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Don’t panic!

GIRO 2016 - Response to machine learning
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We’re doomed!
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This is not all new
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There is a spectrum of complexity
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Hard

Evolving

Requires significant expertise

Not at all hard

Already in use

Actuaries can do this stuff

AI comprehension      Bespoke image recognition      Speech analytics      Machine learning predive modelling

Full autonomous driving               Object recognition                  Topic modelling            Automated GLMs

“Vastly more 

risky than 

North Korea”

GLM 

stepwise 

macro
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Example machine learning methods
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Multivariate adaptive regression splines (“Earth”)
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Penalised regression (Lasso, Ridge, Elastic Net)
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2

f(x) = g-1(X.b) where b estimated by minimising 

Elastic Net
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Example machine learning methods
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y

w3,3

w3,2

w3,1

Neural networks
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x1=21

x2=5
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Decision trees
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Group < 15?

Age < 40?

All dataGroup < 5?

Y N

Y N

Group

A
g

e

Y N
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Random Forests
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Group < 15?

Age < 40?

All dataGroup < 5?

Y N

Y N

Y N

A random forest

𝑓 𝑥 =
1

𝑁
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𝑁
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+ + + + 

+ + + + 

+ + + + 

+ + + 

1

𝑁
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Gradient Boosted Machine or “GBM”
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Group < 15?

Age < 40?

All dataGroup < 5?

Y N

Y N

Y N

A GBM
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Example machine learning methods
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Do they add value?
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Dimensions of utility
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Dimensions of utility

19 October 2017 18

Analytical 

time and 

effort

Predictive power

Execution speed Implementation

Interpretation

Method

Stability

Loss ratio improvement 3.1%!
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Dimensions of utility
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Predictive power

Execution speed Implementation

Interpretation

Method
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• How much do you need to understand?

– How much would you normally understand? (eg vehicle classification)

– Cost of error? (eg marketing)

– Regulatory requirements

– Professional standards

• “Comfort diagnostics”

Pre/post 
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Dimensions of utility
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Dimensions of utility
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A toolkit…
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…that is already in use
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2016 US market survey

For which business applications do you use or plan to use these methods?

Willis Towers Watson Predictive Modeling Survey 2016

100%

87%

48%

35%

30%

30%

26%

24%

26%

11%

Generalized linear models (GLMs)

One-way analyses

Decision trees

Model combining methods

Gradient Boosting Machines (GBMs)

Penalized regression methods

Random Forest (RF)

Other ensemble methods

Other Machine Learning methods

Grid search techniques

Modelling Techniques

42%

40%

31%

23%

17%

17%

21%

17%

33%

8%

37%

37%

30%

19%

15%

22%

22%

19%

19%

15%

Loss Cost Modelling Claims Analytics Marketing

Underwriting 

and risk 

management

Pricing Reserving
Claims 

management

Customer 

management

Marketing 

and 

Distribution
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It’s not just about methods

Data beats models It’s not just about methods

Working out what to model matters

Machine learning is already in use

Actuaries are already involved

It’s not just about predictiveness

A broader set of problems can be analysed

- rapid basic insight adds value

Evolution not revolution

Models are complementary 

to existing methods

So…
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Regulatory issues

• TAS: Judgement - what judgement?

• GDPR 

• FCA

• Government Select Committee 

(Science and Technology)

Training

• A generation less familiar with stats?

• CAS, SOA ahead?  (eg CSPA)

• GIRO too big now to help?

• IFoA on the case, but fast enough?

Issues for the Profession

Role of the actuary

• Domain expertise matters (at least currently)

• Easier for an actuary to pick up machine learning 

than for a data scientist to understand insurance?

• Siloed teams don’t work

• Familiarity and the right vernacular can help

• Scope of involvement?

Pricing  Reserving  Claims analytics 

Customer management ?  Marketing ???
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That spectrum of complexity
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We can do 

this stuff

This end could be 

interesting… 

AI comprehension      Bespoke image recognition      Speech analytics      Machine learning predive modelling

Full autonomous driving               Object recognition                  Topic modelling            Automated GLMs
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