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GIRO 2016 - Response to machine learning

We’re doomed!
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This is not all new

Actuaries adopt GLMs
First computer Trees CART Random forests
Neural nets GLMs GBMs
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There is a spectrum of complexity

“Vastly more GLM
risky than stepwise
North Korea” macro

Al comprehension  Bespoke image recognition  Speech analytics  Machine learning predive modelling

Full autonomous driving Object recognition Topic modelling Automated GLMs

* *

Hard
Evolving
Requires significant expertise

Not at all hard
Already in use
Actuaries can do this stuff
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Example machine learning methods

Ensemble K-Means
Methods Clustering

Elastic Net

Principal
Components
Analysis

Regression
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Example machine learning methods

Elastic Net

Ridge

Regression
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Multivariate adaptive regression splines (“Earth”

AD claim frequency
AD claim frequency
AD claim frequency
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Penalised regression (Lasso, Ridge, Elastic Net)

GLM Lasso Ridge

f(x) = g1(X.p) where B estimated by minimising  L(B|X,y)|+|11 Z-lﬁil +| A2 z_[)’iz

Elastic Net

1 2 3

Fit Fit Fit Fit Test
Fit Fit Fit Test Fit

Fit Fit Test Fit Fit

Fit Test Fit Fit Fit

Test Fit Fit Fit Fit

Holdout Holdout Holdout Holdout Holdout
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Example machine learning methods

Neural Networks
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Neural networks
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Example machine learning methods

Ensemble
Methods

Support Vector
Machines

"Earth"

Elastic Net Neural Networks

Principal
Components
IEWAIS

K-Means
Clustering

Naive Bayes

K-nearest Ridge
Neighbours Regression
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Decision trees
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Y

N

Y N
|

N

——
—=

19 October 2017 © 2017 Willis Towers Watson, Al rights reserved. 12



Random Forests

A random forest
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Gradient Boosted Machine or “GBM”
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Example machine learning methods

Ensemble

Methods
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Do they add value?

Ensemble "Earth” K-Means
Methods Clustering

Elastic Net

Principal
Components
Analysis

Regression
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Dimensions of utility

Analytical
time and
effort

Execution speed

Predictive power

Interpretation

Implementation
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Dimensions of utility

Predictive power

Method
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Loss ratio improvement 3.1%!
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Dimensions of utility

Interpretation

Method
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Dimensions of utility
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Partial Dependency Plot Partial Dependency Plot
xAge of (ul mtersction) Age of Main Driver x Age of Youngest Additional Driver {marginal interaction)

Dimensions of utility

Partial Dependency Plot Partial Dependency Plot
Vehicle Age x Vehicle Group (full interaction) Vehicle Age x Vehicle Group (marginai interaction)
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Dimensions of utility

* How much do you need to understand?
— How much would you normally understand? (eg vehicle classification)
— Cost of error? (eg marketing)
— Regulatory requirements

— Professional standards

» “Comfort diagnostics”

Interpretation

“Comfort
Diagnostics”

Pre/post
adjustments
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Dimensions of utility

Analytical
environment

Implementation ‘

Next generation
rating engine

Policy administration
system
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Dimensions of utility

Analytical
time and
effort
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A toolkit...

Predictive power

time and

effort
Penalised
Regression

Table Table

Execution .
ecution speed Implementation Implementation

Predictive power

A_nalyucal . Analytical
time and Interpretation time and Interpretation
effort effort

Analytical
time and Interpretation

ff q Table Execution s| Janie
e . peed
Execution speed Implementation Implementation

Predictive power Predictive power

Method

time and
effort

Support

Neural Vector
Networks
Machine

Execution speed Implementation Execution speed

Predictive p Predictive power

Analytical
time and Interpretation
effort

Random
Forests

Table

Execution speed
Implementation
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...that Is already in use

Predictive power

Analytical Modelling Techniques

time and
effort

Interpretation

One-way analyses
Decision trees
Method

Model combining methods

Gradient Boosting Machines (GBMs)

Execution speed Implementation

Penalized regression methods
Random Forest (RF)
Other ensemble methods

Other Machine Learning methods

Grid search techniques

2016 US market survey

Loss Cost Modelling
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For which business applications do you use or plan to use these methods?
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Willis Towers Watson Predictive Modeling Survey 2016
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Machine learning is already in use

Actuaries are already involved

It's not just about methods

Working out what to model matters

Evolution not revolution

It's not just about predictiveness
Models are complementary

A broader set of problems can be analysed to existing methods
- rapid basic insight adds value
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Issues for the Profession

Training

A generation less familiar with stats?
CAS, SOA ahead? (eg CSPA)
GIRO too big now to help?

Role of the actuary

_ _ IFOA on the case, but fast enough?
Domain expertise matters (at least currently)

Easier for an actuary to pick up machine learning
than for a data scientist to understand insurance?

Siloed teams don’t work
Familiarity and the right vernacular can help

Scope of involvement?
Pricing v* Reserving v Claims analytics v’
Customer management ? Marketing ??7?
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That spectrum of complexity

We can do
this stuff

Al comprehension  Bespoke image recognition  Speech analytics  Machine learning predive modelling

Full autonomous driving Object recognition Topic modelling Automated GLMs

This end could be

interesting...
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