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1. Introduction

1.1 Following the paper produced for last year's GISG [5], in which we set out

the basis for pricing, the Working Party decided to concentrate on the actual

pricing issues. The original paper dealt with two main issues. The first part

dealt with the actual pricing formula which may be used to determine a rate.

The second part dealt with the control cycle and stochastic profit testing,

and the interaction between the rating process and the profit performance of

the business. It is proposed that the second part of the paper be expanded

into an Institute paper for the 1987/88 session. The working party decided,

for the 1996 GISG conference, to concentrate on developing the first part of

the paper, namely the formal calculation of the rates.

1.2 The original paper dealt with pricing from the "formula" point of view. This

forms an appropriate background to the process. The "formula" approach is

well documented in the paper, and elsewhere in the various references.

What tends to be lacking is the application of these formulated approaches

to real life situations.

1.3 The problems with rating in the market is that many of the issues relate to

the lack of ideal data, an uncertainty of the rating parameters from the

underwriter, a changing market and so on. The use of a static formula

approach does not necessarily answer these rating question in dynamic and

changing conditions.
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1.4 It was decided to divide the working party into specific three areas

1. Short Tail Non Marine

2. Long Tail/ Casualty Non Marine

3. Marine.

1.5 The Marine subgroup have not issued a report, and it is proposed to

continue the work for next years session. There is lots of information

available, but little in the right format. The Equitas project was, itself, a

major strain on resources. There was insufficient time to undertake the

analysis of the available information, and, accordingly, the Rating of Marine

risks was deferred until the next GISG in 1987.

1.6 The Non Marine Casualty Group was led by Andrew Hitchcox. It is the

intention to produce a detailed workshop type presentation on the day, with

fuller documentation being presented . The main points that will be covered

are given in section 2 of this report

1.7 The Non Marine Short Tail Group was led by Torbjom Magnusson A

detailed paper setting out their work is given in section 3.

1.8 The rating issues in the Market are becoming more relevant as companies

become increasingly aware that the involvement of actuaries in the process

will give added value, and may provide a competitive edge.
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2. Casualty Excess of Loss Pricing

in the London Market

2.1 The presentation will deal with the following bullet points and issues:

• An overview of the process.

• The frequency/severity approach to experience rating.

• The dovetailing of this approach with exposure rating at the

higher layers.

• The illustration of special features.

Contract terms and conditions:

Treatment of ALAE

Indexation of limits and deductibles

Items which depend on aggregate claims, e.g.

swing-rates, aggregate deductibles and limits

The underlying business:

Underlying limits

Exposure changes

Underlying rate changes

Case reserve strength/adequacy

Sensitivity Assumptions:

Inflation

Frequency trends

Payment patterns.

• Communication with the underwriter

• Turning the loss cost into a rate.
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3. TOPICS IN PROPERTY REINSURANCE PRICING

Torbjörn Magnusson
Tony Hartington

Neil Hyatt
Ravi Manjrekar

John Sutton

3.1. Introduction

3.1.1 Property reinsurance is not an area where actuaries have been traditionally

involved. Part of the reason for this is simply that property business, as a

rule, is short tailed, and actuaries have historically been preoccupied with

long-tailed business, where many of the problems are perceived to have

been,

3.1.2 Nevertheless, there are almost as many important aspects of property

business that require as solid a numerical and analytical background as in

long-tailed business, and behind what seems to be straightforward

experience rating techniques hide many difficult and interesting theoretical

and practical issues. This has been made apparent by the big leap forward

made by property catastrophe rating since the late eighties, where complex

simulation techniques now are common market practice, whereas simple

rules of thumb were still being used less than ten years ago. There is no

reason to expect that this development will stop at catastrophe business, as

there are as many reasons for sound mathematical modelling of

noncatastrophe contracts as for catastrophe ones.
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3.1.3 In this paper we do not propose to cover all the aspects of property pricing

that may be used, for example, as a full manual for property reinsurance

pricing, but have selected a few important practical issues which may not yet

have been given enough attention in the marketplace.

3.1.4 The first of these issues is treated in a section on experience rating,

specifically intended to illustrate the uncertainty in the traditional

Poisson-Pareto parameter estimates widely used in market. The section

should motivate actuaries and the reinsurance market to try and establish for

better market statistics in property reinsurance.

