Practical Solutions to Common Pricing Pitfalls

Ana J. Mata, PhD, ACAS

GIRO Convention Newport 2007

Agenda

Background

•

- Outline 10 common pricing pitfalls
- Present practical solutions
- Areas of applications
 - Insurance pricing
 - Reinsurance pricing
 - Planning and forecasting
- Rating plan design

Background

2

- Lack of consistency in application of methods among pricing actuaries
- Blind use of pricing tools and methods
 - > Across lines of business
 - Across business segments (personal lines, commercial lines, London Market business)
- Over confidence in numeric results considering

- Data incompleteness
- Volatility
- Experience rating not fully credible
- Exposure rating lack of benchmarks

Basic Definitions

- Accident Year / Exposure Year : when "event occurs" and premium is earned
 - > Claims made report year
 - > Occurrence event occurrence year
- Underwriting Year (Year of Account): from 1/1 to 31/12
 Written premium on policies incepting 1/1 31/12
 Losses against policies incepting 1/1 31/12
- Policy Year (Contract Year) : RAD or LOD
- RAD written premium and losses on policies incepting
 LOD earned premium and losses on policies in force

4

1 – Data Type and Loss Trend Factor

Example

- Risks Attaching Treaty effective 1/7/2007
- Data type : Accident Year / Exposure Year
- Loss inflation : 6% p.a.

Common exhibit

AY	Losses	Trend Factor	_	
1997	12,367,652	1.7908	-	Assumes one year
1998	13,876,652	1.6895		difference between
1999	9,889,293	1.5938	*	accident year losses and treaty year losses
2000	14,989,823	1.5036		
2001	5,685,995	1.4185		
2002	4,458,873	1.3382		
2003	10,288,844	1.2625	/	
2004	11,232,453	1.1910	/	
2005	7,653,423	1.1236		
2006	11,299,843	5 1.0600		

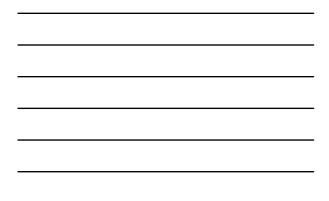
1 – Data Type and Loss Trend Factor

Common pitfalls

- Pricing tools do not take into account basis of data provided
 - > Accident Year / Exposure Year
 - > Underwriting Year
 - Policy Year (in line with contract to be priced)
- Trending losses to beginning of exposure period
- Do take into account contract type (RAD or LOD)

1 – Data Type and Loss Trend Factor

Practical solution

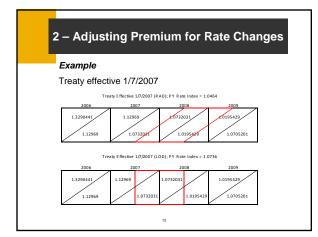

- Trend factor depends on:
 - Data type of experience period
 - > Type of contract : RAD or LOD
- Assume policies written uniformly and losses occur uniformly throughout year
- Calculate average loss date in experience period
- Calculate average loss date in exposure period
- Difference in average loss date between experience and exposure determines trend factor

	reaty effe rs are	ective 1/	7/200	7, at 6%	% p.a. tre	end
Year	Accident Year	RAD Underwriting Year	Policy Year	Accident Year	LOD Underwriting Year	Policy Yea
1997	1 8992	1 8442	1 7917	1 8448	1 7914	1 7914
1998	1 7917	1 7398	1.6903	1 7404	1.6900	1 6900
1999	1.6903	1.6414	1.5944	1.6419	1.5944	1.5944
2000	1.5944	1.5482	1.5041	1.5487	1.5039	1.5039
2001	1.5041	1.4606	1.4190	1.4610	1.4187	1.4187
2002	1.4190	1.3779	1.3387	1.3783	1.3384	1.3384
			1.2627	1.3003	1.2627	1.2627
2003	1.3387	1.2999				
	1.3387 1.2627	1.2999	1.1912	1.2265	1.1910	1.1910
2003				1.2265 1.1571	1.1910 1.1236	1.1910 1.1236

2 – Adjusting Premium for Rate Changes

- Rate changes usually given on underwriting year basis
- Need to apply to earned premium (for loss ratio forecasting)
- Need to estimate premium adjustment for contract year

