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Pricing for Risk in Financial Transactions 

SUMMARY 

This paper considers the pricing of uncertain cash flows, which includes those arising 
in insurance and reinsurance, using the proportional hazards (p-h) transform pricing 
basis defined by Wang (1995). This basis satisfies all the desirable properties of a 
sound pricing principle including sub-additivity and layer additivity and is a 
generalisation of the classic Standard Deviation Principle of Risk Theory, which 
appears to be valid when the underlying distribution has fixed skewness. The p-h 
basis deals with all distributions, includiig empirical ones, by taking account of all 
their moments in its formulation. 

This framework does not depend on any financial or economic theory (e.g. MPT) or 
model (e.g. CAPM) but associates a risk loaded price to an index 1. Pricing 
cycles are simply changes in this index. Market sentiment may also impact this index. 

This paper outlines and illustrates the use of the p-h basis for a range of insurance and 
reinsurance examples and then investigates the characteristics of the resulting risk 
loadings for a range of underlying distributions. The identitication of the implicit risk 
aversion level (RAL), or index , is investigated for a number of financial 
transactions, including simple games of roulette, a gamble on a lottery and an 
investment in premium bonds. A speculative attempt is also made to identify a 
historic asset market risk free rate and index . The Black-Scholes option pricing 
formula is also investigated and found to be pricing at the risk aversion index = 1, 
which is an expected value with no risk loading. 

Finally a number of potential applications are discussed, such as identification of 
‘appropriate risk discount rates’ in valuation type exercises, such as embedded, 
appraised and shareholder value calculations, the setting of target product profit 
margins, capital allocation and portfolio optimisations. 
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1. INTRODUCTION 

1.1. Pricing Cash Flows in Financial Transactions 

The pricing of a stream of uncertain cash flows is a fundamental challenge for any 
financial institution, be it a life or non-life insurance or reinsurance compaany, a 
lending institution or an investor in corporate bonds. In principle, as these institutions 
need to produce a profit, or service capital, they need to charge something in excess 
of the expected present value of the cash flow stream after expenses. 

It is generally accepted that cash flows with the same expected present value warrant 
progressively higher market prices as the ‘uncertainty, variability or risk’ inherent in 
these cash flows increases. Finding a simple measure of this variability for such 
pricing purposes has, however, proved to be a very difficult challenge. 

The actual price,-in relation to the expected value, will depend on the level of 
uncertainty (risk) and the risk aversion of the buyer (investor). In a highly risk averse 
environment the maximum price the investor can demand can approach the maximum 
possible value of the cash flows. Exceptionally, the investor may obtain benefits from 
an exchange which reduces the variabiity of his portfolio in which ease the 
transaction may be done at expected value. In other words, the price has to fall 
somewhere between the expected and maximum values, depending on the level of 
uncertainty and the risk tolerance of the investor. 

In practice, the pricing basis has to be capable of producing values in this range and 
also satisfy some other desirable conditions in order to avoid arbitraging situations. 
The most challenging of these conditions is the preservation of layer additivity most 
commonly found in excess of loss reinsurance pricing. 

This paper outlines the proportional hazards (P-H) pricing basis (Wang 1995) which 
satisfies all the desirable conditions and is, in addition, relatively simple to apply in 
practice. All that is required to calculate the risk adjusted price at any given Risk 
Aversion Level (RAL) is the survival function, S(x), of the underlying distribution 
and the integration of the proportional hazard transform of this distribution, given by 
s(x) , over the range 0 to infinity. This is fairly easily done in a spreadsheet by 
numerical integration. 

The paper illustrates the use of the basis for a variety of situations and explores the 
implicit RAL’s of some transactions where the both the market price and the survival 
function are known or can be estimated, before considering potential further 
applications of the framework. 
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1.2. Actuarial (Risk Theory) Premium Pricing Principles 
Insurance works by pooling policies together in sufficiently large numbers so that the 
Central Limit Theorem begins to apply resulting in the reduction of variability in the 
aggregated losses arising from these policies. 

Although this diversification, which arises from the assumed claims independence of 
the underlying policies, may substantially reduce the portfolio variability, it does not 
eliminate it totally and consequently the insurer needs to charge something in excess 
of the expected losses and expenses for taking on this residual exposure to losses in 
excess of those expected and in order to compensate the shareholders who provide 
the capital (solvency) necessary for the transactions to take place. There may also be 
other factors he needs to consider, such as changes in economic conditions and the 
legal environment, that may increase the portfolio variability further. 

