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Portfolio Optimization
René Schnieper

Summary

Based on the profit and loss account of an insurance company we derive a
probabilistic model for the financial result of the company, thereby both assets
and liabilities are marked to market. We thus focus on the economic value of
the company.

We first analyse the underwriting risk of the company. The maximization of the
risk return ratio of the company is derived as optimality criterion. It is shown
how the risk return ratio of heterogeneous portfolios or of catastrophe exposed
portfolios can be dramatically improved through reinsurance. The improvement
of the risk return ratio through portfolio diversification is also analysed.

In section 3 of the paper we analyse the loss reserve risk of the company. It s
shown that this risk consists of a loss reserve development risk and of a yield
curve risk which stems from the discounting of the loss reserves. This latter risk
can be fully hedged through asset liability matching.

In section 4 we derive our general model. The portfolio of the company consists
of a portfolio of insurance risks and of a portfolio of asset risks. The efficient
border of the company is a straight line with a slope equal to the risk return
ratio. It makes therefore sense to maximize this ratio which leads to a
generalisation of Markowitz’s Model to insurance risks and asset risks. Our
model allows for a simultaneous optimization of both portfolios of risks. A
theorem is derived which gives the optimal retention policy of the company

together with iis optimal asset allocation.
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1 Introduction

The profit and loss account of an insurance company typically details the
following income items

earned premiums (net of premiurns for outwards reinsurance)

investment income

realized capital gains

and the following expenditure positions
incurred claims (net of reinsurance recoveries)
expenses
dividends to policyholders.

dividends to shareholders

We assume that the accounts of the company are on an accident year basis. Any
other commonly used basis (e.g. underwriting year) can be dealt with after some
minimal changes. We shall some times refer to the financial year which is the

period covered by the company’s accounts.

We split the premium into its different components
pure risk premium
loading for expenses

loading for profit

We split incurred claims into the following two components:
incurred claims pertaining to the current accident year
changes in claim amounts in respect of claims pertaining to previous

accident years
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We also take unrealized capital gains into account as an income item.

We make the following simplifying assumptions

expenses and loading for expenses are identical and therefore cancel out
dividends to policyholders are accounted for as claims

we are interested in the change in value of the surplus of the company
before dividend to shareholders. We therefore ignore this item.

the period under consideration is the financial year of the company. This
is an arbitrary assumption. We could take any other period e.g. a
quarter or a multi year period corresponding to the planing horizon of
the company

Payments pertaining to a given period are made at the end of the period
The premium written in a given period is earned in that period, i.e. the
company has no unearned premium reserves. (This assumption can be
dropped at the cost of a slight increase in the model complexity. The
interest rate risk pertaining to the ynearned premium reserves would be
treated in a similar way as the interest rate risk pertaining to the loss
reserves. Since the former is much less material than the latter, we have

chosen to ignore it.)

We make the following model assumptions

1.

All random variables appearing in the model have finite second order
moments
The pure risk premium is the present value of the expected loss

payments
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The loss reserves are equal to the present values of expected future loss
payments

The discount factors used to assess the pure risk premium and the loss
reserves are based on the yield curve as defined by the bond market

The assets of the company are valued at market value

We introduce the following notation, where random variables are denoted by a

tilde:

S
E(S)

total claims amount pertaining to the current accident year.

the mathematical expectation of the above random variable; this is the
pure risk premium.

the profit loading for assuming the underwriting risk §

increase in claim amounts in respect of claims pertaining to previous
accident years.

investment income plus realized capital gains plus unrealized capital
gains

capital (economic value) of the company at the beginning of the financial
year

increase in capital (economic value) during the financial year

The following relation holds true

Au=E@S) +(-5-AL + AA

§ - E(5) is referred to as the underwriting risk, AL — E(AL) as the loss reserve

risk, AA — E(AA) as the asset risk and Au — E(Au) as to the total risk of the

company.
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2 Underwriting Risk

2.1  Simplified Model

We split the assets of the company between a lability fund and a capital fund

A = A + Ay This means that some of the assets (A1) are earmarked to cover

the liabilities of the company and the rest of the assets (AU) match the equity

of the company. Since in this section we focus on the underwriting risk, we
assume that there is no loss reserve risk and no asset risk. To be more specific,
we make the following

Assumptiong

- There is no loss reserve risk, i.e. amount and time of payment in respect
of outstanding losses are perfectly known to the company.

- The Hability fund, i.e. those assets which cover the liabilities, perfectly
match the amounts and maturitids of the liabilities. The liabilities are
discounted with the discount factors corresponding to the liability fund.
As a conseguence any change in the yield curve will have a perfectly
offsetting effect on AL a.nd~—Af\L.

- The capital fund is invested at the risk free rate of return: AAU--pou.

The increase in capital (the profit) now is
Bu=E(S) + -8 -AL + AA; + AAy = E(S) + £~ S + pu
And we obtain
E(Au) ofAu) _ o(§)
p=BQtl=fen oo

From which it follows that

. 4
p—py=r-0¢ With 1=-—-
a(S)

the trade off between risk (o) and excess return (p—p,) is thus linear and the
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slope of the line is equal to the ratio of underwriting return (¢) and underwriting
risk ( o(8) ). Our objective is therefore to maximize this underwriting risk
refurn ratio r.

The above defined straight line is the efficient border of the set of all risk return
pairs (a,p) which can be achieved by the company. If {0,p) is on the straight
line, an increase in return can only be achieved by the company through an
increase in risk.

The choice of a specific point (o*,p*) on the efficient border is equivalent to the

choice of the capital level of the company. Indeed if (o*,0*) is given, then by the

very definition of ¢ and p we have u = aae“ = E‘épa On the other hand if u
. _ o{Au _ 4 s : .
is given, we have o* = 3 and p* = py + 3 and it is easily verified that

{o*,p*) is on the efficient border.

