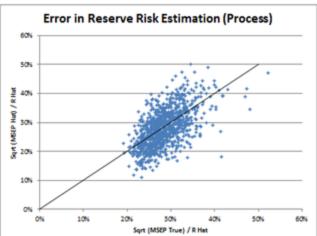

- Each triangle has a different CoV
- True CoV has a wider range
- Correct on average
- Cross Section
- By Year / Parameter / Process

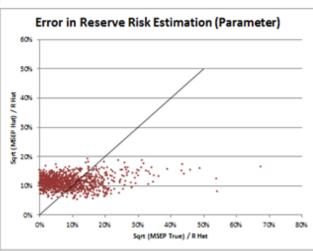



YEAR 8

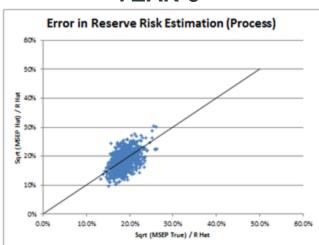


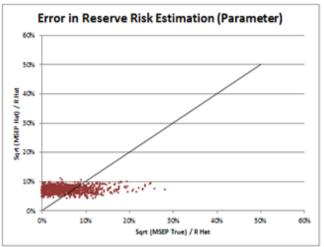
YEAR 9





**YEAR 10** 

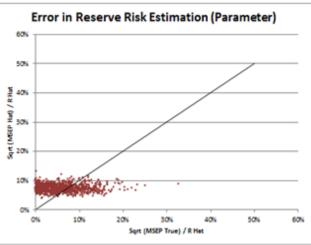






YEAR 8

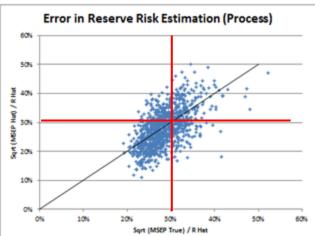


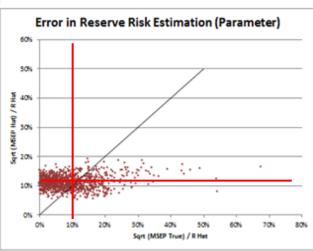




YEAR 9

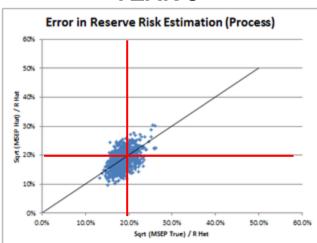


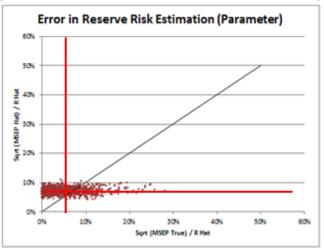



**YEAR 10** 

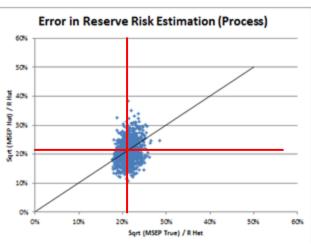


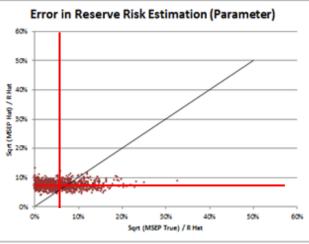


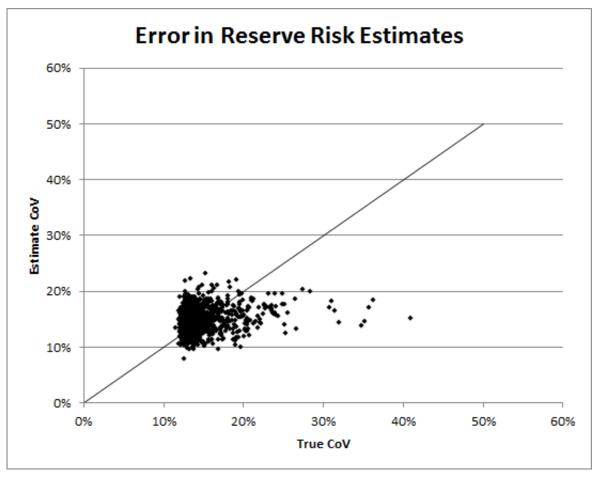


YEAR 8







YEAR 9






**YEAR 10** 









- Each triangle has a different CoV
- True CoV has a wider range
- Correct on average
- Cross Section
- By Year / Parameter / Process
- Model Risk removed in the study



# **The Bigger Picture**

Practical Challenges in Reserve Risk

Kevin Chan <u>kevin.chan@xlcatlin.com</u>

Michael Ramyar
michael@ramyar.co.uk

