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1. THIS note was inspired by the paper ‘The Matching of Assets to Liabilities’ 
presented by A. J. Wise to the Institute in March 1984 (Wise. 1984b). In it he 
presented a method of looking at the problem of matching which I claimed in the 
discussion was essentially a portfolio selection approach. However, his approach 
had a number of novel features. I wish to discuss one of these, approaching it 
from the conventional portfolio selection viewpoint. I am not aware that this 
problem has been considered elsewhere in the substantial literature that exists on 
portfolio selection. Full discussion of the mathematics of the conventional 
portfolio selection problem is contained in Sharpe (1970) and Szegö (1980), and a 
general explanation is available in many modern financial text books, and in the 
Institute paper by Moore (1972). 

2. I shall use one of Wise’s examples as an illustration, and I shall also use 
certain aspects of his notation. However. it is convenient to introduce also some 
notation more usual in discussing portfolio selection. 

3. The problem I discuss is that of selecting assets to match fixed liabilities. I 
say ‘fixed’ in the sense that the liabilities are not marketable and cannot be 
disposed of. Their monetary value is. however, a random variable. The usual way 
in which liabilities are dealt with in the portfolio selection problem is to treat 
them as marketable securities, which have a known price, and include them 
simply as negative assets. Wise’s problem. and mine, assumes instead that the 
liabilities are like those of a pension fund or insurance company, which are not 
marketable and do not have a readily determined market price. 

4. The usual portfolio selection problem is that of investing a fixed amount of 
money now, in order to achieve a desired out-turn at the end of a fixed time 
horizon. Since the solution does not depend on the size of the initial amount 
available, the problem reduces to one of choosing the proportions to be invested 
in each of a variety of available assets. Wise agrees with the approach of looking 
at a fixed time horizon, in his case the final date of all the liabilities due, and I 
follow him in this. He is concerned with finding the quantities of available assets 
that best match, in some sense, the liability. I wish to look instead at the most 
desirable set of assets having regard also to their present prices. This is the essence 
of where I differ from Wise, and we both differ from the usual portfolio selection 
problem. 

Wise’s elementary example 
5. It is worth repeating Wise’s elementary example. He assumes that all cash 

flows occur at the ends of years 1, 2 and 3, and that there are no demographic 
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factors and no inflation. There are two securities available as assets, and there are 
known liabilities. Cash flows can be represented by a row vector, whose three 
elements represent flows at the ends of years 1, 2 and 3. For numerical 
convenience I shall multiply all Wise’s numbers by 100, so the fixed liabilities are 
represented by: 

(100, 100, 100), 

i.e., an amount of 100 is due at the end of each of the three years. The available 
securities are represented by: 

security 1: (10, 100, 0) 
security 2: (10, 10, 100). 

We can think of these if we like as fixed interest stocks providing interest of 10 at 
the end of each year until redemption, an amount of 90 on redemption, and 
redeemable at the end of years 2 and 3 respectively. 

6. So far everything looks fixed with certainty. Wise’s seminal contribution is 
to say: “Let us assume that fixed money amounts can be reinvested in some other 
security, whose rates of return are random variables.” If the proceeds of a fixed 
money stock are reinvested and rolled up in this way, the amount of the final 
proceeds from such an investment at the end of the fixed time horizon is a random 
variable. Wise assumes in his example that this one stochastic investment is 
comparable with putting cash on deposit, at a rate of interest which, indepen- 
dently each year, can take on the values 8% and 10% with equal probability. One 
can treat the liability payments as being met by borrowing cash at this same 
stochastic rate of interest. The accumulated debt is rolled up to the end of the 
time horizon, so that the final amount of liability is also a random variable. 

7. Wise now approaches the problem by defining his primitive elements as a 
cash flow of unity in each successive year, viz: 

(1, 0, 0), 
(0, 1, 0), 
(0, 0, 1). 

While this has algebraic advantages for his method of presentation, I think it 
conceals the fact that what you are buying are securities, rather than these 
primitive units. 

8. I prefer to work with the securities and the liabilities directly. I call the 
securities S1 and S2 and the liabilities L. The proceeds at the end of year 3 from 
security Si, assuming intermediate cash flows reinvested until the end of year 3, 
are called Ri, a random variable, with expected value Ei, and variance Vi = 
These amounts are all per unit of security purchased. The amount of the rolled- 
forward liability is also a random variable, RL, with expected value EL and 
variance VL = These amounts are in pounds and squared pounds, rather than 
per unit. Note that my Es are different from Wise’s, The three final returns may 
be correlated, and their covariances and correlation coefficients are defined: 
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Note also that my C’s are not the same as Wise’s 
9. The distribution of R1, R2 and RL can easily be derived, by enumerating all 

possible cases. For example. for the liabilities we have: 

Interest rates 
Year 3 

Proceeds by end of: 
Year 2 Probability Year 1 Year 2 Year 3 

8 8 ·25 100 208 324·64 
8 10 ·25 100 208 328·80 

10 8 ·25 100 210 326.80 
10 10 ·25 100 210 331.00 

This gives a mean liability. EL. of 327·81, and a variance VL of 5·5563, or a 
standard deviation. L. of 2·3572. 

10. Similar calculations allow us to complete the values: 

Means E1 = 120·881 E2 = 122·781 EL = 327·810 
Variances V1 = 1·241763 V2 = ·055563 VL = 5·556300 
Standard Deviations 1 = 1·1143 2 = ·2357 L = 2·3572 
Covariances C12 = ·243663 C1L = 2·436630 C2L = ·555630 
Correlation coefficients p 12 = ·9276 p1L = ·9276 p2L = 1·0 

Generalization 

11. We can generalize a little here. Assume that there are n securities, 
subscripted by i = 1, 2...., n. Call the liabilities ‘security’ n+1 = L. Denote the 
returns per unit of security Si and for the liability as the random row vector: 

Denote the expected returns by the row vector: 

Denote the variance/covariance matrix by: 

Note that Cji = Cij so the matrix is symmetric. It is also, as all covariance 
matrices are, positive semi-definite. 

Covariances and correlations 
12. In our example the covariance matrix is given by: 
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1·241763 ·243663 2·436630 
V= ·243663 ·055563 ·555630 

2·436630 ·555630 5·556300 

with corresponding correlation matrix: 

1·0 ·9276 ·9276 
·9276 1·0 1.0 
·9276 1·0 1.0 

13. It will be noted that the correlation between security 2 and the liability is 
unity. Clearly 10 units of security 2 provide cash flows (100, 100, 1000), so the 
final proceeds, 10R2, are bound to be exactly 900 higher than RL. This feature 
makes Wise’s example a special case. One cannot assume in general that any two 
securities have perfect correlation, either positive or negative. nor that any is 
perfectly correlated with the liabilities. 