The stochastic element of the insurance claims process, or Risk Theory, continues to 
be an area of intense study. In this framework, the expected losses are, confusingly, 
called the ‘risk premium’. Ignoring the impact of the cash flow timings and expenses, 
it is evident that the insurer needs to charge more than these ‘risk premiums to 
remain solvent. This loading of the risk premiums, or safety loading, as well as the 
inherent variability of the portfolio loss experience, can then be shown to play a key 
part in the security or solvency of the insurer as measured by probabilities of ruin. 

Whilst this is a theoretically appealing and sometimes elegant theory, it is far too 
simplistic in the real world where, for example, the solvency of an insurer is primarily 
driven by external factors, such as changes in market asset values, pricing cycles with, 
perhaps, catastrophe losses being the major stochastic claims component. Note that 
the use of the term risk so early in the development of this theory is very misleading 
as it describes expected outcomes and takes no account of variabiity in these 
outcomes. To avoid confusion we will refer to this expected value as the pure 
premium. 

The relationship between the premium required, the safety loading and the pure 
premium can be expressed very Simply by the following equation: 

Required Premium = Pure Premium + Safety Loading 

It is more convenient to express this relationship as follows 

where the E(P) is the expected loss or pure premium and P is the required loaded 
premium at some safety loading coefficient . 
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The search for a ‘premium principle’ has resulted in a large number of proposals 
with, perhaps, the ‘expected value’, ‘standard deviation’ and ‘variance’ principles 
being the most common. These may be expressed as follows: 

Expected Value Principle: 
Standard Deviation: 
Variance Principle: 

As a generalisation of these principles we can express the safety loading as a linear 
combination of these moments as follows: (see Daykin et al 1994) 

Safety Loading 

None of these principles satisfy all of the basic conditions expected of a sound basis 
for pricing for risk (see Sundt 1984). In the case of the variance principle, or a basis 
that includes a variance term, we are also adding two values of different dimensions 
(£ and£2) which seems somewhat strange as well as inconsistent. 

The lack of success in this key search for a sound pricing basis has hindered real 
progress in actuarial pricing methodology. Practical solutions have been developed, 
such as Profit Testing in Life Assurance, but invariably these rely on subjective 
selections of notional capital amounts or risk discount rates. 

Whilst neither of these approaches is wrong, as we will see in Section 6, we need to 
find a more objective basis for determining these values rather than relying on 
experience, judgment and perceived market wisdom. The P-H methodology provides 
such a framework. 

The identification of a robust premium principle and the potential uses of such a 
framework is the main focus of this paper. We seek a sound basis for adjusting 
expected values to allow for the riskiness, or variability, in the outcome. Ideally we 
would like to be able to say that the basis is the unique solution to this quest. It is 
currently the only such solution, but proving its uniqueness is far beyond the scope of 
this paper. 

69 



2. THE PROPORTIONAL HAZARDS PREMIUM BASIS 

2.1. The Survival Function Of Random Variable 

The Survival Function S(x) of a random variable X, is the probability that the value 
exceeds x. In other words, 

where F(x) is the Distribution Function. The S(x) starts at 1 when x = 0 and 
decreases to zero at the variable approaches its maximum value, M. 

For non-negative random variables X, which includes all the cases we would meet in 
a pricing environment, the expected or mean value of X, E(X), is given by integral of 
the survival function over the range from zero to infinity. 

Proof: Let f(x) and F(x) be the density and distribution functions respectively, then 

It is helpful to visualise this result as the mean of the variable is equal to the area 
under the survival function curve. This observation facilitates all the subsequent 
calculations, particularly where the results are obtained from a simulation. 

2.2. Proportional Hazards Risk Adjusted Premiums 
Given a random variable X with survival function S(x), define a new random variable 
Y whose survival function, S(y), is given by 

,where 

The mapping is called the proportional hazards (P-H) transform which is 
a well known transformation in statistics, attributed to Cox. Note that S(y) S(x). 
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Wang (1995) defines the P-H risk-adjusted premium for a policy or portfolio with 
expected losses described by a positive, random variable X as the mean of the 
transformed distribution given as follows: 

This formula enables us to calculate the risk adjusted premiums at any value of 
once we have obtained or estimated the underlying survival function either by 
integration of an analytic function or by numerical integration. In either case we need 
to ensure that we are integrating over the complete range (0 to ) and not just the 
range of our variable X. 

The following chart shows a simplified survival function for a variable and its P-H 
transform. The areas under the two lines give the mean (risk premium) and the risk- 
adjusted premium respectively. The area between the two lines can be interpreted as 
the additional premium required to pay for the variability at the particular RAL . 