The choice of 2 specific point on the effigient border is arbitrary. It depends on
the balance between the investors’ hunger for profit and their aversion for risk.
It is nsually formalized by sets of indifference curves, where it is assumed that
investors are indifferent between all risk return pairs (o,p) which are on a given
curve p = f(o). The curves are upward sloping and it is usually assumed that
they become steeper as ¢ increases. (For a discussion of indifference curves see
for instance W.F. Sharpe (1970).) Given such a set of curves, there is usually
exactly one optimal point on the above defined straight line, This is the optimal
risk return pair (o+,p*} which can be achieved by the company. The capital

o(Au) _ ¢
or T p*pe
For illustrative purposes, we assume that the owners of the company, or the

level of the company is derived from this optimum u =

managers acting on behalf of the owners, have a quadratic utility function

Vip) =a-+bp—cp? be20
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This utility function is only meaningful for p < prax = g'c" since above pyax the
function is decreasing.
If Prob(p > puax ) = 0, we obtain

v = E(V(p)) = a + bp — cp?—ca®.
This defines a set of indifference curves. All points (p,0) which yield the same
values of v = E(V(p)) are on the same indifference curve.
Assuming that the efficient border of the company is a straight line p ~ pg = ro

it is easily seen that the risk return pair which maximijzes the utility of the

company is ot = M&Z’E 0* = po + ro*
I+

The corresponding amount of capital is u = 5’%%)-.
For illustrative purposes we shall occasionally assume
E[V(p)] = p—20-20% i€ puax=25%.
We now turn to the problem of allocating capital to individual risks.
Let Au =§1).(i be any split of the total risk of the company into individual
risks. The capital is proportional to
o(Ba) = (§ Cov(XsBu) /2
It is thus fair to allocate to each risk X; an amount of capital u; which is

proportional to the contribution of that risk to the overall volatility of the

-~ - n
result of the company: u; = k-Cov(X;,Au). Since v = 'Exui’ we obtain u; =
i=

u‘Cov(Xi , Au}
Var(Au)
The excess return which the company expects to achieve for assuming the risk

o{Au) is equal to (p—po)u, where po denotes the risk free rate of return. It is fair

to split the excess return proportionally to the capital.
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Definition

The fair loading of risk X; is (p—po)u; = (p—po)-u'ggl(&-l—ﬁl-l
Var(Au)

1t is equal to the cost of the capital needed for assuming risk X;.

We assume that the company is a price taker, the fair loading is thus not a way
to compute prices but a way to define benchmarks. In general there will be
cross—subsidies. Certain risks will have a higher expected profit than the fair
loading, others will have a lower expected profit. Later we show that if the
portfolio of risks is optimized in an unconstrained way, the actual loading of
each risk is equal to the fair loading. This is a further justification for our way
to allocate capital to individual risks.

We now turn to the problem of maximizing the underwriting risk return ratio.
Assuming that the loadings of individual risks are given there are two main
possibilities to increase the above ratio: combining risks in a portfolio and
buying reinsurance. We now illustrate the impact of reinsurance and the

portfolio effect on the risk return ratio.

2.2 Portfolio Heterogeneity

Let X;,X;,.,Xn be the uncorrelated risks of a portfolio Q:éll)'(i )
Let 4 denote the loading of risk i and o7 its variance. We have thus
£= 34 and o(§)=(20%) 2.
Let us assume that for each individual risk i the company kéeps a share q; for

its own account and cedes a share (1—o3) to its reinsurers.
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Theorem
Under the above assumptions, the choice of @,...,a, which maximizes the net

underwriting risk return ratio
Yaifi
net T

(Baoh) T2
is
a=c l—;

73
where ¢ is some norming constant which must be chosen in such a way that
0<ail
for all i. With the so defined set of retentions we have

2
oo
e = (3472
1 Ji

Proof

Deriving rpet with respect to o and setting the derivative equal t0 0 we obtain

éi(Sdziaiz)l/ ? — Qlailzi)(Eaﬁag)-l/ Taiaj =0
Lajoi
2 2 2
4(Zaios) = Basbi)eyoj
22
o= faisi_ 4
o Baili 0j
and the value of the optimal Ine; is obtained by plugging the above value of g

into the expression defining I'net.

Special Case

Let

R = (L1 with probability p
1710 with probability 1—p
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and
£=EX)x=pL; A
we now have
Var(X;) = p(l—p)L? : pL? forp<<1

and the optimal retention becomes

and the retention of each risk is such that the net .monetary amount retained is
the same for all risks i.e. the reinsurance arrangement which maximizes the
underwriting risk return ratio is a surplus treaty, where the retention is equal to
the smallest sum insured.
On a gross basis the risk return ratio is
n n
I = iglLip)\ =Mp ingi
G T (E T

and on a net basis

6o\,
tner = (3 4-)2 = apm
e

7i
It is seen that rpe; > 1. The inequality is strict unless all Ly’s are equal.

Numerical Example
Let us assume that there are two types of risks

x, =1 with probability 103
=10 with probability 0.999

and

X, = {100 with probahility 10°3
2710  with probability 0.999
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There are n = 10° risks of the first type, and n=10% risks of the second type.

The profit loading is A = 3 % of the pure risk premium. We have

o(§) »{107%(105+107) = 100.5, {=6.0, r = 0.060

According to the above theorem, the reinsurance arrangement which maximizes
the underwriting risk return ratio is a surplus treaty with a retention of 1. On a
net basis we have

a(gne;)=!10'3-(105+103) =10.05, £=3.03, r1=0301

The net underwriting risk return ratio is much higher than the gross.

2.3 Catastrophe Exposure

Let § =4§_l}lf(i be a portfolio of individual risks where each risk is the sum of an
ordinary risk and of a catastrophe risk:

5(1 = 05(1 + c)'(i_
We have thus

- pe ™ n -~

S=%,X;+32 X

1=] i=1

It is further assumed that

Cov(oXioX;) = 6 0 forallij  where ﬁijz{[l} m
and that
Cov(cXy,cXj) = o2 for ail 1,j

i.e. ordinary risks are uncorrelated and catastrophe risks are perfectly
correlated. It is further assumed that

Cov(oX5,cXj) = 0 for all i,j.
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It follows that
Cov(X3,X;) = Cov(oXi+cXi,oXj+cXj) = 8303 + 02
and
Var(§) = nod + n’s2
Let us now assume that the catastrophe exposure is reinsured through an excess

of loss reinsurance with retention x

n . o .
Snet'—'igloxi + (Elcxi) Ax
where x A y denotes the minimum of x and y.
To compute the value of
n .
((Z cxi) Ax
1=1

as a function of x we would need to make distributional assumptions on the
catastrophe risk. We make the extreme assumption that the catastrophe risk is
fully reinsured, i.e. x=0.
As a consequence we have

Var(Suet) = rod.
Let uo and p. denote the pure risk premium of an ordinary risk and of a
catastrophe risk respectively. Let Ao and A denote the premium loading of an
ordinary risk and of a catastrophe risk respectively. We have

r= ¢ = n§ EO)\ O+Ec>\c; — EO/\0+EC)\C

o(8) (not+n?od) /2 (% + od) /2
Assuming that the loading of the reinsurance premium for the catastrophe risk
is the same loading as for the original catastrophe risk, we obtain
A
Tnet=v0 Eg.To

which is usually much larger than r.
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Numerical Example
. 100  with probability 10-3
" | 0 with probability 0.999

. 5 with probability 10-?
oXi=
0 with probability 0.99

oX; could be a fire claim and (X; an earthquake claim from a given fire policy.
We have

fo = 0.1, o = 0.05, 0o~ 10 /2.100 = 3.16, gc= 107.5 = 0.5
Let us assume that

M=5%, Ae=20% and n = 10°
We obtain

a(8) = 50:010 £=1500  r=0.030

o{Sner) =1'000 loet= 500 Ine = 0.500
The net underwriting risk return ratio is much higher than the gross. Assuming
po = 5 % and optimizing according to the quadratic utility function of section

2.1 we obtain the followirg optimal risk and excess return for the net portfolio

g*:(EM).—r:;S% gy =10r=4%
1+12
and the capital is

§ne

u= T*

{nes
= =28t = 12'500.
p*=po
The corresponding quantities for the gross portfolio are
o* = (.0060 p*—po = 0.0002 u = 8'342'502
From this example it is seen that it would be totally uninteresting to insure the

gross portfolio without being able to reinsure a sizeable part of the catastrophe
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exposure.