Com	mon pitfal	ls		
Ear	n the rate of	change and	d then estir	mate rate inde
	Deservices Add	ustment Factors	(On Invel (1994)	
	Underwriting Year	Rate Change	Earned Rate Change	Earned Rate
	1997	0%	1.0377	1,1014
	1998	-15%	1.2208	1.1908
	1999	-10%	1.3952	1.3640
	2000	-5%	1.5083	1.4767
	2001	10%	1.4715	1.4434
	2002	40%	1.1772	1.1482
	2003	25%	0.8885	0.8748
	2004	0%	0.7898	0.7873
	2005	-5%	0.8100	0.8075
	2006	-15% -5%	0.9000	0.8959



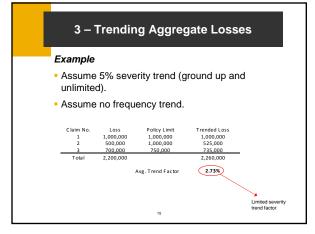
2 – Adjusting Premium for Rate Changes

Practical solution

- Calculate relative rate index at each time period (compound effect of rate changes)
- Using parallelogram rule calculate
 - Average relative rate index for exposure period (RAD or LOD)
 - Average relative rate index for each experience period (Exposure Year, Underwriting Year or Policy Year)
- Premium adjustment or on-level factor

 $OL Factor = \frac{Avg. Relative Rate Exposure Period}{Avg. Relative Rate Experience Period}$

Evom	nlo				
Exam	pie				
	On-level factors	to policy yea	ar 2007, effecti	ve date 1/7/200	07
Year	U/W Year Rate Change	Accident Year	Underwriting Year	Policy Year (RAD)	Policy Yea (LOD)
1997	0%	1.0464	1.0464	1.1312	1.0941
1998	-15%	1.1312	1.2310	1.2958	1.2510
1999	-10%	1.2958	1.3678	1.4029	1.3927
2000	-5%	1.4029	1.4398	1.3712	1.4495
2001	10%	1.3712	1.3089	1.0908	1.2930
2002	40%	1.0908	0.9349	0.8311	0.9635
2003	25%	0.8311	0.7479	0.7479	0.7871
2004	0%	0.7479	0.7479	0.7671	0.7722
2005	-5%	0.7671	0.7873	0.8511	0.8177
2006	-15%	0.8511	0.9263	0.9500	0.9355
2007 Est	-5%				
2008 Est	-5%				
2009 Est	5%				



3 – Trending Aggregate Losses

Common Pitfall

Use same claims trend factor for aggregate losses than for individual losses

- Issues
- Aggregate losses often mixture of primary and excess losses (e.g. London Market business)
- Aggregate losses net of deductible/excess and capped by policy limit
- Limit profile determines potential increase in severity of portfolio
- Severity trend factor usually assumed ground up and unlimited
- Frequency trend factor applied to aggregate losses but not individual losses

3 – Trending Aggregate Losses

Ideal solution

Apply trend to each loss allowing for deductible/ excess and policy limit

But

- Individual data not always available
- Policy data not always available for each claim

16

3 – Trending Aggregate Losses

Practical solution

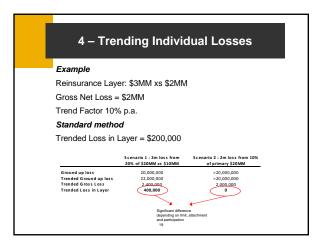
Use limit profile (limit and attachment) and severity curve to estimate aggregate trend factor.*

Example

Assume 5% severity trend and lognormal distribution (10,2)

1,000,000 3,000,000 5,000,000	ttachment	Annual Trend Factor 1.0360 1.0417	S cenario 1: P redominantly Excess Business 0	S cenario 2: P redominantly P rimary Business 5,000,000
3,000,000 5,000,000				5,000,000
5,000,000		1.0417		
			0	5,000,000
		1.0438	2,500,000	3,000,000
10,000,000		1.0462	0	5,000,000
3,000,000	2,000,000	1.0703	5,000,000	2,500,000
5,000,000	5,000,000	1.0800	3,000,000	0
10,000,000	10,000,000	1.0885	5,000,000	0
10,000,000	20,000,000	1.0956	5,000,000	0
	Ag	gregate Trend Factor	7.908%	4.520%

Written Premium


4 – Trending Individual Losses

Common pitfall

Apply trend factor to individual losses without accounting for limit, excess and participation.