Figure 2.1. The Survival Function and its P-H Transform 

We note that we can calculate these values fairly easily for any value of , once we 
have the underlying survival distribution. The easiest way to estimate this function is 
to develop a model of the cash flows and then use simulation to estimate the survival 
function. Once we have the survival function we can simply use numerical integration 
to produce risk-loaded premiums at various RAL values. Numerical integration is 
easily implemented in a spreadsheet and a data-table then then be set-up to show the 
risk adjusted premiums for different values of . 
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2.3. Basic Properties of the P-H risk-adjustedpremium 

The p-h risk adjusted premium basis satisfies all the properties required of a sound or 
desirable (actuarial) pricing principle, including linearity, layer additivity and sub- 
additivity. These are outlined below. Details and proofs can be found in Wang 
(1995). 

Positive Loading and No Rip-Off 

As the transformed distribution survival function S(y) is greater than the underlying 
S(x) for all x, clearly the expected value of Y will exceed the expected value of X for 
all 1. This is the so-called Positive Loading property. 

The mean of this transformed distribution also increases as increases and it can be 
shown that as p tends to infinity the transformed mean tends to the maximum value 
of the underlying distribution. In other words the mean of the transformed 
distribution can take any value from the mean to the maximum value of the 
underlying distribution, as the ‘risk-aversion’ index increases from 1 to infinity. 
This is the so-called No Rip-off property. 

Preservation of Stochastic Order 

The two variables P and Q are said to be stochastically ordered if the survival 
function of one is at least equal to the survival function of the other for all values 
from 0 to infinity. In such cases, the risk adjusted premiums, at a given , will always 
preserve this order. So, if Sp(t) S (t) for all t 0, then (P) (Q) for all 1. 

Linearity and scale invariance 

Linearity means that ( X+ ß) = œ (X)+ß. Apart from avoiding obvious 
problems with scale conversions, such as currency translation, this property is useful 
as it corresponds with what happens with a quota share treaty, where we see that 
(X) = ( œ X) + ({ l- œ }X). 

Layer additivity 

Layer additivity is a crucial property when we consider what happens in the much 
more complex case of excess of loss reinsurance. Here our premium principle has to 
preserve layer costs, that is the pricing of two adjacent layers should equal the price 
of the one combined layer for a given value of . If this is not the case then the 
premium principle would imply existence of arbitrages which would be difficult to 
justify. 
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Let L(a,b) denote the excess of loss layer from a to b, (i.e. (b-a) excess of a). 
Suppose that we have two adjacent layers L(a,b) and layer L(b,c). These two layers 
can then be combined to a single layer L(a,c). If we denote the risk adjusted premium 
for the layer L(a,b) at a risk aversion level p by IIp(L(a,b)) then under the PH 
transform we have: 

This is a particularly useful and powerful result and can be validated by simulation. 
The proof can be found in Wang (1995). Anyone tempted to check this result should 
bear in mind that in case of limited reinstatements the combined layer will provide 
more cover and so should attract higher premiums. 

2.4. Sub-additivity and Synergy Value 

It can be shown that, for two non negative random variables, X and Y, the risk- 
adjusted premium for the combined portfolio, X+Y, at any given RAL p,described 
by IIP,(X+Y), satisfies the following inequality: 

where IIP (X) and IIP(Y) denote the risk-adjusted premiums for the individual 
portfolios. This is a key property and the one that the variance principle fails to 
satisfy. (see Sundt 1984). Note that if it it does not hold, then we can reduce the cost 
of insurance by dividing the cover into two or more sections. 

Synergy Values 

The sub-additivity property expresses in symbols what we would normally describe as 
risk diversification. This observation leads naturally to the following definition. 

Let Synergy be defined by where 

Prom the sub-additivity inequality we see that is positive for all

This apparent ‘saving’ from the aggregation of the portfolios is what is commonly 
described as synergy value although it is rare for synergy value to be defined 
objectively. Our formal definition not only defines synergy on an objective basis but 
also shows how this value is, as we would expect, dependent on the RAL level, p, at 
which we are pricing. This has uses and implications in many areas involving 
‘valuations’ and ‘optimisations’. 
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3. SOME BASIC RESULTS OF THE P-H PRICING BASIS 

3.1. Risk Loads for Normally distributed variables 

The following table shows the ratio of risk adjusted values to the underlying mean, or 
the Risk Aversion Factors (RAF), for various values of a Normal variate with varying 
coefficient of variation. As the cumulative distribution function does not have a 
closed form, these values were calculated by numerical integration. 

Table 3.1 Risk Aversion Factors (RAF,) for a Normal Variable. 