Ultimate surplus 
14. If, like Wise, we purchase x1 units of S1 and x2 of security S2, then the final 

proceeds from the assets will be x1R1 + x2R2. Deducting the final amount of 
liability gives us the ultimate surplus: 

S=x1R1 + x2R2 – RL. 

The expected value of S,E, is given by: 

(14.1) 

= 120·881x1 + 122·781x2 – 327·810 

in our particular example. 
The variance of S,V, is given by: 

in our particular example. 

(14.2) 

Generalization again 
15. If we generalize again to n securities we can define the investments as xi of 

security Si, and include the liabilities with a factor of – 1 in the row vector: 

where xn + 1 = - 1. 
The expected ultimate surplus is then given by: 

and the variance by: 
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Wise’s solution 
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16. So far Wise and I have done the same. expressed differently. I have used in 
effect the method of his ‘direct solution’, described in § 3.13 of his paper. He now 
defines various optimum portfolios of assets. One can choose either an 
unconstrained optimum. where no restraints are put on the values of the xi’s, or a 
constrained solution. where all the xi’s are required to be non-negative. Wise’s 
(unqualified) match minimizes the mean square ultimate surplus, that is the 
second moment of the ultimate surplus S, given by: 

E2 + V. 

Wise calls this E2. but to avoid confusion I shall call it G. Wise also defines an 
unbiased match. which minimizes G, subject to E being zero, which gives the 
minimum variance portfolio. subject to E being zero. 

17. This is u-here I part company with Wise. As I shall explain, I see no reason 
to restrict ourselves to these solutions. In the usual portfolio selection sense, 
neither of these solutions is an ‘efficient’ solution, except in particular 
circumstances. 

Market prices 
18. At this point I have to bring in the market prices of the assets, since I shall 

argue that the rational investor must take account of the prices of securities in 
order to choose an optimal portfolio. Let the market price per unit of security Si 
be Pi. Define the row vector of prices as: 

where the final 0 shows that we do not have to buy the liability; we are landed 
with it already. 

19. Wise does not quote prices in his example. I shall choose P1=400, 
P2=100. These are hardly realistic market prices, but I need to use rather extreme 
prices in order to show the results visually. You will see what happens with 
realistic prices later. 

20. The total cost of buying x1 of security S1 and x2 of security S2 is clearly 
given by: 

P = x1P1+x2P2 (20.1) 

= 400x1 + 100x2, 

in our particular example, or in the general case by: 

Feasible portfolios 
21. I now want to explore the whole range of feasible portfolios, by allowing x1 

and x2 to take on any values, positive or negative, with no constraints. Given x1 
and x2 we can calculate the values of E, V and P, from formulae (14.1), (14.2) and 
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(20.1) above. Thus we can consider the expected ultimate surplus, the variance of 
ultimate surplus and the price we pay all as functions of x1 and x2. 

22. Since there are only two securities in our example, we can ‘solve’ for x1 and 
x2 in terms of P and E, provided that E1 P2 – E2P1 0 to give: 

(22.1) 

(22.2) 

or 

in our particular example. 
23. We can then insert these values of x1 and x2 into formula (14.2) to give: 

(23.1) 

in our particular example. 
Thus V, which was given by a quadratic form in x1 and x2, is also given by a 

quadratic form in E and P. 
24. It is convenient to denote this quadratic form in the standard notation for 

conic sections: 

where 
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P-E-V space 
25. We can now consider feasible portfolios in the P-E-V space. For each 

point in the P-E plane there is only one possible combination of x1 and x2, given 
by formulae (22.1) and (22.2). which gives us only one value of V, given by 
formula (23.1). The locus of feasible portfolios is therefore a surface in the 
P-E-V space, in fact a quadric surface. known as an elliptic paraboloid, which is 
a sort of oval bowl. If we fix the value of P. we see that the cross-section of the 
surface is a parabola in the E-V plane. Similarly, if we fix the value of E the cross- 
section of the surface is a parabola in the P-V plane. If we fix the value of V, the 
cross-section in the P-E plane is either an ellipse, or has no real points at all if we 
have chosen a value of V smaller than the minimum possible value. Since V is a 
variance it is clearly impossible for it to be negative. But in certain special cases, 
of which our example is one. it is possible for V to be zero. A picture of this 
surface for our particular example is shown in Figure 1, and cross-sections for 
planes chosen arbitrarily of E = 50. P = 600 and V = 1.0 are given in Figures 2, 3 
and 4. The bowl is a very elongated one. more suitable for cooking fish than plum 
pudding. 

26. It is sometimes convenient to use the standard deviation of ultimate 
surplus, σ , instead of the variance. V. The value of σ 2= V is given by formula 
(23.1). If we plot the locus of feasible portfolios in the P-E- σ space, we get a 
different quadric surface, an elliptic hyperboloid, which actually consists of two 
parts, mirror images of each other in the plane σ=0, though we are only 
interested in the one with positive values of σ . For such a surface, cross-sections 
in the P or E planes are hyperbolas, and cross sections in the a plane are again 
ellipses. If, as in our example, the minimum value of V is zero, then the surface 
becomes a double elliptic cone, with the points of the two halves of the cone 
touching at the unique point where V = σ 2= 0. There are also other special cases. 

Efficient portfolios 
27. We have now found what the range of all possible portfolios looks like. 

Which of them are sensible ones to consider? I shall now define, similarly to the 
usual portfolio selection definition, an ‘efficient’ portfolio as a feasible portfolio 
which is not ‘dominated’ by any other. A portfolio is dominated by another if: 

for the same P and E, the other has a lower V; 
for the same P and V, the other has a higher E; 
for the same E and V, the other has a lower P; 
for the same P, the other has a higher E and lower V; 
for the same E, the other has a lower P and lower V; 
for the same V, the other has a lower P and a higher E; 
the other has a lower P and higher E and lower V. 
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Thus I assume that investors are in favour of a high expected surplus, E, a low 
variance of surplus, V, and a low immediate price, P. Investors whose objectives 
do not coincide with these are not considered here. Consideration of Figure 2, in 
which expected surplus E is held constant, shows that any portfolio on the right 
hand arm of the parabola is dominated in this sense by a portfolio at the same 
level as it on the left hand arm; the expected surplus is the same, the variance is the 
same and the price is lower for the portfolio on the left hand arm. Similarly in 
Figure 3, portfolios on the left hand arm are dominated by portfolios on the right 
hand arm, which have a higher E for the same P and V. In Figure 4, all portfolios 
have the same V, but portfolios in the right hand part of the ellipse are dominated 
by those in the left hand part, which give the same E with a lower P; and all 
portfolios in the lower part of the ellipse are dominated by those in the upper 
part, which have a higher E for the same P. Thus the only portfolios not 
dominated by another are those in the ‘north-western’ sector, which because the 
ellipse is obliquely placed is a large ‘quarter’ of it. 