3.1.5 The second issue is in the area of exposure rating, where we take a close

look at what first loss curves (exposure rating curves, increased limits

functions) actually are, and which sets of curves are available

3.1.6 Finally, we discuss a few important techniques for dealing with aggregate

conditions in excess of loss pricing, e.g. reinstatements and annual aggregate

deductibles.

3.1.7 We have chosen not to include anything on catastrophe rating, as this area is

extensively covered in many other contexts, and mathematical modelling

techniques are getting so specialised that they benefit from a more detailed

analysis.

3.1.8 A final introductory remark is that there is still considerable scope for

practical, mathematical developments that could increase accuracy of

technical pricing in the market. Textbooks still only give very simplistic

guidance, generally ignoring most of the practical problems encountered.

There is thus still much use for a good general mathematical and statistical
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toolbox, that the practitioner-actuary can apply to new problems until

solutions to these become more widely available.

3.2 Experience Rating

3 2.1 The definition of the expression "experience rating" varies between different

contexts, but we are here concerned with trying to fit process parameters to

a given claims material, and subsequently use those parameters for

extrapolation purposes. This is a technique more frequently used than any

other technique in property per risk rating, and is also still much in use in

catastrophe rating. A standard reference for experience rating is Philbrick

3.2.2 One way to look at the difference between exposure and experience rating

is, that in exposure rating the claims distribution is given by market statistics

in the form of first loss curves, and no weight is given to the experience of

the individual cedant, whilst in experience rating we extrapolate using

parameters fitted to the cedant's claims experience, ignoring (at least in the

extreme case) how these parameters compare to market statistics.

3.2.3 There is a whole host of literature (see for example Sundt [6]) on how to

mix the two approaches, often using what is called credibility theory, which

can be very fruitful. This has unfortunately not been much used in the

reinsurance market, and we believe that one of the missing links in the

literature is an illustration of how important such a procedure is, and how

uncertain the parameters from fitting parameters to a small become. We will

therefore try to address this issue in this section, by simply going through a

case study from a straightforward property risk x/1 contract, and paying

attention to some of the major sources of uncertainty and the corresponding
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sensitivities.

3.2.4 So let our case cedant have a large commercial and industrial fire portfolio,

with a known Pareto loss distribution characterised by a shape parameter

alpha = 2. What happens if we generate losses to this portfolio in excess of

say £100,000 by way of simulations, and then estimate alpha from these

losses? Using a standard maximum likelihood technique, this would exactly

simulate the way many reinsurers find shape parameters for extrapolation

purposes in experience rating of individual contracts!

Graph 3.2.1. Comparison of a theoretical and a simulated distribution.

3.2.5 Graph 3.2.1 depicts a comparison of the theoretical, true Pareto distribution

to the resulting distribution from one typical simulation, Obviously, the

relative difference in the tail can be quite substantial, and in this simulation

the proportion of losses exceeding £900k was 2.4%, whilst the theoretical

proportion is 1.2%.

3.2 6 The next step is now to estimate the Pareto alpha from the simulated losses,
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using straightforward maximum likelihood estimators, see for instance Hogg

and Klugman [8]. To do this, you need to decide from which threshold you

want to fit the data, and you will get different answers depending on the

chosen threshold, something that is well-known but not widely appreciated

in the market. Graph 3.2.2 shows estimated alphas as a function of this

threshold compared to the true alpha = 2.0, and also the proportion of the

claims above £100k used for the estimate.

3.2.7 As is shown in this graph 3.2.2, quite a small change in threshold, say from

£200k to £250k which would be very realistic if you were rating a £300k x/s

£300k layer, can give rise to a substantial change in alpha, from 2.2 to 3.0.

If we were to use these two alphas to rate this same layer the difference in

risk premium would be more than 40%. For a typical second layer above the

first one of say £600k x/s £600k, the difference would be more than 60%,

the figures getting worse the further away you get from the threshold.

Graph 3.2.2. Sensitivity of alpha estimates to claims threshold.
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3.2.8 There are several questions arising from these simple graphs, both of a

practical and theoretical nature, including

• What is the probability distribution of the alpha estimate given the

threshold?