Coefficient of Variation 
RAL 5% 7.5% 10% 12.5% 15% 20% 25% 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.2 1.008 1.013 1.017 1.021 1.025 1.034 1.042 
1.4 1.016 1.024 1.032 1.040 1.048 1.064 1.080 
1.6 1.023 1.034 1.046 1.057 1.069 1.092 1.115 
1.8 1.029 1.044 1.058 1.073 1.088 1.117 1.146 
2 1.035 1.053 1.070 1.088 1.105 1.140 1.175 
3 1.059 1.088 1.118 1.147 1.176 1.235 1.294 
5 1.090 1.135 1.180 1.225 1.270 1.359 1.449 

Let us now define the Standardised Risk Loadings (SRL ) at RAL , as the ratio of 
(RAF -1) to the coefficient of variation. The values are shown below. 

Table 3.2. Standardised Risk Loadings (SRL ) for a Normal Variable 

Coefficient of variation 
RAL 5% 

1 0% 
1.2 17% 
1.4 32% 
1.6 46% 
1.8 58% 
2 70% 
3 118% 
5 80% 

7.5% 
0% 
17% 
32% 
46% 
58% 
70% 
118% 
180% 

10% 
0% 
17% 
32% 
46% 
58% 
70% 
118% 
180% 

12.5% 
0% 
17% 
32% 
46% 
58% 
70% 
118% 
180% 

15% 
0% 
17% 
32% 
46% 
58% 
70% 
118% 
180% 

20% 
0% 
17% 
32% 
46% 
58% 
70% 
118% 
180% 

25% 
0% 
17% 
32% 
46% 
58% 
70% 
118% 
180% 
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The above table shows that for the range of coefficients of variation and RAL 
tabulated the SLR’s are dependent only on the RAL . This is a restatement of the 
Standard Deviation Principle discussed in Section 2.1. as we can see by restating this 
from P =E(P) + ß * SD(P) to P = E(P) (1+ * Coefficient of Variation). 

The p-h framework simply enables us to derive the shape of this as we vary . The 
following chart shows this relationship. 

Figure 3.1 Risk Aversion Loads for Normal Variables 

The relationship between the SRL and the RAL can be approximated fairly 
accurately by a quadratic curve. This provides a simple means of estimating the RAF 
at any RAL, , at least in the range 1 5, simply from the coefficient of variation 
of the distribution, as long as the coefficient of variation does not exceed 25% so that 
almost all the values are positive. 

For example, the RAF, at = 1.7, for a Normal variable with a coefficient of 
variation of 8% can be calculated as follows: 

RAF = 1 + 0.08 * (-0.0733*1.72+ 0.8807*1.7 - 0.7796)= 1.0405 

These results provide justification for the use of the standard deviation as a 
measure of risk is cases where the distribution can be assumed to be normal 
and positive. 
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3.2. Symmetric distributions and risk loadings 

We saw in the previous section that in the case of the Normal distribution, the risk 
adjustment, at a given RAL, is proportional to the coefficient of variation. This 
property appears to hold for all the other symmetric distributions tested and can be 
demonstrated mathematically for some of these distributions. This is left to the reader 
to test and explore further. 

The following chart shows the resulting relationships between the SRL and the RAL 
for a number of these standard symmetric distributions as well the ‘symmetric’ 
Weibull (skewness of zero). The kurtosis of this Weibull is 2.7 slightly below that of 
the Normal distribution which has a kurtosis of 3. 

Figure 3.2. Risk Aversion, Symmetry and Kurtosis 

The labels in the chart identify the kurtosis of each of these distributions and chart 
demonstrates that increasing the kurtosis appears to increase the risk loading, all else 
(lower moments) being equal. 

This simple example suggests that the P-H framework incorporates a kurtosis 
component in its risk loadings, and that at least the first three moments of the 
distribution are significant contributors to the risk loading. 
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3.3. Risk Loadings for a Distribution with Fired Skewness 

The Extreme Value, or Gumbel, distribution finds application in a many diverse areas 
of study. It is best described by its distribution function: 

ExtremeValue ( a, b) : F(x) = exp ( - exp( -( x - a )/b ) 

where x ranges over the real line and b is positive( b >0). 

The mean of this distribution is equal to ( a + .577 b) and the standard deviation is 
equal to ( 6). The skewness and kurtosis are both invariant, at 1.14 and 5.4 
respectively. (See Evans, Hastings & Peacock (1993)). 

The following table shows the risk adjustment factors on the mean at various RAL 
values for a range of coefficients of variation obtained by numerical integration. 