The minimum variance portfolio 
28. Figure 5 shows the projection of the elliptic paraboloid onto the P–E 

plane, with lines of constant V, the ‘contour lines’, shown as concentric ellipses. 
Each ellipse represents a lower variance than those outside it, and the lowest 
possible variance is given by the centre of the ellipses, which represents the point 
where the ‘nose’ of the elliptic paraboloid approaches most nearly (in this case 
touches) the plane V=0. This point is given by (PC, EC, VC) where 

At this point x1, x2 are equal to xc1, xc2, where 



A Comment on ‘The Matching of Assets to Liabilities’ 241 



242 Portfolio Selection in the Presence of Fixed Liabilities 

In our example, the values are: 
Pc = 1000 
Ec = 900 
Vc = 0 
x = 0 
x = 10 

It is worth noting that the minimum possible variance depends only on VL and on 
the various correlation coefficients; that the values of x1 and x2 at this point 
introduce further only σ1 and σ2 respectively; that Pc depends additionally only 
on the prices and EC only on the expected values. 

Minimum variance as a function of price 
29. We can also consider the portfolios that give the minimum variance for a 

given price, regardless of expected surplus. One way of deriving these is to 
consider the projection of the elliptic paraboloid onto the plane E=0. The 
outline or profile of the projection of the surface is itself a parabola, giving V as a 
quadratic in P. It can be calculated as: 

(29.1) 

or V = ·0000053037 P2 – ·0106073501 P + 5·3036750484, in our particular exam- 
ple. This profile is shown in Figure 6, in which the minimum variance parabola is 
seen to be the outer envelope of all possible cross-sections of the surface for 
various values of E, a few of which are also shown. 

30. The minimum variance portfolio for any value of P can readily be 
calculated from this expression, and is just what we have found above as 
(Pc, Ec, Vc). Each of these portfolios represented by the above parabola lie along 
the line joining the westernmost and easternmost points of the ellipses, viz: 

and the quantities of each security in these portfolios can be derived as 
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Minimum variance as a function of expected surplus 
31. Similarly the portfolios that give the minimum variance for a given 

expected surplus, regardless of price, are given by the projection of the profile of 
the surface onto the plane P = 0, or: 

or V=·0000007825 E2–·0014085831 E + ·6338623827, in our particular exam- 
ple. This profile is shown in Figure 7. It may be noted that this profile does not 
depend at all on the values of P1 and P2, just as the profile in paragraph 29 above 
does not depend on the values of E1, E2 and EL. The minimum values of V for the 
two profiles are, however, equal, and as noted above do not depend on any of the 
prices or the expected values. 

32. The portfolios represented by this profile lie along the line joining the 
southernmost and northernmost points of the ellipses, viz: 

Region of efficient portfolios 
33. The elliptic paraboloid represents all feasible portfolios. The region of 

efficient portfolios is restricted to the ‘north-western’ quadrant of each ellipse, or 
the region to the north-west of the straight lines connecting the centre of the 
ellipses with the westernmost and the northernmost points of each ellipse, viz: 

and 

or 

E = 1·664654P – 764·6538 

and 

E = 4·071393P – 3171·3930, 

in our example. These are the lines of minimum variance regardless of E and 
minimum variance regardless of P respectively, just discussed above. They meet 
at the centre of the ellipses, and are shown in Figure 8, along with a few of the 
ellipses. 

34. The region of the efficient portfolios in the P–E–V space is therefore that 
quadrant of the elliptic paraboloid sliced off by the planes 
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bE + hP + f = 0 

hE + aP + g = 0, 
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and lying to the ‘north-west’ of these planes, i.e. in the direction of higher E, 
lower P. 

Wise’s unbiased match 
35. Now consider Wise’s unbiased match. that is, the portfolio that minimizes 

G = E2 + V, subject to E = 0, i.e. minimizes V subject to E = 0. Consider the plane 
E= 0. This cuts the quadric surface in a parabola. The minimum value of V in this 
parabola is found at the point where the line E = 0 touches the contour line with 
lowest V (in the projection onto the P–E plane). among all those contour lines 
that it cuts. This must be at the ‘southernmost’ or ‘northernmost’ tip of the 
corresponding ellipse. In this example it is at the ‘southernmost’ tip, since the 
centre of the concentric ellipses has positive E (Ec = 900) and so is north of the 
line E = 0. The portfolio represented by this point cannot be an efficient one, since 
it is dominated by all the portfolios that, for the same V, have both higher E and 
lower P, and by the one portfolio that, for the same V, has higher E and the same 
P. This is shown in Figure 9. 

36. Note that the ‘inefficiency’ of Wise’s unbiased match does not depend (in 
general) on the prices of the securities, since the expected return for the minimum 
variance portfolio (EC) does not depend on the values of P1 and P2. Only in a 
further special case discussed in § 67 below is Wise’s unbiased match an efficient 
portfolio. 

37. A similar argument shows that Wise’s (unqualified) match is also not an 
efficient portfolio. This is the portfolio with minimum G = E2 + V. Suppose that it 
is found at some value of E = EG. Then the argument of § 35 can be repeated, 
replacing the line E = 0 by E = EG. In general this line touches a contour ellipse at 
its ‘southernmost’ point (in Wise’s example), which again is not an efficient 
portfolio. 

38. In a different example the unbiased match and the unqualified match may 
touch the appropriate contour ellipses at their ‘northernmost’ points. This will 
occur if the expected surplus of the minimum variance portfolio, EC, is negative. 
In this case Wise’s matches are efficient portfolios, but not the only ones, and not 
necessarily the ones that the investor may prefer. 

Investors’ preferences 
39. How does the investor choose among all the possible efficient portfolios? 