• How do you construct confidence intervals for the alphas?

• What is a suitable threshold, or how do you combine the estimates

for different thresholds?

3.2.9 We will not attempt to give detailed answers these questions in this paper,

only point out that some of the answers are available in a more general form

in textbooks on mathematical statistics, eg Arnold [9], or Hogg and

Klugman's comprehensive work on loss distributions [8]. The distribution of

the alpha estimators is given (in a different context) by Arnold [9] (chapter

7.2) as a gamma distribution with the number of claims as the parameter,

which is of some practical interest, and can be used as a basis for confidence

intervals

3.2.10 In practice though, part of the answers to these questions have to be

judgmental, taking a view on whether the actual claims are outliers or not.

The graphs do imply though, that it is paramount not to ignore market

information about what typical values alpha can take for various classes, and

possibly to combine this information with the company specific claims

patterns.
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3. 3 Exposure Rating

3.3.1 The Basic Recipe

The Basic Recipe for this technique was set out in detail in the 1995 GISG

paper on Pricing in the London Market. This can be summarised as a three

stage process:

1 Determine the "pure premium" for the risk(s) in question

{e.g. by using the cedants original premium net of loadings}

2 Determine the portion of the pure premium for the whole risk that

relates to the Excess Layer being costed.

{e.g. by using Ludwig/Saltzmann tables}

3 Convert the result of (2) to a Reinsurance Premium for the layer by

adding appropriate loadings etc.

The 1995 Paper describes the situation where a whole portfolio of risks is to

be protected. For the first part of this paper we discuss the situation where it

is a single original risk that is to be protected - in effect a single facultative

case - as this serves to clarify the issues The portfolio situation is merely a

case of repeating the operation several times for risks of different size.

3.3.2 The Pure Premium

The exposure rating technique is basically a means of splitting the overall

pure premium between different layers of cover. For the result to have any
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meaning it is necessary to have a meaningful pure premium in the first place.

In practice most reinsurance proposals will give information about the

"office" premium for the risk(s) and in some instances will give an indication

of the original commission terms. A fairly common practice is to take the

original gross ("office") rate less the original commission as an

approximation to the pure premium. In some instances a further deduction is

made so as to allow for the cedant's in house expenses. The underlying

assumption is that the original rate breaks even. This needs to be tested

and suitable adjustments made if thought not to be a reasonable assumption.

3.3.2.1 First Loss Curves

The phrase "First Loss Curve" is a term more usually used in the London

Market than Ludwig or Salzmann Tables. The two expressions are,

however, substantially the same thing which can be expressed

mathematically as follows.

3.3.2.2 An algebraic aside

At the risk of oversimplifying:

Suppose a risk has a claim size distribution function f(x) (and cumulative

claim size distribution F(x)) where x lies in the range (0,1). This means we

are expressing the claim size as a proportion of the Sum Insured (here

assumed to be the same as the PML) and consequently no claim can (in

theory at least) have a size outside the range (0,1). It is more convenient to

work with the range expressed as (0,1) rather than (0%, 100%).
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The mean claim size "m" is given by:

and the "limited" pure premium is φ. mx

The first loss curve can be written as

Clearly H(z) is an increasing function with the properties that H(0) = 0 and

H(l) = l

In passing it can be noted that in the case where all losses are for 100% of

the sum insured H(z) reduces to a straight line. In all other cases the

fonction H(z) must lie above this line.

3.3.2.3 Market Curves

If a reasonable volume of data is available to determine the values of f(x), or

equivalently F(x), then it is not a difficult exercise to produce a table of

values for H(z) - and an example of how this can be done is to be found at

appendix A, Indeed, this is how the Ludwig/Salzmann tables were

produced. It must be recognised that these were produced largely from data

obtained from Household and small Commercial Property risks. It would

be, at the least, a leap of faith to assume that these tables are necessarily

appropriate for the kinds of business normally found in the London Market.

In this Market we are usually dealing with large, often non-standard, risks

and the curves that are usually used do not always appear to have been

154

and the pure premium is φ.m where φ is the expected claims frequency

If we limit any claim to a maximum value of ζ (where ζ lies in the range

(0,1)) then the mean "limited" claim becomes.



derived from claims data - indeed in many cases there is no way they could

have been as there is an inadequate volume of data available. Rather, they

have been deduced from Underwriters expectations of the nature of the risk.