Table 3.3 Risk Loads for the Extreme (Gumbel) Distribution 

RAL 

1 
1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

Risk Loading Factors Standardised Risk Loading 

coefficient of Variation 
10.2% 19.6% 

1 1 
1.02 1.038 
1.039 1.074 
1.057 1.109 
1.075 1.143 
1.093. 1.177 
1.11 1.21 

1.127 1.243 
1.144 1.276 
1.161 1.308 
1.178 1.341 

24.0% 5.2% 
1 0 

1.046 0.192 
1.09 0.376 
1.133 0.555 
1.175 0.73 
1.216 0.903 
1.257 1.073 
1.297 1.241 
1.337 1.408 
1.377 1.574 
1.417 1.738 

10.2% 
0 

0.192 
0.376 
0.555 
0.73 

0.903 
1.073 
1.241 
1.408 
1.574 
1.738 

Factors 
Coefficient of Variation 

19.6% 
0 

0.192 
0.376 
0.555 
0.731 
0.903 
1.073 
1.241 
1.408 
1.574 
1.738 

24.0% 
0 

0.192 
0.376 
0.555 
0.731 
0.903 
1.073 
1.241 
1.408 
1.574 
1.738 

5.2% 
1 

1.01 
1.02 
1.029 
1.038 
1.047 
1.056 
1.065 
1.074 
1.083 
1.091 

We can see from the left portion of this table that the risk loading increases as we 
increase the RAL and the coefficient of variation, as we would expect. The right 
portion of this table shows the result of ‘standardising’ these loadings by the 
coefticient of variation and produces a somewhat surprising result. As we found in 
the case of the ‘symmetric’ distributions there appears to be a relationship between 
the coefficient of variation and the RAF for each RAL also for the Extreme Value 
distribution. Note also that for the range of RAL shown in the Table, the standardised 
percentage loads can be approximated by a simple linear form : y = 0.865x - 0.8399. 
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3.4. Risk Loads for a Distribution with Variable Skewness 

The Weibull distribution, with scale parameter b and shape parameter c, has a 
particularly convenient Survival function (See Evans et al (1993)). 

Weibull ( b, c) : S(x) = exp (- x/b) c 

We can see that the PH Transform is also a Weibull described by W ( b, c/p ). The 
mean of the Weibull is given by b * [ (c + l)/c)] and so the ratio of the risk 
adjusted to the expected value (or RLF) will be independent of the b parameter. The 
coefficient of variation and kurtosis are also independent of this parameter. The 
following table shows the risk adjustment factors on the mean at various RAL values 
for a range of coefficients of variation. 

Table 3.4 Risk Loadings for the Weibull Distribution (variable skewness) 

RiskloadingFactors Standardised%RiskLoad 
RAL CoefficientofVariation CoefficientofVariation 

12.0% 36.3% 52.3% 100.0% 12.0% 36.3% 52.3% 100.0% 
1 1.000 1.000 1.000 1.000 0% 0% 0% 0% 
2 1.072 1.260 1.414 2.000 60% 72% 79% 100% 
3 1.116 1.442 1.732 3.000 97%. 122% 140% 200% 
4 1.149 1.587 2.000 4.000 124% 162% 191% 300% 
5 1.175 1.710 2.236 5.000 146% 196% 236% 400% 

We can see from the above table, as was the case in the previous examples, that the 
risk loads increase as we increase the RAL and the coefficient of variation. In this 
instance the standardised percentage risk loadings increase with both the RAL and 
the coefficient of variation and the earlier apparent relationships between the risk 
loading and the coefficient of variation no longer holds. We are, however, tempted 
to speculate: 

3.5. Conjecture 
The Standard Deviation principle, given in Section 1.2, holds for 
distributions with zero or constant skewness. In other words for a 
given Risk Aversion Level level p , RAL p, , the Risk Aversion Factor 
RAF, can be expressed as: Coefficient of 
Variation, where is a function of . 

This would provide support for the use of the standard deviation as a measure of 
risk where the underlying distributions have fixed skewness, which includes all 
the symmetric ones, and also identifies the limitations of this common basis. 
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4. P-H PRICING IN INSURANCE AND REINSURANCE 

4.1. Pricing a simple insurance product and diversification 
Consider a simple contract of insurance for breakdown cover of a household 
appliance and assume that we know both the frequency and claim severity 
distributions fairly accurately. 

Suppose that the annual frequency is 10% (per annum) and that the claims size 
distribution is described reasonably well by a truncated exponential distribution with 
minimum $30, shape $30 and maximum claim amount of $1000. The expected 
average claim cost is therefore $60 and the annual expected loss is $6. 

Now consider a household, or a small hotel, that has a number of these appliances. In 
order to demonstrate ‘risk diversification’ we will assume that we have 1, 5, 10 and 
50 such appliances on cover. The expected annual costs are then $6, $30, $60 and 
$300 respectively. 

The following table shows the estimated risk adjusted costs at various RAL’s for 
each of these policies assuming that the frequency is Poisson distributed. The 
calculations have been performed by a simulation and numerical integration. 