Consider the series of parallel planes E– P–µV= k, with , µ 0, for various 
values of k. The perpendicular to these planes runs in the desirable direction, viz 
higher E, lower P, lower V. If we choose that plane that gives us the highest k, but 
still contains a feasible portfolio, we shall find that that plane contains just one 
feasible (and efficient) portfolio, and that it just touches the quadric surface. One 
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can vizualize turning the bowl upside down and approaching it with a plane 
surface held at a fixed angle. If it touches smoothly, the slopes of the surface at 
this point are the same as the slopes of the plane, and the various partial 
derivatives represent the marginal trade-offs between the various desirable or 
undesirable features. 

40. For example, keeping V constant, we have 

Thus, at the tangential point, the marginal extra expected surplus per unit of 
price is equal to , or the marginal rate of return is – 1. The investor could thus 
choose a fixed V and travel round the appropriate ellipse from its ‘westernmost’ 
point at which = , so that the marginal expected return per unit price is 
infinite, moving towards its ‘northernmost’ point. at which = 0, and stopping 
when the slope Ε/ P is such as to suit his particular preference for additional 
expected return, which he may base on the expected return obtainable elsewhere 
in the market for investments with a similar variance. 

41. Whichever fixed value of V he has chosen. he will find that E/ P = at a 
point which lies on a straight line from the centre of the ellipses and has slope 

At his (temporarily) chosen point. he will find that Ε/ V has some particular 
value. He can then travel outwards or inwards along the straight line (thus 
keeping E/ P constant ). until E/ V is equal to his chosen µ. It may be better to 
express this as V/ E. and equate it to 1/µ. This gives us the marginal trade-off 
between variance and expected surplus. Alternatively we can consider 

and carry out the same exercise. This gives the marginal trade-off between 
variance and price. i.e. the amount the investor is willing to marginally increase 
his price by in order to reduce the variance of his ultimate surplus. 

42. Lines of constant Ε/ P = , as noted above, radiate out from the centre of 
the ellipses and have equation: 

P(a + h ) + E(h + b ) + (g + f ) = 0. 

Lines of constant 

lie parallel to the line joining the ‘western’ and ‘eastern’ points of the ellipse 
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(along which V/ E=0), and are given by 

hP + bE + f = 1/2µ 

If the values of and µ are given these can readily be solved, giving 

and 

43. For example, in our particular case, if the investor were to choose = 1·2, 
µ = 4,800, so that – /µ = – ·00025, indicating that he was prepared to pay, at the 
margin, an extra £1 of price for an extra £1·2 of expected surplus, and an extra £1 
of price for a reduction of £2·00025 of variance, his chosen investment position 
would be such that 

P= 1,009·1 
E= 993·9 
V= ·008638 

x1 = – ·2233 
x2 = 10·9844. 

Alternatively, if he chose = 2·0, µ = 2·000. so that – µ = –·001, his chosen 
investment position would be such that 

P= 984·2 
E = 1,062·5 
V= ·048538 

x1 = –·4914 
x2 = 11·8076. 

These points are marked as points L and M respectively in Figure 10. 

Investors’ preferences in P – E – space 
44. An alternative is to consider the surface in the P–E– space, and the 

parallel planes E– P–v = k. We can then consider the marginal trade-off 
between price, expected return and standard deviation (rather than variance), 
and choose a portfolio to maximize k above. In general we may be able to choose 
a portfolio to give us values so that 

However, in this particular case the surface in the P–E– plane is an elliptical 
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cone, which makes it rather a special case. We can still choose a radial line so that 
just as in the previous case. But if we imagine a vertical cone, and try 

to approach it with a moveable plane held at a fixed angle, we can see that, if the 
angle is shallow, we first touch the cone at the vertex; if the angle is increased to 
exactly a certain value, we shall touch all the way along one side of the cone; and 
above that value, we shall not touch it at all except at infinity. 

45. Thus, choice of determines the radial line from the centre of the ellipses 
along which we seek an optimum. If v is above a certain critical value (which 
depends on so that the investor places a high value on avoiding risk, his 
optimum will be at the vertex of the cone, i.e. with = 0. If v equals this critical 
value, he will be indifferent between all points on the radial line determined by 
If v is lower than this critical value, so that he places a low value on avoiding risk, 
he will wish to go infinitely far along the radial line, thus accepting an infinite 
standard deviation, and also getting an infinite expected surplus. Whether he gets 
this at a positively or a negatively infinite price depends on the direction of the 
radial line. 

46. In the general case, the minimum standard deviation is not zero, and the 
surface in the P-E-a space is a proper elliptic hyperboloid. In this case, the ‘nose’ 
of the surface is rounded. not pointed, and provided v is above a certain value 
(which still depends on a ‘smooth’ contact will be made. If the value of v equals 
the critical value, the planes are parallel to one of the asymptotes of 
the hyperboloid, and the optimum portfolio is again infinitely far in that 
direction, as is the case when v is less than this critical value. 

Region of positive portfolios 
47. It will be noted that the solutions for the specimen values of and in the 

numerical example above produced negative values of x1, implying that the 
investor had to purchase a negative quantity of security 1, or ‘sell it short’. For 
some investment intermediaries this may be a practicable possibility. An 
insurance company. for example, may issue fixed interest stock and could 
presumably obtain about as good a market price for such an issue as it would 
have to pay to obtain similar fixed interest stock of a similar security. However, 
insurance companies seldom in fact do this, and pension funds may not have 
powers to do it (though they could insure the whole scheme with an insurance 
company that did have such powers). Any investment intermediary is therefore 
concerned also with considering the portfolios that are feasible with non- 
negative holdings of the available securities, one of which Wise calls the ‘positive 
match’. Generalizing, I shall call all feasible portfolios with non-negative xi's 
positive feasible portfolios, and the efficient portfolios among these the set of 
positive efficient portfolios. 

48. The region of positive feasible portfolios is, in our present case, subject to 
the constraints 

and 
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and is bounded by the portfolios in which 

and 

If x1 = 0, then 

X1 = 0, 

x2 = 0, respectively. 

and the line of such portfolios in the P-E plane is given by 

Similarly, if x2=0. the line of such portfolios is given by 

These two lines meet at (where and the positive 
feasible region is the ‘wedge’ lying to the ‘northeast’ of this point, between these 
lines. 