It may, perhaps, be helpful to think of First Loss Tables where these have

been determined from relevant original data and First Loss Curves where

these are working assumptions. Obviously the distinction is not black and

white; a table may be a heavily smoothed interpretation of the original data

and some of the curves in use have been derived at one time from some,

albeit possibly imperfect, data but have had parameters greatly changed to

reflect different conditions.

What curves are then used in the Market and where did they come from?

Some examples follow.

Company A

Graph 3.3.1 shows an impressive looking First Loss scale (and the

corresponding First Loss table is shown in Appendix B) that it is believed

has been widely used in the Market. However, closer inspection reveals it to

be nothing more than a series of straight lines if allowance is made for

roundings in the figures presented. (Note also that the gradients of the

different sections are merely multiples of 0.115).

y = 88.50% + .460 * (χ- 75%) 100% > x > 75%

y = 82.75% + .230 * (x-50%) 75% > x > 50%

y = 77.0% + .345 * (x-33.3%) 50% > x > 33.3%

y = 71.25% + .690 * (x-25%) 33.3% > x > 25%

y = 54.00% + 1.15 *(x-10%) 25% > x > 10%

y = 42.50% + 2.30 *(x-5%) 10% > x > 5%

Below 5% the figures look particularly curious between 2% and 3% as the

rate of increase is only half that in the surrounding intervals.
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The slope of the "curve" at the top end gives cause for concern as it is fairly

easy to show that a first loss scale cannot have an increasing slope!

It is believed that this scale was based on data assembled in the mid 1970's -

one underwriter suggests (tongue not altogether in cheek) on the strength of

"half a dozen claims".

Company Β

In graph 3.3.2, an example is given of a set of so called Pareto curves that

were used by one company. This made no pretence as to having been

explicitly derived from the data but were formulated in consultation with

underwriters. The objective was to produce a set of curves which enabled

the underwriting team to be able to produce consistent quotations

Although, in theory, the parameter "c" in the formula could be varied

depending on the underwriters perception on the nature of the risk, in

practice only the four standard curves were used; all risks were allocated to

one of these. It was fashionable to use curves of this general shape in the

mid 1980's. Later it became less so and curves of the "Company C" form

became more popular.
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The general form of the curve is:

where λ is a scaling parameter to make H( 1 )=1.

Company C

Again four curves are shown, in graph 3.3.3, which represent differing risk

types these all take the form:

The curves again appear to have been chosen because of their simple

mathematical form rather than from any data considerations.
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Company D

The data underpinning the curves in graph 3,3.4 is understood to have come

from a study of all fire (but not business interruption?) losses in a small

European country in the 1960's. It is believed that these curves are still

much used in the Market today. The various scales relate to Sums Insured

and, allowing for inflation and exchange rate changes could be described in

today's values as:

Scale 1 Sums Insured over £800,000

Scale 2 Sums Insured between £400,000 and £800,000

Scale 3 Sums Insured between £160,000 and £400,000

Scale 4 Sums Insured between £80,000 and £160,000
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Other Formulae and Conclusions

An extremely good fit to US Commercial Property First Loss Data has been

obtained by use of a formula of the form:

H(z) = (B-l)*z - B*z*

For Swedish householders risks, there exists a detailed study in Benckert

and Jung [10], that could possibly be of interest of similar risks in northern

Europe. This paper also discusses some of the statistical difficulties in

deriving First Loss Curves.

Hybrid curves - weighted averages of some of the "simple" curves - are also

used. Perhaps the most useful of these is the type which combines one of the

Pareto or Power Curves with a straight line. This effectively allows for a

"lump" of probability at a total loss.
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As can be seen from the above, one must take great care to choose a

relevant and suitable First Loss Curve to get an accurate risk premium.

Using different curves produces as widely different answers as varying the

Pareto shape parameter in experience rating. Just as in experience rating, the

conclusion must be for the reinsurance industry to try to produce better

market statistics, by class and country, if the uncertainty about excess of loss

risk premiums is going to be reduced.