24  Portfolio Diversification
Let X.,X,,..Xn denote the different insurance portfolios of our company {e.g.,
homeowners, private automobile, commercial multiperil, commercial
automobile, assumed reinsurance business, etc...).
Let

w(X;) = E(X) + 4

denote the premium of portfolio X;, & is thus the corresponding loading.

We use the following notation
o3 = Cov(X3,X5) 3 = (oy)
We assume that the company keeps a share a; of portfolio X; for own account
and cedes a share (1—q3) to its reinsurers.
The combined net portfolic of the company is thus
gnet = al)-(‘ + az).(z + ..t a,j(n
and its combined net profit loading is

fet = andy + aofy + ... + anly

Theorem
We assume that 3! exists.
1) The vector @ = (ay,9,...,0) which maximizes the net underwriting risk

return ratio

Fnet = fner.
G'(Snet)
is given by
a=c-5i¢
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where £=({,f,...,4n) and c is a scalar which is chosen in such a way
that max a;=1.
i=1,--3n
The optimal risk return ratio is equal to
taer=(¢51) /2
2) o maximizes the risk return ratio if and only if the net loadings

(@i i=1,..,n) are equal to the fair loadings.

Remark

The solution g provided by the theorem is only meaningful if o5 > 0 for all i. It
is indeed unrealistic to assume that the company can take a short position in
any of the insurance portfolios X; To find a solution @ which always satisfies
the condition ¢ > 0 is a convex optimization problem with restrictions. It is a

standard problem in finance theory, see for instance W.F. Sharpe (1970).

Proof

1) We have to maximize the following expression
- Cq'll-l—d'z !2+. - -+inn

r T
(I aiajoy) /2
1]

deriving with respect to ay,as,...,0n and equating the expression to 0, we

obtain

~ ~ 3
£10(Snet)~Lnet %‘ U(Snet)'x(zjglajng) 0
Uz(snet)

or _
o=

. . - I
ot £a0(Snet)~fnet 21‘ U(Snen)-l(Z}_] & 0nj)
= - 121 =0
Gan Uz(sner.)

and after some straightforward rearrangement of terms
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- n
l102(snet) = lnetjzjlaj‘flj

« n
[na'Z(SnB;) = tnetj{:laj Tnj

or in matrix notation

(7] 5

fnet
g=cXk1{
This proves the first part of the theorem. {Note that by definition g is
only defined up to a norming constant c.)
We now prove the statement about Ipes.

Var(§)= ¢ a=ct £ 51381 f=(c et =cla
— g’ g _ 1 2 1/2_. ve o y- 1/2

net == = 2 £ =Y (g T1¢

et e §1* \/E(Q ) 1/5(— )

tnee = (£ 81£)"2
2) ail; i=L,..,n are the fair loadings if and only if
ails = ¢+ Cov( X ;,5ne:) i=1,..n

for some constant ¢. This in turn is equivalent with the following system

of equations
n
ails = ¢+ T 010405 i=1,2,...n
J =
I
4= C-j)_)laija] i=1,2,...,n
{=cla
a=ciEy

which is equivalent with o maximizing the risk return ratio.

q.ed.
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Numerical Example

There are three portfolios with
4y

=1 4 =102 = =920%
¢£Tn

o3 =4 =06 =-=2=30%
Vo2

We think of X, and X, as of a motor portfolic and a homeowners portfolio
respectively. We assume that both portfolios are exposed to the same natural
peril (e.g. storm}), which is only reinsured in excess of a substantial retention.
The correlation between the two portfolios is therefore positive. Let us assume
that it is equal to 0.20.

The third class of business consists of industrial risks with

33 = 9-(1.5)2 = 20.25 b=18 =--40%
Vaaz

The interpretation is that for the same premium income as the homeowners
portfolio, the industrial portfolio has a standard deviation of 3, instead of 2 for
the homeowners portfolio. The industrial portfolio has 50 % more volume than
the homeowners portfolio. It is assumed that the industrial portfolio and each of

the personal lines portfolio are uncorrelated. We have thus
1 0.4 0

0.2
=104 4 0 l, £=(0.6]
0 o 20.25 1.8

From our theorem we obtain that the optimal retentions are
o = (1, 0.93, 0.61)

yielding
0(Snet) = 3.57 ey = 1.85 Tnet = 0.518
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Thus the optimal risk return ratio is much higher than each of the risk return

ratios of the individual classes.

Let § be the gross combined portfolio §=3X,+ X2+ X; wehave
£1+zg+_f73 - 2.6 7 = 0.509
(iEJ_ a3 ) 2 (26.05)7%

a(S) = 5.10 {=2.60 r=

which is nearly as high as the optimal risk return ratio.To achieve the optimal
ratio the compary must cede 7 % of its homeowners business and 39 % of its
industrial business. It must thus forgo an expected profit of 0.75 out of a total
expected profit of 2.6. It is questionable whether in this case the slight
improvement in the risk return ratio is worth this sacrifice.

Let po = 5 %. We asswmne that each portfolio is insured separately and that
insurance companies optimize their capital allocation according to the set of
indifference curves given in section 2.1. We obtain the following results for the
three individual portfolios, the combined portfolio and the portfolio with the

optimal risk return ratio.

Portfolio r g* pr—po u
number
1 0.200 3.85 % 0.77 % 26.0
2 0.300 5.50 % 1.65 % 36.3
3 0.400 6.90 % 2.76 % 65.2
4 0.509 8.09 % 412 % 63.2
5 0.518 817 % 423 % 43.7

where portfolio number 4 is the combined portfolic and portfolio number 5 is

the optimal portfolio.
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This example illustrates that combinihg portfolios results in substantial
improvements of the risk return ratio. This example also illustrates the fact
that, when we combine portfolios in a pon optimal way, there is a cross
subsidization between portfolios: Let § denote the gross combined portfolio. The

fair loadings are

ti - (p_po)_u_COV!Xi~zS!
Var(§)
thus

f=412 %~63.2-7€1;%5 =014 f=044 £y =202
whereas the actual loadings ate
4=020  4=060 =180

There is a subsidization of X3 from X; and X,.