49. This region is marked on Figure 11. It will be seen that in this case the 
minimum variance portfolio is a positive feasible portfolio (at which X1 = 0, 
x2 = 10); that south-west of this point the positive feasible region includes part of 
the original (unconstrained) efficient region; and that north-east of the minimum 
variance point the positive feasible region is wholly contained within the original 
region of inefficient portfolios. Remembering the definition of an efficient 
portfolio. we see that the region of positive efficient portfolios contains that part 
of the original efficient region just mentioned, bounded by the planes along which 
x1 = 0 (the upper line in Figure 11) and x2 = 0 (the lower line in Figure 11), as far 
as the minimum variance portfolio, together with all portfolios lying along that 
plane (line) to the north-east of the centre. The investor still has a considerable 
choice of portfolios. 

50. In this particular case. the constraint lines included the minimum variance 
portfolio (just) and included a part of the original efficient region. In other 
examples, these lines might lie wholly inside or wholly outside the original 
efficient region. 

Optimization in the positive region 
51. An investor who wishes to maximize subject to the constraints 

we have introduced, will need to discover where the parallel planes 
just touch the positive efficient region. For certain values of and the planes 
will make a smooth contact in the region that is part of the unconstrained 
efficient region; for this investor, the constraints will not be binding. Otherwise 
the planes will make a ‘sharp’ contact somewhere along the boundary of the 
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positive efficient region, either along the line where x1 = 0 or where x2= 0. We 
consider the former case from first principles. 

52. If x1 = 0, we have 

F is maximized if: 

At this point 

and 

53. The investors in the numerical example in paragraph 43 find themselves 
constrained by the non-negativity constraints. Their optimum positive portfolios 
are found, for at: 

and, for at: 

These points are marked as L and A4 in Figure 11. It may be noted that the first 
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investor chooses a point a little to the north-east of the minimum variance 
portfolio but very close to it, the second a little further away to the south-west. 

The solvency region 
54. A further approach to choosing an optimal portfolio for a particular 

investor is the use of what I shall call the ‘ solvency region’. Assume that the 
asset and liability returns and hence the ultimate surplus are all normally 
distributed, with the mean and variance that we have already assumed. This is 
not true in the particular example I have been using, which is discussed below, 
but it is not difficult to see how we could generalize the example so that, instead of 
two rates of interest each year with equal probabilities, we had an appropriate 
normal distribution of rates of interest. Now assume that the investor wishes to 
have a particular (large) probability that his ultimate surplus is positive, so that 
he is able to meet his ultimate liability, or is ‘solvent’. Correspondingly he wishes 
a particular (small) probability, the complement of the first, that his ultimate 
surplus is negative or he is ‘insolvent’. 

55. He can ensure this by choosing assets so that the probability that the 
ultimate surplus is negative is less than or equal to some small probability or 
that where where Z is a unit normal 
variate. For example, if he wishes a 1/100 probability of insolvency, or a 99/100 
probability of solvency, he will wish to ensure that because 

for a unit normal variate. The region (if any) within which 
I shall call the solvency region. Its shape and size (and even 

existence) depend on the value of k. 
56. Consider the plane in the P-E-a space. If k = 0, this is the plane 

E=0. As it becomes the plane The plane cuts the elliptic 
hyperboloid, the surface giving the region of feasible portfolios, in a conic 
section. The projection of this conic section onto the plane is also a conic 
section, in general of the same class, which outlines the solvency region on the 
P—E plane. Consider also the projection of the elliptic hyperboloid onto the plane 
P = 0. This is bounded by a hyperbola (or by two straight lines). The projection of 
the plane is the line We can start by considering these 
projections in the plane. 

57. If k = 0, the condition becomes the plane E = 0, which cuts the surface in a 
hyperbola; but the projection of this surface onto the P-E plane is just the line 
E= 0. The solvency region with k = 0 is just the region ‘north’ of the line E= 0. 
As k increases, the line tilts towards the E-axis, continuing to cut the 
surface in a hyperbola, whose projection onto the P-E plane is also a hyperbola. 
Consider the case where the vertex of the hyperboloid is ‘north’ of the line E = 0, 
i.e. EC> 0. At some value of k, the line is parallel to the asymptote of the 
hyperbola, and the plane intersects the hyperboloid in a parabola. For higher 
values of k, the intersection is an ellipse, whose projection is also an ellipse. As k 
increases the plane will first touch the surface (if it is a proper 
hyperboloid) and then miss it altogether. In our particular example, where the 
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hyperboloid is a cone with vertex on the plane , the ellipse tends 
towards a single point. 

58. A general example is shown in Figure 12, and the specific example in 
Figures 13 and 14, which show the lines for several values of k and the 
projections of the solvency region onto the P-E plane for k = 10 (a hyperbola) 
and k=2000 (an ellipse). In general, this projection is given by substituting 

= E/k in the general equation of the ellipse, giving: 

or 

It can be seen that the new discriminant of this conic section, its ‘ab - h2', is given 

by 

If k is infinite, this is unchanged from the original ‘ab - h2', but as k reduces, the 
value of the discriminant also reduces. It equals zero, making the boundary of the 

- solvency region a parabola, when 

Below this value of k the discriminant is negative, making the boundary of the 
solvency region a hyperbola. As already noted, when k = 0, the boundary of 

the solvency region is just the line E= 0. In our particular example, this critical 
value of k is 1,130.4, an extraordinarily high value for any investor to wish to 
choose. Any reasonable solvency region in this case would therefore be 
bounded by a hyperbola. 

59. Consideration of the solvency region does not provide us with one 
optimum portfolio, but it does put a constraint on the portfolios acceptable to 
the investor. He may then choose the portfolio which maximizes, say, 
subject to the constraint In the general case, of course, he may not be 
able to satisfy some particular constraint at all, if k is too big, and he may find 
that any solvency region does not intersect with the region of positive 
portfolios. If he cannot meet his desired solvency requirement he may then 
choose, for example, the portfolio which maximises regardless of price. 

The absolute solvency region 
60. In our particular example, there are in fact only four possible outcomes, 
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each one of which has an equal probability of occurring. It is easy to see that the 
ultimate surplus is certainly positive, if it is positive in each of the possible 
outcomes. This will be the case if all four of the following conditions are met (see 
Wise, 3.14): 

119·66x1 + 122·46x2 324.64 

121·88x1 + 122·88x2 328·80 

119·88x1 + 122·68x2 326·80 

122·10x1 + 123·10x2 331·00. 

Substituting for x1 and x2 according to formulae (22.1) and (22.2) and 
substituting numerical values we get: 

E ·003001 P–3·17 

E –·002995P P+0·99 

E ·002985 P– 1·01 

E –·003001 P+3·19. 