3.4 Special/Aggregate Property Conditions

3.4.1 Common themes

3.4.1.1 The heading "Special property conditions" of this section is something of a

misnomer, as the treaty conditions to be discussed,

reinstatements and annual aggregate limits (AAL's),

aggregate annual deductibles (AAD's),

no claims bonuses

are very common for property treaties. In fact, reinstatement conditions

(other than unlimited free reinstatements) appear in almost all property

treaties. Therefore, we will from hereon call the conditions aggregate

conditions, as they all operate on the aggregate yearly claim.

3.4.1.2 These special conditions all have two things in common. Firstly, by

introducing or modifying these conditions, the technical risk premium

should normally be altered substantially. This fact is not always appreciated

by the market, where these conditions are sometimes seen as secondary to

the risk premium calculation before any of the aggregate conditions are

taken into account.

160

.

.

.



3.4.1.3 Secondly, from an actuarial point of view, the effect of the aggregate

conditions can only be seen from calculations on the yearly aggregate loss

distribution. As is well-known from the actuarial literature, this distribution

is relatively difficult tο compute or approximate, and there are a large

number of publications presenting classical methods of doing so, e.g. the

Edgeworth or Esscher approximation or see , for example, Gerber [1].

3.4.1.4 A typical aggregate loss distribution is shown in the following graph, for a

catastrophe treaty covering £5m x/s £5m. Please note the characteristic

discontinuities at multiples of the cover limit. The graph was calculated by

Panjer recursion, as described in a subsection of this paper.

3.4.1.5 It is very important for an actuary's credibility to gain a solid understanding

of when the various conditions are used, and what the advantages and

disadvantages of them are. We will therefore try to build in a number of

practical examples in the text, giving the reader at least a starting point for

this. Unfortunately, the conditions will vary from market to market and from

line to line, which makes a fall treatment of this to comprehensive for this

text
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3.4.1.6 The subsections of the Aggregate Conditions section are classified

according to which method is described, rather than according to the

reinsurance condition, as all the described methods are applicable to all

aggregate conditions. We will, however, look at specific examples to make

clear exactly how this can be done in each section. The groups of methods

described in the following are Total Loss Approximations, Panjer Recursion

and Simulation Techniques.

3.4.1.7 In the section about simulation techniques, our example will be a multiyear

treaty, as this is typically to difficult to treat by the other techniques, and a

dedicated model often has to be built for every new case. These treaties

frequently include combinations of no claims bonuses or profit commissions

with changing the layering of a programme or renewal options, and

solutions thus are tailor-made for each new client. Investment income also

tends to play a more important role than is otherwise normal in property

reinsurance,

3.4.2 Total Loss Only Approximations

3.4.2.1 Using simple formulae has certain big advantages over more advanced

techniques, including

• speed,

facilitating sensitivity testing, and

better acceptance from underwriters due to less of a "black box"

feeling.

3.4.2.2 As stated in the introduction, aggregate conditions apply to the aggregate

loss distribution, which is difficult to treat analytically with formulae.

However, there is one special case where it is feasible to carry out the

calculations, and that is when it can be assumed that all losses are going to
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be total losses.

3.4.2.3 The assumption of total losses arises most naturally in catastrophe

reinsurance. The average loss to a typical catastrophe layer is often more

than 70% of the cover limit.

3.4 2.4 The most important aggregate conditions in catastrophe business are

reinstatements and annual aggregate deductibles. The standard reinstatement

condition is one reinstatement at 100%. Let us look at how to calculate the

effect of this condition, assuming total losses only (TLO).

3.4.2.5 Let the risk premium with unlimited free reinstatements be P, let us assume

Poisson distributed loss frequency with intensity q, and cover limit L. The

risk premium (with unlimited free reinstatements) must equal the expected

loss by definition, so Ρ = qL. Let furthermore the risk premium with 1

reinstatement at 100% be Q. The equation expected premium equals

expected claims now reads

which after simplification gives

3.4.2.6 Interestingly enough, developing this formulae in a Taylor series gives Q

approximately equal to q(l-q) for small q's, which is the rule of thumb

frequently used in the London Market for many years For q's bigger than

say 0.05, the full expression should be used, as the approximation becomes

poor.