3 Loss Reserve Risk

3.1  Individual Accident Year

Since we only consider one accident year, we can assume that the development
year t of risk X is also the financial year t of the company. This amounts to a
renumbering of the financial years.We first analyze the problem on an

undiscounted basis. Later we introduce discounting.

Let X denote a risk, or a portfolio of risks pertaining to a given accident year.
Let n(X) and £ denote respectively the premium and the loading of risk X. We
have

X)) =BX) + £
As with all other random variables we assume that E{(X?) is finite. Let us

assume that X is paid out over w development years.
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. W
X=1%P,
t=1
P, denotes the payment made in development year t in respect of risk X. Let ¥,
denote the information of the company on risk X in development year t. ¥q is
the information on the risk prior to underwriting it and we have thus

E(X) = E(X|70).

We further introduce the following notation
X =E(X|%).
X is the company’s estimate of risk X in development year t.
We assume that ¥g,%s,.. ,%,... is an increasing sequence of o—algebras. It is
easily seen that X, is a martingale.
Let
Li= E(f)m“' f}m + o | H)
be the loss reserve of the company at the end of development year t in respect

of risk X.

Based on the pure risk premium E(X), the contribution to results produced by
risk X in the successive development years are as follows
Ry=Liy—P -1, t=1,2,...
and the following relation holds true
Ry = B(X|%:4) ~ BX|%) t=1,2,...
Ry is the difference process of a martingale (i.e. of E(—X|%y)).
Note that according to our terminology, R; is the underwriting risk and

Ro+...+Ruwis the loss reserve risk.

Theorem

. - - - w .
E(Rg) =0 t=1,2,..4, COV(R;,RS) =0 t#s, Var(X) =t§_]1Var(Rr,)
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Proof
- X: = — E(X|%;) is a martingale and R; is the corresponding difference
process.
ged
Let £ demote the loading for profit pertaining to risk X. We make the
assumption that £is earned over the whole development period of risk X. The

amount earned during development year t is

lt — Z'Varj Rg) .

Var(X)
W
The above theorem ensures thatngllt =L
We now introduce discounting. Let 3(u}, a random variable, denote the interest
rate intensity at time u. The present value at time s of one monetary unit paid

at time t is then

t.
[ ¥(u)d
;(s,t)=esf (n)de

Let G¢ denote the cumulative information on the interest rate intemnsity up to
the end of financial year t (which is also development year t of risk X). It is
assumed that Go,Gy,...Gs,.. is an increasing sequence of g—algebras.
We have now

X =v(0,1)-P; + v(0,2)- P2 + ... + v(0,w)-Pw
Let

w-t .

Ly = E( . )} l\”r(t,t+s) Pl :.6t)

be the loss reserve of the company in respect of risk X at the end of

development year t. As a special case we have L = E(X).

The loss development risk in development year t is
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Ry=L¢y~Pi—L;

. w—t+1 . .
Rt=E( 521 G(t—l,t—l+S)P I'lf,-hgt-l)-‘]?;

u:t - )
~E( T ¥(t,t4s) P X,G)

w—t . w—1l -
=[ E( s §09(t—l,t+s) Pt+sllg-1,gt.1) - E(S gofl(t—l,t-{-s) Pt+511;,g;<1) ]

w-i . w=t -
+ B B Ht-1+) Byglhefe) = B(_ 3 9(t.t+5) Byogl ) ]

Rt = 1R; +2Rf.

Assumption 6
‘The interest rate process and the claims process are stochastically independent.
Under the above assumption we obtain

B = U B0 60 (B Byl e) — B Bl 1))
Ry is the loss reserve development risk. It is seen at once that E(jR:) = 0. In
addition tke company will earn a profit loading ¢, as defined above, for

assuming the risk R:.

We also have
. w—t
Re= I B(Prh)- (E(V(t-Lt45) |Gon) — E((1,t45)|G) )
~ W=t
2Ry = R OE(P“S]'}Q)-( E(#(t—1,t4s) |Gi-1) — E( $(t—1,t+5) | G¢)

+ B(9(t-1,t+s)[6:) — E(¥(t,t+5)(Gr) )

Re= :JE_)EE(P“S{'I{:)-( B(#(t-1,t+s) | Ge-t) — E( 7(t~1,t+5)|Ge) )

w-t

+.2 E(P, . 1) B( #{t~Lt+s)]Gt) - (1 =¥ t~1,t))
and it is seen that the first term is the yield curve risk stemming from the
discounting of the loss reserves and the second term is the unwinding of the
discount.

—R; can be viewed as the yield in financial year ¢ of a bend portfolio with the
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amounts BE(F,| %), B(®,, | 1), - , B(P %) maturing at time t, t+1, .., v
respectively. The risk oR; can therefore be perfectly hédged through asset
liability matching.

3.2  Different Accident Years

Let X, X, ..., Xw denote a risk or a portfolio of risks pertaining to accident
years 1,2,...,w. Let Py 5 denote the claims payment made in respect of accident
year t, in development years. It is assumed that each X, is paid over w

development years. We have
w-t+1

Xe=3, v(t~1,t-1+s) Pys

where v(s,t) is defined as in the preceding subsection.

%i,s (8=1,2,...,w) is the o—algebra generated by {Py1, Biyzy - ,Prss}

G is the o—algebra generated by { &(u) | u<t}.

The loss reserve held by the company in respect of accident year t at the

beginning of financial year wis

w .
Lyt = B2yt

At the end of financial year wit pays Pt

wts) Pt,s I 71t,u)—~t’ G-

wt41 and puts up a reserve

w - -
Ly ot = BGE oV (- t+ L) By 1 00,0,

The risk materializing during financial year win respect of accident year t is

By wt+1 T Rl

And the overall loss reserve risk is thus

=1L P

tu—t

. w-1
A== 5iR, pier
Note that Ru 1 is the underwriting risk in respect of accident year w and is
»

therefore not part of the loss reserve risk.
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Upon rearranging terms, we obtain

u -~ -~
=E(S Huw-t,5) B, |

By ts1 st bt St

(sz_t+lv(w—t+1,s) Pt,s | Wt,w—-t+1’ gu)

= [rE 1,
W

(sgw—tﬂ

w - ~
+ [B(E, . T(ts) Bl ¥

v(w-t,s) P

w41 ;s yo—t gw—l)

v(wt:5) Pt,s I 1t,w—t+l’ gw—l)}

tumtt1 o)

- (2 u—t+1"(“""+1’s) sl 10 gu)]

R + 3R

bt T P et
Using agsumption 6 we obtain

R t,w~t+1

B t41 = szw—t-f-lE(v(w— 18) 16, ) (BRI )

—E( Pt,si t,w—t+1) )
w ~ -
Ry yarr = o BClT ) (0 BO v{ets)ld, )
- E(v(w—t+15)16,))
L. ) i w-1
Let AL = AL, + AL; with AL; =- 2_3 iR i=1,2.

t,w—t+1
AL, is the loss reserve development risk and AL, is the yield curve risk

combined with the unwinding of the discount.
It is easily seen that E(AL,) = 0. In return for the assumption of the risk AL,

the company earns a profit loading
w~1

b= tz:'l bt
where lt, w—t+1 is the profit loading pertaining to accident year t in

development year w—t+1 (see section 3.1).