61. The portfolios which satisfy all of these inequalities can be represented 
either in the x1–x2 plane or in the P-E plane as lying in the region formed by the 
intersection of the half-planes lying to the appropriate side of the corresponding 
equalities. In this case, the portfolios lie to the north of the boundary shown in 
Figure 15. We can call such a region the region of ‘absolute solvency’, and if it 
exists it is of significance to the investor. He may, for example, choose the positive 
portfolio that provides him with absolute solvency for the minimum price, which 
in this case is found at the intersection of the line x1 = 0 with the boundary of the 
region of absolute solvency. This portfolio gives: 

P=268·87 
E= 2·33 
V= 2·9700 

x1= 0 
x2 = 2·68887 

However, neither Wise nor I wish to limit ourselves to such cases, and have 
chosen in general to work with expected values and variances, without 
considering the distributions in further detail. 

Price as a constraint 
62. Yet a further constraint that may affect any particular investor is the 

current amount of funds available, or the price, P, he can pay for securities to 
meet the liability. His feasible region is then bounded by the plane 

where PMAX is the maximum price he is able to pay. He may further be 
constrained by a minimum price, if, for example, there is already a pension fund 
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from which he may not withdraw funds, though he may be able to add a 
contribution, so that 

63. Such constraints bound the region which the investor may consider by the 
two planes P= PMIN and P= PMAX If the investor, following one or other of the 
criteria discussed above, finds that his optimum portfolio satisfies these bounds, 
then the price is not, in fact, constraining him. If, however, he finds that his 
optimum portfolio (so far) breaks these bounds, then he must search for the 
optimum along one or other boundary. This reduces almost to the conventional 
portfolio selection problem, where there is simply a trade-off between E and V or 
E and , i.e. the investors maximize E – V or E – V , for the fixed price P = PMAX 
or P = PMIN as appropriate. 

The investors’ optimum portfolio 
64. The various considerations that have been put forward above give ways in 

which a rational investor might find his way to an optimum portfolio that suits 
him. They do not prescribe any particular method, or any particular portfolio. 
The particular portfolio that is optimum for the investor depends on his choice of 
criterion, and on the values of ,µ or ,v or k, that he considers appropriate. The 
optimum portfolio also depends on whether or not he is bound by the positive 
constraints xi 0, and on whether or not he is bound by any price constraints. 
However, the rationale discussed above should eliminate any portfolio that is not 
efficient (within the relevant constraints) in favour of efficient portfolios, for all 
investors who are willing to measure the distribution of ultimate surplus by the 
mean and variance alone, and to ignore higher moments of the distribution (in so 
far as these are not determined by the mean and variance anyway). 

A special case 
65. In §22 above we saw that we could solve the equations 

for x1 and x2 in terms of E and P, provided that E1P2–E2P1#0. I now wish to 
consider this special case. 

E1P2 – E2P1 = 0 gives 

that is, the returns per unit price on the two assets are equal. We find that, 
whatever the values of x1 and x2, 

E=rP–EL, 
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so that the expected surplus is determined only by the total price paid, and not by 
the proportions of the two securities that make up this price. The variance, 
however, does depend on the mixture of the two assets within the price. 

66. If we put x2 = (P– x1 P1)/P2, and substitute in equation (14.2) for V, we get 
V in terms of a quadratic in x for fixed P: 

By differentiating with respect to x1, setting x1, = 0, and solving for x1 we get 
the value of x1 that gives us the minimum variance portfolio for that fixed P: 

From this we get the corresponding value of x2: 

and the minimum possible value of V for fixed P as 

(66.1) 

This gives the minimum possible values of V as a quadratic in P, a parabola. 
67. As E2P1 – E1P2 approaches 0, the elliptic paraboloid giving the surface of 

feasible portfolios in the P-E-V space, which is a sort of oval bowl shape, 
becomes thinner and narrower, eventually folding up flat. When E2P1 – E1P2 = 0 
the region of feasible portfolios is restricted to the plane E= rP – EL, and to an 
area of that plane above the parabola in V and P defined by equation (66.1) 
above. This parabola gives the minimum value of V for any P (and E) and hence 
is the locus of efficient portfolios. If we compare any two points on this parabola, 
we cannot say that either dominates the other, so all are efficient portfolios. 

68. Strictly the parabola defined by equation (66.1) lies in the P-V plane, and 
is the projection onto the plane E = 0 of the locus of efficient portfolios described 
above. It is the same equation as that of the projection, in the general case, of the 
profile of the elliptic paraboloid discussed in §29, and defined by equation (29.1) 
above. If we substitute for P, P1 and P2 in terms of E, E1 and E2 we can obtain an 
expression for V in terms of E, yet another parabola, which gives the projection 
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onto the plane P= 0, both of the profile of the elliptic hyperboloid in the general 
case, discussed in §31 above, and of the efficient parabola in this special case. 

69. In this case, the ellipses in the P-E plane collapse into line segments, of 
which only the end points are efficient portfolios. In this special case, Wise’s 
(unconstrained) match and his unbiased match are efficient portfolios, though 
neither is necessarily optimum for any particular investor. The investor can still 
consider a k -solvency region, which may be a section of the set of efficient 
portfolios, limited necessarily to E above some value, and either limited to E 
below some other value, or unlimited upwards, depending on the value of k. We 
can also consider maximizing the functions E – P – µV or E – P – v , but the 
contact of the planes with the locus of efficient portfolios will fix µ (or v) in terms 
of , so the investor has only one ‘degree of freedom’ in this case. If he is 
constrained only to one fixed price, then he has only one efficient portfolio, that 
given in §66 above. 

Risk-free securities and portfolios 
70. In our example, the portfolio consisting of 10 units of security 2 as an 

asset, after deducting the fixed liability, gives an ultimate surplus, at our time 
horizon of three years, of exactly 900, with total certainty: V=0. Wise, in his 
written reply to the discussion, correctly points out that it would be ridiculous to 
cover a liability that, by normal actuarial discounting methods of valuation, 
cannot be more than 300 in present value, by such ‘overkill’. But, just as many 
investment intermediaries may hold negative quantities of assets by creating 
corresponding liabilities, so such an intermediary may also create new securities 
and sell them on the market. 