3.4.2.7 Similar calculations can obviously be carried out for other reinstatement

conditions, or AAD's/AAL's. However, the calculations do get more
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cumbersome with the complexity of the aggregate condition considered and

the value of having a formula instead of doing simulations to convince

underwriting staff of the correctness of the answer decreases.

3.4.2.8 In addition to the TLO assumption, we have in the above made an

assumption about Poisson distributed losses. There is nothing to stop us

from doing similar calculations for example with negative binomial

distributions, although the calculations get quite a lot more involved with

this distribution. As there are reasons to believe catastrophe losses may not

follow a Poisson distribution (windstorms often coming in groups,

earthquakes building up energy over time) some care should be taken in the

choice of distribution. Obviously, there is no reason not to carry out the

TLO based calculations with a Poisson assumption as a first approximation

if that is the distribution used already in the other risk premium calculations

3.4.3 Panjer Recursion

3.4 3.1 If one cannot assume total losses only, one does not necessarily have to use

simulations. During the last 15 years, a technique known as Panjer recursion

(or as Heckmann-Myers algorithm in the US) has gained ground. This is a

fast, recursive algorithm that can approximate the aggregate distribution, in

most practically interesting cases, to any degree of accuracy.

3.4.3.2 As it is an algorithm, and not a formula, one does not achieve the advantage

of easily being able to demonstrate the calculation to the underwriting staff.

Nevertheless, the algorithm is very fast, and can be programmed into rating

systems or spreadsheets, which can be made available directly to the

underwriters, something which is difficult with simulation techniques.
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3.4.3.3 We will here discuss practical aspects of Panjer recursion, as a full

derivation of the formulae falls beyond the scope of this paper. A good

recent theoretical reference for the basic technique is Dickson [2], which

does not apply the technique to reinsurance conditions. Other useful

references are Beard et al [3] and Straub [4]. There are in fact not many

papers on the application of Panjer recursion to aggregate conditions, so we

will work out an example below in some detail,

3.4.3.4 When can Panjer recursion be used to calculate the aggregate claims

distribution? There are basically two prerequisites. The first one is that the

claims frequency distribution must be possible to express in a recursive way,

as

where pk is the probability of k claims and a and b are parameters. This

condition is satisfied for many useful distributions including the Poisson,

negative binomial and logarithmic distributions. The parameters a and b are

particularly simple for the Poisson process, a equals zero and b the intensity

parameter of the distribution.

3.4.3.5 The second prerequisite for being able to use Panjer recursion is even less of

a restriction. The formulae work on a discrete severity distribution, not a

continuous one, so therefore one has to be able to discretize the distribution

used. Naturally, approximating for instance a Pareto distribution with a

discrete distribution in a large number of equidistant sample points would

come very close to using the Pareto distribution itself One of the attractive

features of Panjer recursion, though, is that all practical evidence indicates

that the number of sample points can be small, say between 5 and 20, and

the accuracy will still be very good.
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3.4.3.6 Now for the actual formulae. Let qi be the value of the discrete severity

distribution in sample point xi, the ith sample point. Let furthermore f(xj) be

the aggregate probability· density at Xj, f0, the probability of no loss, and s the

highest index for a sample point. Then, Panjer's core recursion formula says

that

This is obviously not difficult to programme in any programming language,

or for example a Visual Basic macro for a spreadsheet. The extension to

calculate the cumulative distribution function from the density is

straightforward, keeping in mind that this one will also by necessity be

discretized.

3.4.3.7 As there are so relatively few papers applying Panjer recursion to

reinsurance, we will here go through the specialisation to the Poisson-Pareto

case, and look at how to apply the result to calculate the effect of an AAD.

Let us denote the Poisson intensity v, and use the continuous Pareto density

cuxu-1, where c is a suitable constant, and u is the shape parameter. We will

use R, L and U for the retention, cover limit and upper point. A simple

discretization for i = 0, 1, ... s and xi= R, R+Li/s,... U, gives qi = cuxiu-1L/s

for i = 0, 1, ... s-1 and with obvious possibilities to improve

accuracy using a less simplistic discretization technique. Panjer's recursion

equation, now reads

In order to estimate the effect of an AAD to an x/1 treaty, the only thing one

has to do is to integrate (which reduces to a sum and can be done in a
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spreadsheet, as the distribution is discrete) this aggregate distribution with

the condition that the corresponding loss is reduced by the AAD (but always

stays non-negative).