Upon rearranging terms we obtain
w-1

ALy =— o2 2R et

503



w-l w

Al = 3 J, o BC o | % yg) - CEGG+Ls) | 6,)

—E(v(wt,s) | ¢

t,8
w1}
- w=1 - -
AL;= 2 ks (E(W(wwts) | §,) —E(v(w-Lwts) | G, 1))
with

w
ks=3 E(P

R TR,

w41
Thus

< w=1 - -
AL, = . §° ks (E(v(w,wts) | G, ) — E(v(w-1,w+s) | )
+ E(v(w-1,w+s) | g, — E(v(w~1,w+s) | G,1))
- w=l - -
ALy = E ks (E(v(w-Lw+s) [ G,) - (vH{e-lw)-1))
w-1 . -
+ 3 kg (B(o(o-Lwts) | 6,) = B(¥(e-Lats) | G, )
where the first term is the unwinding of the discount and the second term is the
yield curve risk stemming from the discounting of the loss reserves. We have

thus
AL; = RL -L

where L :j);ks E(v(w—1,w+s) | §,1 ) is the total discounted loss reserves at
the beginning of financial year w and RL is the yield for financial year wof a
bond portfolio with the amounts ks maturing at the end of financial year ws
(s=0,1,...,w~1). ﬁL is the rate of return of a bond portfolio with the same
maturities as the labilities of the company. AL; can thus be perfectly hedged
through asset liability matching.
In conclusion the loss reserve risk consists of two parts

AL = (AL, - &) + RL-L

a loss reserve development risk (AL;) and a yield curve risk (RL-L).
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4 General Model Including Asset Risk
41  Optimality Criterion
We have obtained the following representation for the capital increase (profit)
of the company during the financial year

Au = (E(§)+65) + (4-ALy) - Ry -L + AA
The first two terms are insurance risks (underwriting and loss reserve
development risk), the last two terms are financial risks (yield curve risk and
asset risk).
It is assumed that there are n different categories of assets. Rj, a random
variable, denotes the return of asset category j. Aj denotes the amount invested
by the company in asset category j. We have

AA:éﬁyM.
Let po denote the return of the risk free asset. We obtain the following
representation for the excess profit of the company

Bu = pou = (B(EV+8) + (b-BL) - (Ry=p0)-L + 5 (Ri=p0)- A,
where we have used the fact that the sum of the liabilities of the company is

equal to the sum of its assets

n
I+u= % Aj
j=1

Let

and

t-AL=34-% (E(Xp)=0)
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be a split of the underwriting risk and of the loss reserve development risk
respectively into individual risks (e.g. lines of business, market segments,
etc....). We assume that company keeps a share o (@i £ [0,1] ) of each
individual uaderwriting rsk and cedes 1 — ¢; via quota share reinsurance.
Similarly the company retains a share (; of loss reserve development risk j. The

excess profit of the company now reads

- m - ~ m’ bl -~ -~

Au —pou = iglafi-(E(Xi) + 4—X5) + J_}:}lﬂj-(fj -X;)— (RL—po)- L

n .
+ B (Ri=p0)-A,

And it is seen that portfolio optimization amounts to an ’optimal’ choice of the
o’s, s and A’s. We now derive the optimality criterion.
The company is interested in its return

i - Au

Tu
and in particular in the first two moments of its return
= E(Au

o(u) = E(R) = E(8u)

o(u) = o(R) = ~<(22)
oh r=—]ef¢ T "vvor=

W ==
2 e oo " T [ofproms
—8eS _ ‘;; g

Since we have

r(u) = E( Au .! --go-u
ag{Au)
it is easily seen from the above representation of the excess profit of the

company, that r{u) is independent of u. Thus the efficient fromtier of the
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company {i.e. those achievable pairs (p(u),o(u)) which have the property that
an increase in expected return {p(u)) can only be achieved through an increase
in risk (o{u)) ) is the straight line defined by the equation p(u) — po = r-o(u).
Hence the following

Definition

A portfolic is optimal if and only if the corresponding risk return ratio r{g,4,A)

is maximal.

Usually r{a,8,A) is maximized under certain constraints such as a;[0,1] and
Biel0,1].

Once the company portfolio has been determined, the risk return ratio and the
efficient border of the company are given. The company still has to choose a
specific point (p*,0*) on the efficient frontier.

This choice is equivalent to the choice of the amount of capital of the company

o Au
o*x

u=
- n .
Let Au =_Elzi be any split of the total risk of the company into individual
1=
risks. Since the amount of capital required to assume the total risk -Au is

proportional to
. n .. Y
o(Au) = (iEICov(Zi,Au) )

We allocate to each individual risk Z; an amount of capital u; whick is
proportional to the contribution of that risk to the overall volatility of the
result of the company

u; = k- Cov(Z,Au).

n N .
Since -21‘“ = 4, we obtain
i=

507



- u_Covgii~Z Au)
Var(Au)

The excess profit which the company expects to achieve for assuming the risk
o{Au) is (p=po)-u. It is fair to split the excess profit proportionally to the

allocated capital. Thus

Definition
The fair loading of risk Z; is
(po)-us = (ppo)-u- S2¥(E1,00)
Var(Au)
Remark

If the Zys are uncorrelated the fair loading amounts to the variance principle.
The multiple of the variance which must be loaded is derived from the company
portfolio, capitalization level and return objective:

(p~po)-u-Var(Au).

42  Portfolio Optimization
The excess profit of the company is
- m ~ ~ m 3 -3 -~
Au - pou = ;’E,m'(E(Xi) + &4 —Xi) + jglﬁj-(lj —Xj) — (Ry—p0)-L
n o .
+ 3 (Rj—po)- A
and our objective is to maximize the risk return ratio of the company

r= Eg u !—EO — E‘ Au 2-*20'11.
a(u) a(Au)

In a first step we have to maximize the risk return ratio of the underwriting and

loss reserve subportfolic through reinsurance buying. This leads to more
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homogeneous and less catastrophy exposed portfolios and hence to higher risk
return ratios of the subportfolios. This process is discussed in section 2
Underwriting Risk.