71. Thus, if the investor creates a third security, represented by: 

security 3: (0, 0, 100) 

then the portfolio that consists of 10 units of security 2 minus 9 units of security 3 
will have the representation: 

(100, 100, 100), 

and will exactly match the specified liability, both in the sense that the asset- 
income in each year will exactly meet the liability-outgo, and in the sense that the 
ultimate surplus will have zero mean and zero variance. If the market price of 
security 3 is P3. then the price of this exactly matching portfolio will be: 

10P2–9P3, 

and this gives an exact present market value for the liability. 
72. At the time horizon, one unit of security 3 provides £100 with certainty: 

E3 = 100 and V3 = 0. We can describe security 3 as a risk-free security in respect of 
this time-horizon. We could also describe it as a fixed interest zero-coupon bond, 
or a ‘bullet bond’ in U.S. terminology, but the concept of a risk-free security 
extends beyond fixed interest bonds to any security that has zero variance, 
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measured either in fixed money or in index-linked real terms or in any other 
terms. Just as the new security 3 is a risk-free security, so the portfolio consisting 
of 10 units of security 2 minus the liability is a risk-free portfolio, and so would 
any portfolio that produced zero variance at the specified time-horizon. If the 
corresponding risk-free security has a known market value, so likewise does the 
risk-free portfolio, and this may determine the market price of the liabilities even 
though they are unmarketable by themselves. 

Absolute and risk-free matching 
73. There is no disagreement between Wise and me about the concept of 

absolute matching. However, I think it may be useful to extend the term ‘absolute 
match’ for a given liability to cover any feasible portfolio that gives zero expected 
surplus and zero variance of surplus, whatever happens on the way there. 
Similarly. the ‘risk-free match’ can be defined as any feasible portfolio that gives 
zero variance of surplus, even if the expected surplus is non-zero. In both cases, 
the set of feasible portfolios may be subject to whatever constraints are imposed 
by the circumstances. 

Realistic prices 
74. In §19 above I chose market prices of P1 = 400, P2= 100, and observed that 

these were hardly realistic. More reasonable prices would be, for example, 
P1 =93, P2 = 95. At these prices the redemption yields are 9·21% and 8·92%, 
respectively, so that security 1 is now a little ‘cheap’ and security 2 a little ‘dear’. 
However, the expected returns per unit of price are now almost equal, 
respectively E1/P1 = 1·2998 and E2/P2= 1·2924, so the surface of feasible 
portfolios has nearly ‘folded up flat’ and the ellipses of constant V in the P–E 
plane are extremely thin. The region of positive portfolios in Figure 16 is almost 
indistinguishable from a straight line, and each ellipse has a major axis which is 
3,083 times the length of the minor axis, so in the Figure they are almost 
indistinguishable from line segments. Wise’s unbiased match is at the ‘southern’ 
extremity of such an ellipse, but that is practically indistinguishable from the 
‘western’ extremity, which is truly an efficient portfolio. Similarly, the region of 
positive portfolios is an extremely thin wedge, indistinguishable from a straight 
line in the Figure. It was for these reasons that I started with unrealistic prices, to 
show the principles more distinctly. 

Generalization to n securities 
75. I shall now turn to the general case in which there may be many securities. I 

shall first consider the unconstrained case, with n securities and one liability 
(subscripted n + 1). From §§11, 15, 19 and 20 above we see that, to find the 
optimum portfolio for a given E= E* and P= P*, we need to minimize: 

V=x'Vx 
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subject to 
E= x'e = e'x = E* 

P=x'p=p'x=P* 

and xn+ 1 = xL = – 1, which I shall represent by 

where q' = (0, 0, . . ., 0, – 1). 
76. We can find the value of x that minimises V by setting up the Lagrangian 

(76.1) 

differentiating L with respect to each of the xi (i= 1, . . ., n + 1) and also g1, g2 and 
g3, setting each of the partial derivatives equal to zero, and solving for x, g1, g2 
and g3, viz: 

(76.2) 

(76.3) 

(76.4) 

(76.5) 

Provided V is not singular, so that V exists, we can postmultiply (76.2) by V 
and arrange to get: 

Postmultiplying (76.6) by e and substituting in (76.3) we get: 

Postmultiplying (76.6) by p and substituting in (76.4) we get: 

Postmultiplying (76.6) by q and substituting in (76.5) we get: 

77. Equations (76.7) (76.8) and (76.9) are of the form: 

(76.6) 

(76.7) 

(76.8) 

(76.9) 
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where we have dropped the * on E and P, to denote general values of E and P, and 
we have put 

Provided that the determinant 

we get the solution 

whence 

and V=x'Vx 

which gives V as a quadratic function of P and E. (The above development 
follows that given by SzegÖ (1980), Chapter 2, for the ordinary portfolio selection 
case). 

78. Thus in the general case the boundary of the region of feasible portfolios 
that gives the lowest V for any chosen P and E is again a quadric surface, an 
elliptic paraboloid. In the general case it is possible to reach a feasible portfolio 
with any higher value of V, which was not possible in the earlier example with 
only two securities, but any such feasible portfolio is dominated by the portfolio 
with the same P and E on the surface itself. Not all the boundary portfolios are 
efficient. Just as in the earlier example, only those that lie in the ‘northwest 
quadrant’ of this surface are efficient. The general features of the region of 
efficient portfolios, the choice of optimal portfolio for an investor, the use of the 
k -solvency region, and the constraints on price follow just as in the earlier 
discussion. 
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Constraints 
79. Just as before, we may wish to discover the positive region and the region 

of positive efficient portfolios, subject to the constraints xi 0, for i= 1, . . ., n 
(necessarily xn+1 = – 1). This takes us into a more complicated problem of 
quadratic programming which I cannot discuss here. Wise (1984a) gives an 
algorithm for solving his particular case. I do not know whether it will also solve 
my more general one. The general outline of the solution is, however, apparent, 
though this development starts from the other end from Wise’s. Consider first the 
surface of unconstrained minimum variance portfolios. Assume that some part 
of this surface contains portfolios that satisfy the positive constraints. This part 
will be bounded along some edge by portfolios in which some xi, say xn, = 0. We 
now omit security n, and discover the surface of minimum variance portfolios for 
all other securities. Inside the region already discovered as positive, this will 
necessarily have higher variances than those portfolios including security n; 
along the edge where xn equalled 0 they will coincide; outside the region already 
discovered this new surface will contain some portfolios with xi 0, i= 1, . . ., 
n – 1. But as we go further away we shall find another edge where another xi, say 
xn– 1, = 0. We omit security n – 1 and continue. If we are unlucky to start with, so 
that no part of the region of unconstrained portfolios meets the positive 
constraints, we need to omit each security in turn to find some region that 
contains positive portfolios; or omit each pair of securities in turn, etc. 
Eventually the positive minimum variance portfolio, if any, for every combina- 
tion of P and E can be discovered. Computer methods for solving such quadratic 
programming problems are well developed. 