Table 4.1 Risk Loaded Premiums and Factors for various size portfolios 

Mean 6.0 29.7 59.6 299.8 
Simulated 
Skewness 4 1.8 1.3 0.6 

Risk Loaded Premiums Risk Loading Factors 1+ 
Number of Appliances Number of Appliances 

RAL 
1 
1.2 
1.4 
1.6 
1.8 
2 

2.5 
3 
5 

1 
6.0 
9.6 
13.7 
18 

22.5 
27.2 
38.8 
50.0 
87.1 

5 
29.7 
38.1 
46.5 
54.6 
62.7 
70.6 
89.5 
107.1 
164.8 

10 
59.6 
71.3 
82.5 
93.2 
103.4 
113.1 
135.4 
155.0 
212.6 

50 1 5 
299.8 1.00 1.00 
324.7 1.59 1.28 
347.5 2.26 1.56 
368.7 2.98 1.84 
388.5 3.73 2.11 
407.1 4.50 2.37 
448.9 6.42 3.01 
485.1 8.28 3.60 

10 
1.00 
1.20 
1.39 
1.56 
1.74 
1.90 
2.27 
2.60 
3.57 590.5 14.42 5.54 

50 
1.00 
1.08 
1.16 
1.23 
1.30 
1.36 
1.50 
1.62 
1.97 
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Let us assume, for illustration purposes, that the actual premium per appliance is 
$22.5 We can see from the RAL Table above that this indicates that the pricing, from 
the policyholders perspective, is at an RAL of around 1.8 and the premium is 3.73 
times risk premium (or expected cost for the year). 

For a household with five similar appliances (with the same breakdown 
characteristics) the risk loaded premium at a RAL of 1.8 is 62.7, or 2.11 times risk 
premium. For a housing association with 50 such appliances the risk adjusted 
premium reduces to just 1.3 times the risk premium at the same RAL of 1.8. 

The example assumes that the experience of each of these appliances is identically 
distributed and independent of the other machines. It is not unknown for a particular 
model of an appliance to develop a problem with a component and there is, therefore 
a potential aggregation of risk that may need to be considered in practice. 

The table also shows the reduction in the risk loading at a given RAL as the number 
of appliances increases. We can see, for example, that if the insurer prices these at an 
RAL of, say, 1.8 based on a portfolio of 50 such machines he will be loading his 
expected costs ($6 per machine) by 30%. At such a loading factor the individual 
policyholders are being charged at an equivalent RAL. of around 1.1, that is in the 
absence of expense charges. The fact that they are paying considerably more is due to 
these charges which, in essence, utilise the ‘diversification’ benefits that the insurance 
pooling achieves and turn it into expenses and commissions incurred in facilitating the 
pooling. In the case of such low premium cases both these items may substantially 
exceed the underlying risk premium. 

The informed policyholder needs to consider whether having a large number of low 
risk premium policies, such as extended warranty, appliance breakdown cover, pet 
insurance, dental insurance and so on, makes economic sense given the sort of 
analysis above. There may also be a RAL, such as 1.8, over which the informed 
policyholder may be reluctant to purchase such cover and run the ‘risk’ themselves. 

4.2. Pricing Corporate Bonds (Securitised Catastrophe Exposures) 

The recent developments in the securitisation of insurance risk, particularly the issue 
of catastrophe linked bonds, have led to comparisons between the pricing 
methodologies of traditional catastrophe reinsurers and (bond) rating agencies. 
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In the simplest case, ‘act of god’ bonds behave in exactly the same way as the more 
traditional corporate bonds. On the whole, the bonds will perform without any 
problem. There is, however, a chance of default in which case part or all of the 
capital may be lost. In the case of a l-year bond of 100, the survival distributions 
will look very similar. There will be a probability, that the bond does not repay 
fully and a probability that all the capital is lost and, generally, some smooth line 
joining these two points. These two probabilities and the shape of the curve joining 
them describe the survival function and provide all we need to price these bonds in a 
P-H framework. The nature or origin of the bond is immaterial. 

In the case of the ground-breaking USAA/Residential Re issue in 1997, information 
was provided in the prospectus on the estimated losses at various probabilities, from 
well below the trigger point ( $ lbillion from the ground-up (fgu) losses) up to the top 
limit of the coverage ($1.5 billion fgu). 