We now turn to the second step which consists in the optimization of the global
portfolio, i.e. in maximizing the above risk return ratio as a function of the a’s,
s and A’s. We first review the above general model for the excess profit of the
company. It is not realistic to assume that the company can at the beginning of
every financial year set a new retention f; for each loss reserve risk. The
reinsurance market for loss reserves is very limited. We shall therefore assume
that the company cedes the same quota share 1—a; of each underwriting risk

over many years and that it cedes no specific loss reserve quota share.

More formally we make the following

Assumption 7

m=m, a= f i=l,.,n

In addition we shall also assume that

=Ry

This is no restriction of generality. It simply amounts to the convention that
the first asset category is a bond portfolio with the same maturity profile as the
expected maturity profile of the loss reserves. This excess profit of the company

now reads
- m o~ 7
Au — pu = if_) o5-(E(Xy) + & + & - X, Xi) + (Ripo)-(A-L)
oo
2 R
m
where L = _21aiLi and L; is the amount of discounted loss reserves pertaining to
is

subportiolio i.
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‘We introduce the following notation

x' = (a1, 0m,A LAy, Ap)

8 = (Lol lat by Ri—p0, .. Rur=po)
where R; = E(R;)

% = Cov(~(X+X)) ..., ~(%a+X0), Ry, Rr).

The optimization problem now reads

P gl sl = (x eel01] )

Remarks

1. Since the expected maturity profile of the loss reserves depends on the
retentions a;, we have R; = Ry{a). However the influence of the ay's on
R, is very small indeed — in practical situations as will be seen below it
is nonexistent — we therefore ignore this slight complication.

2. We restrict the reinsurance agreements to genuine quota shares. The
company is not allowed to take a short position in any imsurance
subportfolio —which would be unrealistic — or to increase its share of any
insurance subportfolio beyond 100% ~ which would attract important
acquisition costs —.

3. There are no restrictions on the amounts invested in any asset category.
In particular the company is allowed to take short positions in certain
asset categories. In order for any portfolio to be feasible the amount of
liabilities must exceed the amount of assets

n n
u +i§1aiLi 2 EIA_;
If this is a true inequality, the assets corresponding to the excess

liabilities can be invested in the risk free asset. This amounts to a
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restriction in the choice of the amount of capital

n m

u 2 TA; -3l

i=t i=l
We refer to the right hand side of the inequality as to the amount of net
invested agsets.

4, Within the framework of our model we can simultaneously optimize the

reinsurance policy and the investment policy of the company. The model
allows for a symmetrical treatment of the insurance risks and of the asset

risks.

Theorem
We assume that ¥ is a regular matrix

1. The unrestricted optimum, i.e. the vector x which maximizes
WX

r: (xix) 72

(By definition x is only defined up to a constant factor c.)
The unrestricted optimal risk return ratio is equal to
Faax= (£37) /2
2. % is the unrestricted optimum if and only if all the actual loadings are

equal to the fair loadings

Proof
1. We have to maximize
wx
=
(x2x) 7
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equating to derivatives with respect to x; to zero, we obtain

dr ;n(x’!!x) Y uix- 7(x’)]x _I/ Z(Ziloijxj)

;i
where (o3;) = &

i=1,..,m+n

>3

1]

After rearranging terms
2i(x'Ex) = (wx) ?ﬂijxj', all i
p=k-Z-x

and since X is regular

=c-Bly

Plugging in the above definition of x we obtain

c- S iy
(cg’2'1-2~c2“g)l/"’

Tnax = = (wsy)'/?
All the actual loadings are equal to the fair loadings if and only if the
following equations are satisfied

ai{ti+8?) = k-Cov(—ai(Xi+Xy),Au)  i=1,..,m

(Ar-L)(Rip0) = k-Cov( (A-L)R,,Au )

Aj(Rj—po) = k- Cov( A;R;,Au ) =2,..n

Using the above notation, this is equivalent to

xiu; = k-Cov(xiZy,Au) i=1,...m+n

{or an appropriate choice of Z;.
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Hence
i = k'Jzzinj i=1,..,m+n
g =k-Bx
which proves the 2nd statement of the theorem

ged

Remarks
1. The general optimization problem with restrictions
Sux
r= —H———r]—— = max!
(xEx)’?  xeff
is equivalent to

wx — %-5’2}_{ = max! forany 7y
xef

which is a quadratic optimization problem with restrictions. It is a
standard problem in finance theory, see for instance W.F. Sharpe (1970).
The equivalence of the two problems is seen from the fact that in both
cases the following conditions must be satisfied
Li— Y Ejlzrij:q =0 i=l,..m+n
subject to the restrictions xef.
2. From remark 1 it follows that our optimization criterion is equivalent

with E(Au) —-% Var(Au) = max! for all ¢

xef

i.e. it is equivalent to a maximization of the quadratic utility
3. The 3rd statement of our theorem is a justification for our capital
allocation formula.

4. The theorem is a generalisation of the theorem of section 2.4.
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43  Asset Risk
We now turn to a simple numerical example. The company has {wo insurance
risks {underwriting and loss reserve risks) which correspond to the different

customer segment of the company. The risks and returns are as follows

Insurance ¢
Subporifolio Risk £ g 7
Private customers X, 5 20  25%
Industrial customers Xy 16 40  40%

It is assumed that the two insurance subportfolios are uncorrelated. The
discounted loss reserves are as follows

L1=L2=500

Note that we do not give the premium income since it is irrelevant. There are

four different asset categories with risks and returns as defined below

Ri—po

Asset Category Risk Ri—ga a a
Bond portfolio with medium Ry 1% 4% 2%
term duration (R=Ry )

Bond portfolic with long R: 2% 6% 33%
term duration

Equity Portfolio R:  10% 2% 50%
Real Estate Portfolio Ry 8% 20% 40%
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The correlation matrix of the different asset categories is as follow

1 0.9 0.4
1 0.4

0.4
Corr(Ry,R;) = 1 82

i
It is assumed that insurance risks and asset risks are uncorrelated

Corr(X,Rj) = 0 for all i,j.

We have
@ =5, 16, 0.01, 0.02, 0.1, 0.08)

400 0 0 0 0 0
0 1600 0 0 0 0
% = 0 0 0.0016 0.00216 0.0032 0.0032
- 0 0 0.00216 0.0036 0.6048 0.0048
0 0 00032 0.0048 0.04 0.016
0 0 0.0032 00048 0.016 0.04

And it is easily seen that the unrestricted solution

x=cI
is a solution which satisfies the condition a; ¢ [0,1] for i=1,2. Thereby ¢ is
chosen in such a way that :e[0,1] for i=1,2 and that the amount of business

retained by the company is maximized.