Issues

- Individual losses are ceding company's gross net losses not ground up losses
- Particularly an issue with London Market data where capacity spread over multiple layers

4 – Trending Individual Losses

Ideal solution

- Calculate ground up loss based on limit, attachment and participation
- Trend ground up loss and re-apply limit, attachment and participation

20

But

Policy data not always available at claim level

4 – Trending Individual Losses

Practical solution

- Use limit profile, severity distribution and exposure rating method to estimate aggregate excess trend in reinsurance layer
- Apply the aggregate excess trend to nominal losses in reinsurance layer*
- Method works well for reinsurance layers with frequency of losses
- Trending over policy limits compensates for not trending losses below attachment point

 See Mats. A.J. and Mark A. Verheyen (2006) An Improved Method for Experience Rating Reinsurance Treaties. Cassually Actuarial Society Forum 2006, pp 171-214
 21

5 – XOL Experience Rating

Common pitfall

Apply experience rating method to individual claims without accounting for loss event

Issues

- Ceding companies may record claims at policy level
- Same loss could be spread over several policies leading to multiple claim records for same underlying loss
- Need to understand how data is presented

22

5 – XOL Experience Rating

Example

Effective Date 1/7/2007 (RAD) XOL Treaty: \$5MM xs \$5MM

> 50% 20%

Severity Trend = 10%

5 – XOL Experience Rating

23

Ideal solution

- Calculate ground up loss based on limit, attachment and participation
- Trend ground up loss and re-apply limit, attachment and participation

24

But

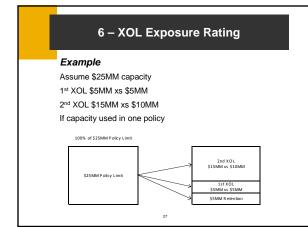
Policy data not always available at claim level

5 – XOL Experience Rating

Practical solution

- Based on insured name and loss date estimate UNL across all policies
- Consider that UNL is not ground up but the sum of losses across several layers
- Apply trend to UNL not appropriate (discussed in Pitfall No.4)
- Use the aggregate trend method* to estimate trend in reinsurance layer
- Apply aggregate trend factor to nominal UNL in reinsurance layer

"See Mata A.J. and Mark A. Vanhoyer (2005) An Improved Method for Experience Rating Reinsurance Treate Casuality Actuanal Society Forom 2005, pp 171-214 25


6 – XOL Exposure Rating

Common pitfalls

- Use aggregate limit profile to exposure rate London Market business
- Use standard exposure rating formulae without accounting for capacity spread over several layers

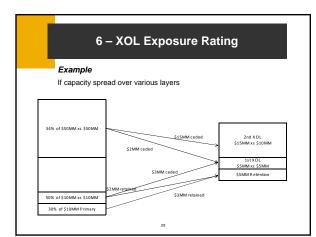
Issues

- Companies spread their capacity over several layers
- Reinsurance treaty applies to UNL
- For exposure rating need to use individual policy details and allow for capacity spread

6 – XOL Exposure Rating

Standard exposure rating formula

% Loss in Layer = $\frac{E[X \land \min(L + A + a, l + a)] - E[X \land \min(A + a, l + a)]}{E[X \land l + a] - E[X \land a]}$


28

where

L = Reinsurance Limit A = Reinsurance Attachment

l = Policy Limit

a = Policy Attachment

6 – XOL Exposure Rating

Practical solution

- Link policies from individual policy list
 - Sort by insured name
 - Sort by attachment point in ascending order
- Revise reinsurance limit and attachment applicable to each written policy accounting for
 - Retention
 - Capacity written in each policy and exposure to each reinsurance layer

				zxpos	ure Ratin	g
E	kam	ple				
C	apac	ity \$25MN	/I spread	over 3 la	yers	
R	einsi	urance pro	gramme	:		
		ess: \$5Ml	•			
2 ⁿ	d ex	cess: \$15I	MM xs \$1	10MM		
			Revised	Reinsurance	Layers	
Policy Lim	t	Policy Attachment	Capacity	\$5MM Retention	\$5MM xs \$5MM	\$15MM xs \$10MM
10,000,0		0	3,000,000	3,000,000	-	-
10,000,00 50,000,00		10,000,000 50,000,000	5,000,000 17,000,000	2,000,000 0	\$3MM xs \$2MM \$2MM xs \$0	- \$15MM xs \$2MM

