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The ”teaching a kid math” analogy



Machine Learning
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All about 

patterns!!!
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Then performs operations on its own

All about patterns!!!

Computer systems learn
from data

We train the system System learns Then performs operations on its own
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Training phase 1: data is 

fed into the algorithm, 

relevant fields and 

records sorted from data 

to retrieve active dataset

All about patterns!!!

Computer systems learn
from data

We train the system System learns Then performs operations on its own
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All about patterns!!!

Computer systems learn
from data

Training phase 2: Model Fitting –

algorithm decodes hidden patterns and 

relationships in the data

We train the system System learns Then performs operations on its own



The Roadmap
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All about patterns!!!

Computer systems learn
from data

Testing phase: new data fed into system, 

algorithm uses patterns & relationships learnt 

during the training phase to predict new cases

We train the system System learns Then performs operations on its own



Types of Algorithms
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Source: Data Science Central



With ML, no need to…
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• …make assumptions about distributions
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With ML, no need to…

• …make assumptions about distributions

• …worry about possible correlations between predictors
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With ML, no need to…

• …make assumptions about distributions

• …worry about possible correlations between predictors

• …look for interactions between predictors
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Source: Wikipedia

Model is grown by recursively splitting the data 

into decision boundaries using the feature 

space
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Source: Wikipedia

Model is grown by recursively splitting the data 

into decision boundaries using the feature 

space
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• Converts weak learners into a single strong learner by aggregating them



Boosting
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• Converts weak learners into a single strong learner by aggregating them

Model 1

Data

Residuals Model 2

Residuals …

Final 

Model



Artificial Neural Networks
Making computers think like we do!
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Artificial Neural Networks

Structured Sequential model
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Structured: A Neural Network has a defined structure that 

consists of 3 types of layers

Sequential: Information flows in a sequence from one 

layer to the next, undergoing operations at each layer –

almost like an assembly line 



How ANN’s Work
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How ANN’s Work

• Data in every neuron is transformed by an activation function:
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ℎ𝑘 𝑥 = 𝑔(𝛽0𝑘 + 

𝑖=1

𝑛

𝑥𝑖𝛽𝑖𝑘)

ℎ𝑘(𝑥) – kth neuron in a hidden layer
𝛽𝑖𝑘 - coefficient of the ith previous-layer neuron on 

above neuron



How ANN’s Work

• Data in every neuron is transformed by an activation function:

• Activation function transforms the linear combination of inputs from one layer 

and sends it to the next layer.
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ℎ𝑘 𝑥 = 𝑔(𝛽0𝑘 + 

𝑖=1

𝑛

𝑥𝑖𝛽𝑖𝑘)

ℎ𝑘(𝑥) – kth neuron in a hidden layer
𝛽𝑖𝑘 - coefficient of the ith previous-layer neuron on 

above neuron



How ANN’s Work
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Source: MDPI



How ANN’s Work
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Source: ExtremeTech
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Source: ExtremeTech

At first, each neuron is randomly assigned a weight – this measures the contribution of that neuron to the next layer

How ANN’s Work
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Source: ExtremeTech

Data flows through network, predicted values calculated

How ANN’s Work
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Source: ExtremeTech

Predictions are compared with actuals based on a loss function

How ANN’s Work
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Source: ExtremeTech

Weights are updated to reduce value of loss function

How ANN’s Work



What does it mean to “learn”?
Gradient Descent
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Gradient Descent 
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Gradient Descent 

18 April 2019 39

We are here



Gradient Descent 
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Want to go there



Gradient Descent
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• Modelling continues until the following is minimized:



Gradient Descent
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• Modelling continues until the following is minimized:

∇WL =
𝛿𝐿

𝛿𝑊
Gradient of the Loss function – measures change in 

loss function as model weights change



Gradient Descent
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• Modelling continues until the following is minimized:

• The above function is computed and a step is taken in the direction where it is 

minimized the most relative to our current position

∇WL =
𝛿𝐿

𝛿𝑊
Gradient of the Loss function – measures change in 

loss function as model weights change



Gradient Descent
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• Modelling continues until the following is minimized:

• The above function is computed and a step is taken in the direction where it is 

minimized the most relative to our current position

• Size of this step is the learning rate

∇WL =
𝛿𝐿

𝛿𝑊
Gradient of the Loss function – measures change in 

loss function as model weights change



Optimizing Neural Networks with GD

• Suppose for Neuron A and iteration t, the weight was found to be 𝑊𝐴(𝑡)
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Optimizing Neural Networks with GD

• Suppose for Neuron A and iteration t, the weight was found to be 𝑊𝐴(𝑡)

• Then, for iteration t + 1, weight is optimized to:
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𝑊𝐴 𝑡+1 = 𝑊𝐴 𝑡 − 𝜂∇𝑊𝐴 𝑡 𝐿

• 𝜼 – Learning Rate Multiplier

• 𝜵𝑾𝑨 𝒕 𝑳 – Gradient of Loss Function w.r.t. weight 

of Neuron A at iteration t



Optimizing Neural Networks with GD

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that
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Optimizing Neural Networks with GD

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that

– No method to check if full convergence is achieved

– What if different parameters work differently and require different optimization rates?
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Optimizing Neural Networks with GD

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that

– No method to check if full convergence is achieved

– What if different parameters work differently and require different optimization rates?

• Stochastic Gradient Descent: Compute gradient for each individual 

point in the training sample and update weights iteratively for every 

sample
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Optimizing Neural Networks with GD

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that

– No method to check if full convergence is achieved

– What if different parameters work differently and require different optimization rates?

• Stochastic Gradient Descent: Compute gradient for each individual 

point in the training sample and update weights iteratively for every 

sample

– Too slow – Might cause algorithm to crash or give up for extremely large datasets, thus 

potentially preventing full convergence

18 April 2019 50



Adaptive Learning - RMSProp
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Adaptive Learning - RMSProp
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• Different parameters may have different gradients



Adaptive Learning - RMSProp
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• Different parameters may have different gradients

• For each weight, RMSProp computes the moving average of its squared 

gradients



Adaptive Learning - RMSProp
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• Different parameters may have different gradients

• For each weight, RMSProp computes the moving average of its squared 

gradients

• Current gradient is divided by the square root of this average

𝐸 𝑔2 𝑡 = 𝛽𝐸 𝑔
2
𝑡 −1 + 1 − 𝛽 (∇𝑊𝐴 𝑡 𝐿)

2

𝑊𝐴 𝑡+1 = 𝑊𝐴 𝑡 −
𝜂

𝐸 𝑔2 𝑡
∇𝑊𝐴 𝑡 𝐿

• 𝜷 – Moving Average Parameter (0.9 is a good 

value)

• 𝒈 – Gradient of Loss function



Applications to Insurance Data
dataCar from R’s insuranceData package
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Data Description
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• Policyholder-level information on one-year vehicle insurance policies

• 67,856 records with following rating factors –

– Vehicle value in $10,000’s

– Vehicle body type (eg. Sedan, convertible, hatchback, bus & other levels)

– Vehicle age (Levels 1-4 w/1 being the newest & 4 being the oldest)

– Gender of driver

– Area

– Driver age category (Levels 1-6 w/1 being youngest & 6 being oldest)



• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of Claims



Distribution of Claims

• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of raw 

claims data



Distribution of Claims

• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of 

non-zero claims only



Distribution of Claims

• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of the 

logarithm of claims



Models
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Target: Claim 

Cost

GBM

AI 1: HL 

Config. (2500-

1500-600)

AI 2: HL 

Config. (1000-

600-450)

AI 3: HL 

Config. (20-8)



Approach 1 – Standard Fit
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Approach 1 – Standard Fit
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DATA

TRAIN

TEST

GBM

AI 1

AI 2

AI 3

70%

30%



Approach 2 - Stacking
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Approach 2 - Stacking
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DATA