The optimal portfolio of the company is thus
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Expected Contribution to

Insurance Retention  Profit overall variance
Subport folio a; ail; Cov{-g;X;,Au)
Private customers 1 5 400
Industrial customers 0.8 12.8 1024

Amount Expected Contribution to

invested Profit overal]l variance
Asset category Aj Aj(Rj-p0) Cov(AjR; Au)
medium bond (A—L) ~785 —7.85 —628.4
long bond 587 11.75 939.9
equities 156 15.64 1251.5
real estate 90 1718 _5745
Grand Total 44.52 3561.6

The salient feature of the optimal portfolio are as follows

- the company cedes a 20% quota share of its industrial business.

- the total discounted met loss reserves amounts to 900. The company
invests A=115 in the bond portfolic with the same return (§1=I'{L) as
the discounted loss reserves. All in all it keeps a very substantial short
position in this asset (A~L = —785). Asset liability matching is non
optimal.

- The company takes a substantial position (A,=587) in the bond portfolio
with the longer duration and the higher expected return. (In practice
most insurance companies have a duration of assets which exceeds the
duration of liabilities.)

- The company invests a significant amount of its assets in equities and
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real estate (27% of its Labilities).

- The amount of net invested assets BA; — Za;L; is 48. In order for the
i i

optimal portfolio to be feasible the amount of capital must exceed this
amount of excess assets. This is hardly a restriction since o{ Au) = 59.68.
- Statement 3 of our theorem
Xipi = k-Cov(Zi,Au), foralli
is verified for k = 0.0125.
- The contribution to overall variance from asset risks (2137.5) is
considerably higher than the corresponding guantity from insurance risks

{1424). This is in line with practical experience.

The risk return ratio of the optimal portfolio is
r= e = 0.75.

It is interesting {o compare this quantity with the maximum risk return ratio
obtained from the insurance portfolio alone. To be more precise, by asset
liability matching (A=L) and by investing the assets corresponding to the
capital of the company into the risk free asset category, we can fully eliminate
the financial risk. We are then left with a portfolio consisting of the two
insurance risks described above. It is easily seen that the optimum consists then
in a 20% quota share cession of the industrial business and that the maxjxﬁum
risk return ratio is 1;=0.47. Thus assuming the asset risk leads to a substantial
increase of the risk return ratio of the company. We now show that this
statement is true in general.

We rewrite the expression for the excess profit of the company derived in

section 4.
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Bu=pon = BS) + C+ 4= (5 + AL) — (Ry-m)l + 3 (Ry-p0A,
=7 + (R-po)A
where
Z=ES)+e+4—-(S+ ALy

R=R Ak

3 B A . a
+ 2 Rj 7t with A =j§1Aj -L
7 is the insurance risk, i.e. the sum of the underwriting risk and of the loss
reserve development risk. R is the rate of return of the financial risk and A is

the amount of net invested assets. We introduce the following notation

L=EQ)=t+4, o) = Var(Z)
0y = E(R) —po, aﬁ = Var(R), k= Corr(Z,R)

where Corr(X,¥) denotes the correlation between the random variables X and
Y.
The following theorem expresses the overall risk return ratio as a function of the

insurance risk return ratio and of the financial risk return ratio.

Theorem

Let x # 1. The overall risk return ratio

o(A) = 2220 - E(Au) —pu _ f T %A

7B ) 2 (ogh)

is maximized for the following amount of net invesied assets

(JR)Z eZ 6R.
Ly o 2R
A__lz R 92 R
= 75
R (2! 2z R

g 9, 9R

and the corresponding risk return ratio is
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3 R z R
(;;;) + (;é‘) - A S
r=1{A)=
12
Proof
We have

E(Au) — pou = L+ 8p A, HAu) = ol + af AT+ 2Uo,op-A

it follows that
£+ SpA §(A
(A) = 2 R _ A

Ja; + (ogA)? + 2kg, op A P(A)
where §(A) is E(Au) — po-u and V(A) is 0*(Au) considered as function of A.

Putting the derivative of r with respect to A equal to zero, we obtain

6’ A)- 1/2 —§ !‘. ~1/2 )
o(A) = (A)-V(A) V(AgA) z V(a) 72 V(4) —0

S(AV(A) ~ 2 8AWV'(A) =0

bplo] + of A’ + Wo,opA) = (L + SpA)(ofA + Ko op)

2
, IR
A 6Raz - )sz 7,98 _ f!. o 9, 9R
2 2
lzaR - K&Razch 6R (f_"_) ~ IC& _‘S_R
Iy 9 %R

which proves the first statement of the theorem. In order to evaluate r(A), we

introduce the following notation
lz 5R
=z =5
z R
and we restate the expression for A
o
2z rphry
- O‘R I']:Il'z
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Thus obtaining

V(A) = o2 + o2(EREY 4 a2 D

2

V(A) = ( (zr¥r)? + (xekr)? + 2K (o Kr)(xAr2) )
(11— 19)?
2
V(A) = (1K) -1 + 1% — 2k3413)
(r;—}c'rz)2
g by rxrl
lz + é‘B. a_z’ T AT
I'(A) — l'r"xfz R 2 = 2+ I22 - 2X.'r1rz
I3 2
z J(1—x’)(r, 2 41yt 2frry) 1-k
which proves the theorem.
g.ed.
Remarks
1. From the theorem it is seen that the maximum risk return ratio r is

independent of u. As a consequence any risk return pair (¢*,p*) on the

straight line g — po = r-0 can be achieved by the company through an
appropriate choice of the amount of capital u = %%Q-, subject only to u
153
>¥ A;-L
1=1
2. From the proof of the theorem it is easily seen that for £ = + 1 we have

o
A== ?‘i and V(A) = 0 i.e. the risk if fully eliminated.
R

3. For X = 0 we have
p
7 (a) Z R
A=gt—- ad r(A)=I @+ G
(3
z

and it is seen that the assumption of asset risk leads to a considerably
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higher risk return ratio. In practice we have x ~ 0 and the statement is

thus true for all practical situations.

4.5 Example

We now turn to a more realistic example. The insurance portfolio of the
company is broken down into four subportfolios corresponding to different lines
of business and to different customer segments. The risks and returns of the

combined underwriting and loss development risks are as follows

Insurance ¢
Subportfolio Risk P L g { v
Motor X 50 75 25 05  20%
Homeowners X 20 10 32 08 25%
Industrial Fire X3 10 5 4 1 25%
General Third

Party Liability X4 10 2 4 L5 37.5%

90 110 38

L denotes the amount of loss reserves.

The premium volume is given for purely illustrative purposes. It is not used
below. The ratio between standard deviation and premium volume as well as
the ratio between loss reserves and premium are chosen in a realistic way. It is
assumed that the motor and the homeowners portfolio are both exposed to
storm and are therefore positively correlated.

Corr(X,,X5) = 0.20
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The other correlations between insurance risks stem from the influence of the
economic cycle and are treated below.

The different asset categories are as in the example of section 4.3.