	6 – X	OL Ex	pos	ure	Ratir	ıg	
Example	9						
		S tanda	ard Metho		Rev	ised Meth	
Policy Limit	Policy Attachment	\$5 MM Retention	\$5MM xs \$5MM	\$10MM xs \$10MM	\$5MM R etention	\$5MM xs \$5MM	\$10MM xs \$10MM
10,000,000 xs	0	26,100	0	0	26,100	0	0
10,000,000 xs	10,000,000	21,600	0	0	9,370	12,230	0
50,000,000 xs	50,000,000	2,151	1,962	2,517	0	887	5,743
	Total	49.851	1.962	2.517	35.470	13.118	5.743

* Assuming ILF power curve with alpha = 0.6

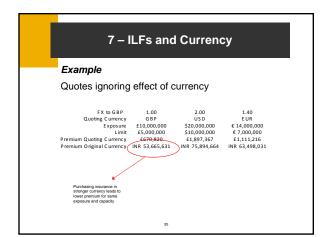
7 – ILFs and Currency

32

Common pitfalls

- Ignore effect of quoting currency in rating plans
- ILFs curve independent of currency

Issues


- Insured in countries with weak currency may seek quotes in stronger currencies
- Multinational companies may buy insurance in different currency to home country currency

33

 For same exposure and capacity premium should be consistent

7	– ILFs a	and Currer	ncy
Example			
Country of d	lomicile : Ir	ndia	
Exposure ba	ase INR 80	OMM	
Base rate 39	%		
ILF Table			
	Limit 1,000,000 2,000,000 3,000,000 5,000,000 6,000,000 7,000,000 9,000,000 9,000,000	ILFs 1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284 3.0000 3.1623	
	10,000,000	34	

7 – ILFs and Currency

Practical solution

- A global rating plan should be design in a base currency
- Base rate for basic limit of base currency
- ILFs in base currency
- Covert all rating factors to base currency; calculate premium and re-convert to quoting currency
- Use country relativities to allow differences in loss costs by country

Example			
Rating plan in G	3P		
Base rate 3% for	GBP 1MM	limit	
ILFs in GBP			
FX to GBP	1.00	2.00	1.40
Quoting Currency Exposure	G B P £10,000,000	US D \$20,000,000	EUR €14,000,000
Limit	£5,000,000	\$10,000,000	€ 7,000,000
Premium Quoting Currency	£670,820	£1,341,641	£939,149
Premium Original Currency	INR 53,665,631	INR 53,665,631	INR 53,665,631

8 – ILFs vs. Excess Factors

Common pitfalls

- Use different excess factors depending on underlying layer
- Use decreasing excess factors as % of underlying layer

Issues

- ILF curve should be consistent with loss distributions
- ILF curve should be ground up in order to be consistent