TRAIN

TEST

70%

30%

LAYER-

1

LAYER-

2

50%

50%

AI 1

AI 2

GBM

Average Layer-1 Prediction



Model Comparison
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Model Test RMSE (× 𝟏𝟎𝟐) Test MAE (× 𝟏𝟎𝟐)

Tweedie GLM 9.51 2.702

GBM 10.43 2.168

AI 1: HLC (2500-1500-600) 15.01 3.614

AI 2: HLC (1000-600-450) 14.02 3.641

AI 3: HLC (20-8) 11.89 8.814

Average 11.28 3.112

Stack Model (Approach 2) 9.94 2.387

Model Comparison



Interpreting Machine Learning Models
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Types of Interpretation

18 April 2019 71



Types of Interpretation
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Interpretability

GLOBAL

Trying to understand the 

predictions on an overall level 

– In general, why does a 

model behave the way it 

does?

LOCAL

Trying to understand 

predictions for specific 

records – For a given 

record, what led the model 

to predict what it did? 



Step 1: Building a Surrogate
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Step 1: Building a Surrogate
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Test 

Dataset

Since the Stack isn’t a model by itself, approximate it using a robust model

Complex ML 

Algorithm (Stack)

Simpler Single ML 

Algorithm 

(Surrogate)



Global Interpretation
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Global Interpretation

• Feature Importance

• Interaction Effects
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Feature Importance - dataCar 
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Vehicle Value, Driver Age and 

Geographical Location seem 

to be the key drivers of 

claims



Interaction Effects
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Interaction Effects

• For a feature 𝑓, algorithm computes partial function only dependent on 𝑓 and 

partial function solely dependent on each of the other features

• If variance of full (true) function can be fully explained by the sum of the above 

partials, no interaction is attributed to 𝑓
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Interaction Effects

• For a feature 𝑓, algorithm computes partial function only dependent on 𝑓 and 

partial function solely dependent on each of the other features

• If variance of full (true) function can be fully explained by the sum of the above 

partials, no interaction is attributed to 𝑓
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Full function

(𝐹)

𝒇𝟏

𝑓2𝑓3



Interaction Effects – dataCar
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Vehicle Value, Driver Age and 

Geographical Location seem 

to have the highest average 

overall interaction effects; 

Vehicle Body also strong 



Interaction Effects – dataCar
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Vehicle Value – Interaction 

Effects



Interaction Effects – dataCar
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Driver Age Band – Interaction 

Effects



Interaction Effects – dataCar
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Area – Interaction Effects



Interaction Effects – dataCar
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Vehicle Body Type –

Interaction Effects



Key Takeaways & Conclusions
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ML: The Good and the Not-so-good
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ML: The Good and the Not-so-good
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• The Good:

– Allows for complete model automation

– No need to assume anything about the data, both in terms of rating factors and claim 

distributions

– Can help us draw conclusions about hidden patterns interactions between variables
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• The Good:

– Allows for complete model automation

– No need to assume anything about the data, both in terms of rating factors and claim 

distributions

– Can help us draw conclusions about hidden patterns and interactions between variables

• The Not-so-good:

– Computationally intensive – requires hardware such as GPU’s and fast/powerful 

processors to run efficiently

– Interpretability – Techniques are being developed to improve this 



Conclusions
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Conclusions

• Machine Learning and AI are powerful tools which can aid actuaries in 

decision-making

• AI should definitely be explored and experimented with in addition to using 

more traditional methods such as GLM’s
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Conclusions

• Machine Learning and AI are powerful tools which can aid actuaries in 

decision-making

• AI should definitely be explored and experimented with in addition to using 

more traditional methods such as GLM’s

• No one “right” model – best predictions can come from ensemble models

• Further research being done to improve interpretability of AI, applications of 

Machine Learning in the actuarial realm (fraud detection, reserving)

18 April 2019 94



18 April 2019 95

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views 

stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a 

consequence of their placing reliance upon any view, claim or representation made in this presentation. 

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice 

of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be 

reproduced without the written permission of the author.

Questions Comments