For example, the probability of any loss of capital ($lbillion fgu) was just under 1% 
and the probability that all the capital would be lost ($1 .5billion fgu) was just below 
0.4%. The probability of losing half the capital ($ l.25billion fgu) was estimated at 
0.7%. The implicit survival function can be approximated well by an exponential of 
the form: 

S(x) = 0.01 exp( - (.5*ln(.01/.004))x) for x= 0 to 0.5($billion) 
or S(x) = 0.01 exp( -1.833x) for x= 0 to 0.5($billion) 

With our convenient choice of approximate survival function, we can derive a 
formula for the P-H risk-loaded premium at any RAL fairly easily by high school 
integration. The result is given by the following formula: 

(x) = 0.0l * (p / 1.833) * ( 1 - exp ( - 0.9165/ ) ) 

The mean loss of capital ( at = 1 ) is then 0.0033 (billion) or 0.66% of the notional 
$500m of cover if covered by a single full issue. The actual element of the issue that 
had its capital exposed to such a loss was issued at LIBOR plus 567 basis points or 
5.67% ROL (Rate On Line) in reinsurance terminology which, according to the 
above formula, indicates a RAL = 1.77. The LIBOR component simply 
compensates the bond holders at a ‘risk free’ rate. 

Traditional catastrophe excess of loss reinsurance appears to be priced currently 
(1998 renewals) at levels consistent with RAL of around 1.5 to 1.7, although some 
reinsurers would hotly dispute any assertion that these prices are anything above 
expected values, which in p-h methodology equates to = 1 .0. 
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The above analysis indicates that the element of the 1997 USAA deal, where the 
capital was at risk, was done at a fairly high price as measured by the underlying 
RAL, with the investors receiving a very attractive return. In a recent second issue 
for 1998, the cost, for what appears to be very similar cover, is reported to be 400 
basis points over LIBOR compared to the 576 basis points of the 1997 issue. 
Assuming that the underlying probabilities have not changed, the new issue has an 
implicit of 1.57 which, whilst below the 1.77 of the earlier issue, is still fairly high 
and still comparable with the current implicit levels in the more traditional 
catastrophe reinsurance market which is also seeing some price reductions. 

Ultimately, the success of the ART market will depend on the pricing of these 
instruments at much lower RAL’s which, in an options pricing environment, should 
approach values near expected cost or RAL (see Section 5.7). At around =1 .2 
the price, in basis points, would be around twice expected cost which would 
significantly undercut the traditional reinsurance pricing and still provide any 
investors, who find these bonds attractive for diversification purposes, a relatively 
high return. 

4.3. Pricing Catastrophe Excess of Loss Reinsurance 

In the case of an excess of loss contract, the survival function may have a number of 
distinct elements or parts depending on the number of available reinstatements. In the 
case of catastrophe reinsurance one reinstatement at cost is usually available. This 
means that the amount of ‘cover’ available, before reinstatement premiums, is twice 
the layer amount. The following chart illustrates a typical survival function for an 
excess of loss layer, for $20m excess $30m, with one reinstatement 
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Figure 4.1 Survival Function for an Excess of Loss Layer with Reinstatement 

We note that for such covers, with a single reinstatement, the survival function has 
two distinct parts, with a break in the middle, where there is a measurable probability 
of a single event exhausting the available cover for an individual event. Looking at 
the extreme right of the chart we also note that there is a measurable probability that 
the cover is totally exhausted. 

The easiest way to derive these distributions is by simulation. For example a Poisson 
or negative binomial distribution may be used for the frequency of the events and a 
lognormal, Pareto or Burr distribution for the severity of these events. The simulation 
then compounds these distributions and generates the number of events and their 
costs for a large number of one year periods. The reinsurance cover can then be 
matched to these events to estimate the likely recoveries under these assumptions for 
any number of layers of reinsurance. 

Once we have the survival distribution for the layer we can calculate the risk loaded 
premiums at various RAL’s by numerical integration. 

In the chart above the event generating process was modelled by a Poisson frequency 
of 0.5 and a Pareto severity with scale 10 and shape 1.26. The following table shows 
the estimated costs of the layers, with unlimited free reinstatements, for two adjacent 
layers of reinsurance as well as that of the combined single layer, all derived from a 
simulation of 10,000 periods using these parameters. 
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Table 4.2 Risk Adjusted Premiums for Excess of Loss Layers 

Layer 1 Layer 2 Combined 
Limits $3Oxs$30 $4Oxs$60 $7Oxs$30 

Simulated Cost 2.346 1.484 3.830 

RAL Risk Loaded Premiums 
1 2.346 1.484 
1.2 3.706 2.619 
1.4 5.209 3.970 
1.6 6.803 5.469 
1.8 8.451 7.065 
2 10.127 8.719 

2.5 14.325 12.935 
3 18.395 17.062 
5 32.176 30.993 

3.830 
6.309 
9.135 
12.192 
15.395 
18.679 
26.976 
35.066 
62.524 

The observant reader will note that the sum of the first two risk loaded premiums 
does not exactly match that calculated for the combined layer, especially as we 
increase the RAL. This apparent discrepancy is the result of the inaccuracies involved 
with any simulation. Also, as we increase the RAL to the sort of values at the end of 
this table the values at the tail of the distribution are given much more weight and so 
have an increasing influence on the results. This can be overcome by more 
simulations or some smoothing of these extreme values. 