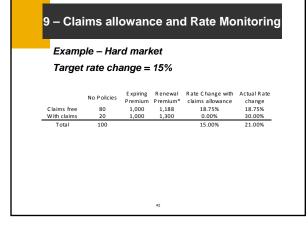
Attachment % of Underlying 0 100.00% 1000.00% 1000.00 1000.00% 1000.00 0.000.000 66.85% 66.85% 70.05% 70% 20.000.000 53.97% 83.44% 49.05% 70% 0.000.000 43.37% 90.94% 17.65% 60% 0.000.000 43.37% 90.94% 17.65% 60% 0.000.000 43.37% 93.62% 1.05% 60% 0.000.000 31.75% 93.62% 1.35% 50% 0.000.000 31.75% 95.04% 1.3% 50% 90.000.000 32.21% 95.52% 0.7% 50%
10,000,000 64.65% 70.6% 70% 0,000,000 53.97% 88.44% 49.0% 70% 30,000,000 47.65% 88.34% 49.0% 70% 30,000,000 47.65% 88.38% 29.4% 60% 50,000,000 43.37% 90.94% 17.6% 60% 50,000,000 40.13% 92.53% 10.6% 60% 50,000,000 37.57% 93.62% 5.3% 50% 70,000,000 35.48% 94.42% 2.6% 50% 50,000,000 35.48% 94.42% 2.6% 50%
20,000,000 53,97% 82,44% 49,05% 70% 00,000,00 53,97% 82,44% 60% 60% 40,000,000 43,37% 90,94% 17,6% 60% 00,000,00 43,37% 90,94% 17,6% 60% 00,000,00 43,37% 90,94% 17,6% 60% 70,000,000 36,48% 94,42% 2,6% 50% 70,000,000 35,48% 94,42% 2,6% 50%
30,000,000 47,65% 88,38% 29,4% 60% 00,000,00 43,37% 90,94% 17,6% 60% 50,000,000 40,13% 92,53% 10,6% 60% 00,000,00 40,13% 92,53% 3,6% 50% 70,000,000 35,48% 94,42% 2,6% 50% 00,000,00 35,48% 94,42% 2,6% 50% 00,000,00 35,71% 95,04% 1,3% 50%
40,000,000 43,37% 90,94% 17.6% 60% 50,000,000 40,13% 92,53% 10.6% 60% 60,000,000 37.57% 93,62% 5,3% 50% 70,000,000 35,48% 94,42% 2,6% 50% 80,000,000 33,71% 95,04% 1,3% 50%
50,000,000 40.13% 92.53% 10.6% 60% 60,000,000 37.57% 93.62% 5.3% 50% 70,000,000 35.48% 94.42% 2.6% 50% 80,000,000 33.71% 95.04% 1.3% 50%
60,000,000 37.57% 93.62% 5.3% 50% 70,000,000 35.48% 94.42% 2.6% 50% 80,000,000 33.71% 95.04% 1.3% 50%
70,000,000 35.48% 94.42% 2.6% 50% 80,000,000 33.71% 95.04% 1.3% 50%
80,000,000 33.71% 95.04% 1.3% 50%
90,000,000 32.21% 95.52% 0.7% 50%

8 – ILFs vs. Excess Factors

Practical solution

- Actuaries should illustrate differences between ILFs and excess factors to underwriters
- Rating plans should work from ground up
 - Rate base limit
 - > Use ILF to estimate excess premium
- Work with underwriters to determine ILFs at various points
- Fit a continuous curve to closely match those points

40


9 – Claims allowance and Rate Monitoring

Common pitfall

 Allow for claims experience when calculating rate change for individual risks

Issues

- Common underwriting considerations:
 - > If rate increase but there are claims assume 0% rate change
 - If rate decrease but claims free offset rate change by claims discount
- Rate changes depend on market conditions not on claims experience of single risks

	nple – So et rate ch				
. ur g					
	No Policies	E xpiring P remium	R enewal P remium	Rate Change with claims allowance	Actual Rat change
Claims free With claims	80 20	1,000 1,000	650 1,300	-18.75% 0.00%	-35.00% 30.00%
Total	100			-15.00%	-22.00%

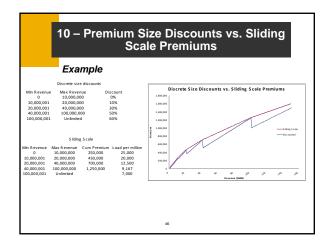
9 – Claims allowance and Rate Monitoring

Practical solution

- Do not allow for claims loads or discounts in rate monitoring
- Understand what is or isn't accounted for in rate monitoring process in place
- Need to train underwriters to improve process

44

Often rate change in soft market is underestimated


10 – Premium Size Discounts vs. Sliding Scale Premiums

Common pitfall

Use discrete size discounts to reduce premium for companies with large exposure base

Issues

- Size discounts are common when exposure base growth is not seen as proportional increase in loss cost
- Discrete size discounts could lead to premium reversals