3.4.3.8 Typical reinstatement conditions for property risk x/1 treaties often have a

few cheap, or free, reinstatements followed by increasingly expensive ones,

usually depending on if it is a bottom, medium or top layer. Any

combination of reinstatements and AAD's can easily be treated by the Panjer

recursion formula, and AAL's are nothing else than a special case of

reinstatements, mathematically speaking. Thus, the Panjer technique can

cope with most common situations in property business. No claims bonuses

can also often be incorporated, however they are less common, and often

require special treatment with simulation techniques because of

combinations with other multiperiod conditions.

3.4.3.9 The Panjer technique has shown very powerful and versatile in a number of

companies, as well as easy to implement, and will very likely gain even more

ground over the next few years, in the London market and elsewhere. As

said in a previous paragraph, the results are relatively insensitive to the

number of discretization points, and there are few other parameters to

select. The only other practically important issue is probably the decision of

how long a tail for f(Xj), i.e. the number of discretization points one wants to

calculate for the aggregate distribution. If one has say s = 20, and the

number of losses in the tail of the distribution is more than 10, this means

that the sum in the recursion formula will have to be iterated more than 200

times, which may slow it down a bit, depending on the computer solution

chosen. Few property x/1 treaties have more than a couple of expected

losses per year, so a case with 10 losses is certainly an extreme one.
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3.4.4 Simulation Techniques

3.4.4.1 In [5], attention was drawn to the versatility of simulation techniques and

the widespread use of these in the reinsurance industry by actuaries. It is not

the purpose of this paper to teach actuaries how to perform simulation

studies, suffice it here to say that the technique is

• extremely flexible - and there is probably no reinsurance treaty that

cannot be modelled in a simulation,

• very illustrative - as the loss scenarios are shown explicitly in detail

to the analyst, but

• sometimes slow - both the modelling and the executions can be a bit

cumbersome, especially when one wants to vary many parameters

and conditions.

In this short section, we will just illustrate what can be done by simulation

techniques by way of an example, an aggregate risk excess of loss treaty

with some unusual features from the European market.

3.4.4.2 The example treaty (which has been doctored slightly for the purpose of this

paper) covers commercial and industrial property losses from a relatively big

insurance company. The treaty loss is calculated by adding up the 10 biggest

losses from ground up, in one year, and applying a layer of £3m x/s £3m to

the aggregate loss. The cedant has the right, but not the obligation, to renew

the treaty for up to three years, and will receive a profit commission of 20%

of total premiums minus total claims and brokerage after three years if he

does so. The cedant also has a risk x/1 programme inuring to the benefit of

this treaty, which in practice means no individual loss can exceed £lm.

3.4.4.3 Obviously, neither a TLO approach nor distribution calculus according to

Panjer would be feasible to carry out in this case. With a simulation software
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however, the modelling just becomes a question of following the steps

outlined in the treaty wording, and trying to find statistical data for the loss

distributions necessary.

3.4.4.4 In our example treaty, let us assume that our from ground up losses are

Pareto distributed, and that we know a suitable shape parameter and the

frequency of losses at a certain observation point. These are by no means a

trivial assumptions, as we will have to take into account the change in

portfolio size and inflation in history to estimate them. With analytical

probability theory, it would be relatively cumbersome to find a dosed

expression for the distribution of the ten largest losses, but simulations avoid

this complication. We simply simulate the outcome for a large number (say

50) of losses, and select the biggest ten in each set of outcomes. This can be

done fairly conveniently in most modern simulation packages/spreadsheets.

There is also the complication of choosing a small enough threshold to

always get at least ten non-zero losses in the simulation, but since our

interest in is a layer in excess of £3m in the aggregate, we would not have to

consider very small losses.

3.4.4.5 Having added up the biggest 10 losses, we just proceed to set them against

the aggregate layer, working out the expected result in a number of

simulations

3.4.4.6 In order to account for the profit commission clause, we will have to make

assumptions about circumstances under which the cedant would renew the

treaty. One could, for instance, imagine a modelling rule saying that the

cedant would renew the treaty unless the result in the first year was too

good for the reinsurer, or even that the cedant would do this with a certain

probability. With the renewal model worked out, it is simply a matter of
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duplicating the one-year model, running it for three years in each execution

of the simulation, and finally working out the (expected) impact of the profit

commission clause from a large number of simulations.