Ri—pe

Asset Category Risk Ri—ga g T
Bond portfolio with medium Ry 1% % %%
term duration (RFRL)

Bond portfolio with long R, 2% 6%  33%
term duration

Equity Portfolio Ry 10% 20%  50%
Real Estate Portfolio Ry 8% 20%  40%

The correlation matrix of the different asset categories is as follow

1 0.9 0.4
1 0.4

0.4
0.4
1 0.4

Corr(Rs,R;) = :
1
During a boom phase of the economic cycle interest rates and therefore
investment income from bonds are high, but so is the inflation rate which leads
to an increased loss amount of the motor and of the general third party liability
portfolio. Therefore we assume

Corr(—X,,R1) = Corr(—X,Ry) = -0.2

Corr(—X4,R;) = Corr(—X,Ry) = 0.2
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and

Corr(Xl,X4) = 0.2
When the economy goes into recession, equities and real estate depreciate,
industrial fire results worsen — due to arson — and motor results improve —
‘because people drive less — Thus

Corr(—X,Rs) = Corr(—X,Rq) = 0.2

COII(—X:;,R:;) = Corr{(—X3,Rq) = 0.42
and

COII’(X1,X3) = 0.2

In summary we have the following correlations

—Xi —Xq —X; —X4 Rl ﬁ,z Ra Ry

X4 1 02 -0.2 0.2 —-0.2 —-0.2 —0.2 —0.2
X, 0.2 1 0 0 0 0 0 0
X —-0.2 0 1 0 0 0 0.2 0.2
X, 0.2 0 0 1 -02 -02 0 0
Thus

w=(05,08,1,15,001,0.02,0.10, 0.08)

6.25 16 ~2 2 -0.02 - 003 -01 -01
16 1024 0 0 0 0 0 0
-2 0 16 0 0 0 0.16 0.16
T = 2 ] 0 16 —0.032 0048 O g
1002 0 0 —-0.032 0.0016 0.00216 0.0032 0.0032
003 0 0 —0.048 0.00216 0.0036 0.00483 0.0048
—0.1 0 016 0 0.0032 0.0048 0.04 0.016
-1 0 016 0 0.0032 0.0048 0.016 0.04
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and it is easily seen that the unrestricted solution

X=cP

is g solution which satisfies the conditions ; £ [0,1] for i = 1,2,..,4. Choosing ¢

in such a way as to maximize the amount of business retained by the company

we obtain the following optimal solution

Insurance
Subportfolio

Motor
Homeowners
Industrial Fire

GTPL

Agset Category
medinm bond (A—L)
long bond

equities

real estate

Expected
Retention  Profit
a; aif;
1 0.5
0.54 0.43
0.44 0.44
0.81 1.21
Amount Expected
invested Profit
Aj AiR;
—£9.3 —0.69
77.9 1.56
15.9 1.59
8.5 0.68
5.72

Contribution to
overall _Variance
Cov{—a@;X ;. Au)

447
3.87
3.93
10.82

Contribution to
overal]l Variance
Cov(A;R.Au)

~—6.20

13.92
14.21
£.04
51.07

The risk return ratio is 0.80, the amount of net invested assets is 33.0 and the

amount of net loss reserves is 98.3.

By perfect asset liability matching and by investing the equity into the risk free
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asset one can fully eliminate the asset risk. The vector of expected returns and
the covariance matrix of the pure insurance risk are respectively

w=(05,08,1,15)

and
6.25 1.6 -2 2
g | 16 10.24 0 0
6= -2 0 16 ¢
2 0 0 16

and from the theorem of section 4.3 we know that the maximum risk return
ratio which can be achieved in such a situation is

r= (13 )2 =053
which is considerably lower than risk return ratio obtained above. Thus, in this
example too, it is seen that the assumption of asset risk leads to a considerable
improvement of the risk return ratio of the portfolio.
Through quota share cessions the company has reduced the expected profit of
its insurance portfolio from 3.8 to 2.58, i.e. it forgoes a substantial amount of
profit in order {0 maximize its risk return ratio. As 2 comparison, we now look
at the optimal portfolio assuming that the company cedes no quota share. In
that case, we have the following vector of expected returns

=(3.8,001,,0.02,0.1,0.08)

and covariance matrix

51.69 —0.052 -—0.078 0.06 0.06
-0.052 0.0016 0.00216 0.0032 0.0032
I, =1-0.078 0.00216 0.0036 0.0048 0.0048
0.06 0.0032 0.0048 0.04 0.016
0.06 0.0032 0.0048 0.016 0.04
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And the optimal solution excluding quota share cessions is

Expected Contribution to

alA Profit overall Variance
Insurance Portfolio 1 3.8 50.18
medium bond (A L) —104.2 -1.04 -13.75
long bond 114.0 2.28 30.10
equities 21.8 2.18 28.83
real estate 10.8 0.87 11.44
8.09 106.79

The risk return ratio is now r = 0.78 which is only slightly lower than the
optimal risk return ratio of 0.80. In practical circumstances an insurance
company may prefer the above solution with the much higher expected profit of
8.09 (vs 5.72) to the optimal solution even if this entails a slight decrease of the
risk return ratio. The optimization method we have derived is nevertheless
valuable since it provides us with a benchmark, the optimal portfolio, against

which to measure any given portfolio.

Concluding Remarks

The optimization method we have derived is a generalisation of Markowitz’s
portfolio optimisation method to finance and insurance risks. It has the
advantage to allow a symmetrical treatment of insurance and finance risks and
to allow a simultaneous optimisation of the whole portfolio. However when it
comes to practical applications of the method the following must be taken into
account:

1. Whilst one could in principle look individually at each policy in the

company’s portfolio and at each asset in the financial markets, this
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would hardly be a tractable method. One has therefore to build
insurance subportfolios (e.g. along lines of business and customer
segments), to optimize those subportfolios individually {e.g. via surplus
and excess of loss reinsurance as illustrated in section 2 and to build an
optimal global portfolio via appropriate quota share cessions. Similarly
one can view the portfolio of financial risks as positions in different funds
— bonds, equities, real estate, ... —including a short position in the bond
portfolio which replicates the liabilities of the company. The process is
therefore a fwo steps optimization process and the result will depend in
particular on the sub portfolio structure which has been chosen.

2. There are fundamental differences between financial risks and insurance
risks: the transaction costs related to financial assets are megligible
whereas acquisition costs for insurance portfolios are very high. It is
possible to take short positions in financial assets but mot in insurance
portfolios. This is reflected in the conditions that a;e[0,1] for all i. As
consequence the optimal global portiolio of a given insurance company
will ‘heavily depend on its existing gross insurance portfolio. Therefore
the optimal portfolios of different companies are in general not collinear

{as opposed to optimal asset portfolios within the frame of CAPM).
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