Conclusion 
80. This note is long enough already without my attempting to tackle any 

more of Wise’s examples. I hope the detailed consideration I have given to his one 
elementary example will show the line of future development, particularly in the 
more general cases. As already noted, full discussion of the mathematics of the 
portfolio selection problem with fixed price and with no liabilities is contained in 
Sharpe (1970) and in SzegÖ (1980) and what is needed is more generalization of 
their basic approaches. Although our elementary example uses fixed money 
liabilities and fixed interest securities, Wise moves on to examples where 
liabilities and securities are dependent on other random variables, such as price 
inflation or earnings increases. My own development is also applicable to these, 
indeed particularly so. The fixed interest case becomes a special case, with the 
overall minimum V=0 (and V singular), whenever the number of available 
independent securities equals the number of independent years, so that ‘overkill’ 
is always possible. A possible objection to my approach is that when the prices of 
assets change so also does the whole structure; but unless the prices change 
greatly, the portfolio that was previously efficient is not likely to be far removed 
from efficiency. This problem requires empirical investigation. 
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APPENDIX 

A1. Older actuaries may not remember, and younger ones may never have 
learnt, much about analytical geometry. This appendix therefore states, without 
proof, a few relevant facts about the conic sections used in the note. 

A2. The quadratic equation: 

represents the general conic section in the x–y plane. The three main forms this 
may take are the ellipse, the hyperbola and the parabola. There are also a number 
of special cases. 

A3. The main special case is when F(x,y) factorizes into two factors linear in x 
and y. This is so when the determinant 

In this case, the equation represents two straight lines in the x-y plane; these, 
however, may be not real lines, but imaginary ones, depending on the values of 
the coefficients, a, b, c, etc. 

A4. If the determinant is not zero, the form the conic section takes depends on 
the sign of the discriminant 

If the discriminant is positive the equation represents an ellipse, if negative a 
hyperbola, and if zero is parabola. 

AS. The archetypal ellipse is given by 

which represents an ellipse with its centre at the origin, its axes along the x and y 
axes, and with half-axes of length p and q. If p = q we get 

the equation of a circle of radius p. 
A6. The archetypal hyperbola is given by 

which represents a hyperbola with its centre at the origin, asymptotes given by 
the lines 
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and with the ‘nose’ or vertex of each arm at a distance p from the centre. 
A7. The archetypal parabola is given by the familiar 

which has its vertex at the origin, and its axis along the positive y axis. 
Alternatively: 

has its vertex at the origin and its axis along the positive x axis. 
A8. The general form of the ellipse can be transformed into the archetypal 

form first by changing the coordinate origin to the centre of the ellipse, then by 
rotating the coordinate axes. The centre of the general ellipse is given by: 

and the equation of the ellipse relative to that centre is given by 

where c* = F(xc,yc). 

A9. If the angle that the axis of the ellipse that lies in the first quadrant makes 
with the x axis is designated we can derive from 

If h = 0, the ellipse is already ‘square on’ to the axes. If a = b, the axes are at 45° to 
the coordinate axes. If h = 0 and a = b we have a circle. 

A10. If tan 20 is positive, 0 is less than 45°, and the equations of the axes of the 
ellipse, relative to the centre, are: 

and 
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A11. If tan 20 is negative, 0 is greater than 45°, and the equations of the axes of 
the ellipse, relative to the centre, are 

and 

where S is defined as above. 
A12. The lengths of the half-axes are: 

and their ratio is 

A13. A straight line through the centre of the ellipse, a diameter, divides it 
symmetrically, meeting it at two opposite points. The tangents to the ellipse at 
these points are parallel. If these tangents have slope m, the equation of the 
diameter, relative to the original coordinate axes, is: 

and the points on the ellipse at opposite ends of this diameter (xA,yA) and (xB,yB) 
are given by: 



and 
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where D is the determinant defined in A3 above. 
A14. If m=0, the line joins the ‘northern’ and ‘southern’ extremities of the 

ellipse, i.e. those points with maximum and minimum values of y, and is: 

If m is infinite, the line joins the ‘western’ and ‘eastern’ extremities of the ellipse, 
i.e. those points with minimum and maximum values of x, and is 

A15. The ‘northern’ and ‘southern’ extremities are given by: 

and the ‘eastern’ and ‘western’ extremities are given by: 

These expressions assume that a and b, which must be of the same sign if ab – h2 is 
to be positive, are both positive; if not, the whole equation of the ellipse can be 
multiplied by – 1. 

A16. We can thus see that the proportions and the alignment of the ellipse are 
determined by a, b and h; that given these, the position of the centre is determined 
by f and g; and that given these, the size of the ellipse is determined by c. Since the 
whole equation can be multiplied or divided by a constant and still represent the 
same figure, one of the coefficients can be chosen arbitrarily. 
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A17. Similar results to the above can be derived for the hyperbola and the 
parabola, but since they are not needed in the development in the note they have 
been omitted. 

A18. A quadratic equation in x, y and z defines a quadric surface in x-y-z 
space. The only general quadric surfaces discussed in the note are of the form 

an elliptic paraboloid, and 

an elliptic hyperboloid of two sheets. In both cases, we assume that (ab – h2) > 0, 
so that the right hand side represents an ellipse, and that the right hand side is 
greater than or equal to zero for all values of x and y, so that the surface does not 
cross the plane z = 0. 

A19. It is easy to see that the ‘contour lines’ of these surfaces, projected onto 
the plane z = 0, form a series of concentric ellipses of the same alignment and 
proportions, with sizes determined by (c-z) and (c–z2) respectively. 

A20. A cross-section of either surface in the plane of a constant y gives a curve 
in the x-z plane of the forms respectively: 

a parabola, or 

a hyperbola. Both curves are ‘square on’ to the x-axis, with ‘noses’ pointing to the 
z-axis. The hyperbola is symmetric about the z-axis, with centre 

The same expressions give the point on the z-axis which the nose of the parabola 
points to or touches. 

A21. If each surface is projected onto the plane y = 0, its profile is given by a 
parabola or hyperbola, respectively: 

and 

Projected onto the plane x = 0, the profiles are given correspondingly by: 
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A22. The noses of the quadric surfaces are given by 
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A23. Certain partial derivatives for the elliptic paraboloid are: 

i.e. keeping z constant, 

i.e. keeping y constant, 

and 

i.e. keeping x constant, 

For the elliptic hyperboloid the first of these is the same, and the others are: 

and 