3.4.4.7 The above model will now, at least in spreadsheet-based simulation

packages, have become somewhat slow to execute. Despite this, the

illustrations produced and the fruitful discussions that can be triggered by

showing the model both internally to underwriters and externally to cedants

can be invaluable to a better understanding of the cedant's needs and an

agreement of a fair price,
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Appendices

Appendix A. Accumulated Loss Cost Distribution by % of Insured Value

X% of
Insured
Value

1
2
3
4
5
6
7
g
9

10
15
20
30
40
50
60
70
80
90

100

Losses <= x
# $000

114,519
134.568
143,967
149.339
152.655
154,742
156.118
157.165
157.909
158,541
160,132
160.808
161,415
161,780
162.022
162,225
162,365
162.499
162,624
163.923

60,964
90.542

111,091
126,695
138,424
147,163
153,887
159,621
164.195
168.476
182,589
190.571
200,732
209,715
217,337
225,270
231.490
238.725
247.005
325.457

Losses > x
$000

264,493
234,915
214,366
198,762
187,033
178,294
171.570
165,836
161,262
156,981
142,868
134,886
124.725
115,742
108,120
100,187
93,967
86,732
78.452

0

1st x% in
Losses > x

$000

36,498
42,051
42,068
40,271
38,513
37,435
36,923
36,446
36,418
36,175
37,515
41,014
49.198
55,331
60,804
64,367
68,456
70,594
70,741

0

1st x% cost

97,462
132,593
153,159
166,966
176,937
184,598
190,810
196,067
200,613
204,651
220.104
231,585
249,930
265.046
278,141
289.637
299,946
309,319
317.746
325.457

1st x% cost
Distribution

%

29.9%
40.7%
47.1%
51.3%
54.4%
56.7%
58.6%
60.2%
61.6%
62.9%
67.6%
71.2%
76.8%
81.4%
85.5%
89.0%
92.2%
95.0%
97.6%

100.0%

172

$00 0
(3) - (5)



Appendix B. Company Ά' First Loss Table

X
1,00

1,20

1.40

1.60

1.80

2.00

2.10

2.20

2.3

2.40

2.50

2.60

2.70

2.80

2.90

3.00

3.10

3.20

3.30

3.40

3.50

3.60

3.70

% loss < x
22.4

23.5

24.7

25.8

27.0

28.1

28.4

28.7

29.0

29.3

29.6

29.8

30.1

30.4

30.7

31.0

31.6

32.1

32.7

33.3

33.9

34.4

35.0

% loss < x
10.00

12.00

14.00

16.00

18.00

20.00

21.00

22.00

23.0

24.00

25.00

26.00

27.00

28.00

29.00

30.00

31.00

32.00

331/3

34

35

36

37

Β
54.0

56.3

58.6

60.9

63.2

65.5

66.6

67.8

68.9

70.1

71.2

72.0

72.7

73.4

74.1

74.8

75.6

76.3

77.0

77.3

77.6

78.0

78.4

% loss < x
56

58

60

62

64

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Β
84.1

84.6

85.0

85.5

86.0

86.4

86.7

86.9

87.1

87.3

87.6

87.8

88.0

88.3

88.5

89.0

89.4

89.9

90.3

90.8

91.3

91.7

92.2
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χ

3.80

3.90

4.00

4.10

4.20

4.30

4.40

4.50

460

4.70

480

4.90

500

6.00

7.00

7.50

8.00

9.00

% loss < χ

356

36.2

36.7

37.3

37.9

385

39.0

39.6

40.2

40.8

41.3

41.9

42.5

44.8

47.1

48.2

49.4

51.7

% loss < χ

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Β

78.8

79.2

79.5

79.9

80.2

80.4

80.8

81.1

81.5

81.8

82.1

82.4

82.7

83.0

83.2

83 4

83.7

83.9

% loss <
χ

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Β

92.6

93.1

93.6

94.0

94.5

94.9

954

95.9

96.3

96.8

97.2

97.7

98.2

98.6

99.1

99.5

100.0
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