Note that the ability to estimate the implicit RAL at which the market is pricing these 
layers, by comparing derived risk loaded premiums with market premiums adjusted 
for expenses, provides a good index of market pricing hardness or softness especially 
when retention levels are changing. 
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4.4. Pricing and Impact of a Stop Loss Reinsurance 

Consider a portfolio whose loss ratio can be described by the following empirical 
distribution of the loss ratio survival function S(x): 

S(x) = 1, x=0,50% 
S(x) = 6.26 * exp(-3.62*x)-0.026, x=50% - 150% 
S(x) = 0 for x> 150% 

The survival function is shown in the diagram below. As is clear from the description 
above, the loss ratio lies in the range 50% to 150%. 

Figure 4.1 Survival Function of the Gross Loss Ratio of Class XYZ 

We can calculate the expected or mean loss ratio by integrating the survival function: 

Now let us suppose that expenses amount to 18% and that, therefore, on average the 
business makes a 7.1% ‘profit’ but clearly with a high degree of variation. We can 
estimate the risk aversion level implicit in the mean pricing level of this portfolio by 
estimating the RAL at which the risk-adjusted loss ratio is 82%. 
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The following table shows the risk-adjusted values at various risk aversion levels 
(RAL) calculated by numerical integration for the gross account, for a stop loss 
reinsurance for 50% excess 100% of the loss ratio and for the net account after this 
reinsurance, assuming this is priced at a RAL. of 1.6. For simplicity it is assumed that 
the reinsurer will use the same underlying loss ratio distribution to price this stop 
loss. 

Table 4.3. Risk Adjusted Gross Loss Ratios 

RAL Gross 

1.0 74.9% 
1.1 77.1% 
1.2 79.1% 
1.3 81.1% 
1.4 82.9% 
1.5 84.7% 
1.6 86.4% 
1.7 88.1% 
1.8 89.7% 
2.0 92.6% 

P-H Risk Adjusted Loss Ratios 
50% xs 100% 

2.6% 
3.3% 
4.0% 
4.8% 
5.6% 
6.4% 
7.2% 
8.0% 
8.8% 
10.4% 

Net after RI at 
RAL 1.6 

79.6% 
81.0% 
82.3% 
83.5% 
84.5% 
85.5% 
86.4% 
87.3% 
88.1% 
89.5% 

We can see from the above that the implicit gross RAL is somewhere between 1.3 
and 1.4. The table shows that the reinsurers expected loss is 2.6% of the original 
gross premium. However, if he prices his business at a RAL of 1.6 then he will 
require a premium of 7.2% of the original gross premium. 

We can now consider the implications for the insurer after this reinsurance which we 
will assume he views as an additional claims cost. His net losses will now be limited 
to 100% of the original gross premium plus the 7.2% cost of the stop loss cover. As 
the mean recovery from the reinsurance is equal to 2.6% points, his expected average 
result with the reinsurance, against the original gross premium, is now (after 
rounding) 79.5%, that is the original gross ratio of 74.9% less the reinsurance benefit 
plus of 2.6% plus the cost of this reinsurance, which we assumed is 7.2%. 

The insurer still has his expenses of 18% and so, after the stop loss his expected 
average profit margin is reduced from 7.1% to just 2.5%. We see from the above 
table that his implicit, after reinsurance, RAL has now reduced from the original 
gross value of 1.35 to below 1.2. Whether stop loss can still be considered to be the 
‘optimal form’ of reinsurance is left to the reader to investigate now that we have a 
more appropriate pricing basis than the variance type principle. 
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5. IDENTIFYING RAL IN PRACTICE 

5.1. Risk Aversion Level of a Motor Policyholder 

Although motorists are required by law to have third party insurance to cover them in 
case they injure someone, most drivers generally buy more than the basic cover to 
protect themselves against theft of their vehicle and damage they may cause to it. 

They are averse to the potential financial exposure which may run into many 
thousands of dollars and are prepared to pay an amount in excess of their annual 
expected cost to take on the year on year uncertainty. 

Ignoring the impact of investment earnings for simplicity, we can associate a RAF to 
any loss ratio simply as the ratio of premiums to expected losses. For example, if the 
loss ratio is 70% then the policyholder pays $100 to cover an annual expected loss of 
$70 and so is being charged at an implicit Risk Aversion Factor of 100/70=1.43. 

In order to estimate the underlying RAL for the policyholder we need to make an 
assumption about the annual loss distribution. We will assume for the purposes of 
illustration that the probability of a claim in a year is 18.5% and is Poisson distributed 
and that the loss size distribution follows a lognormal distribution with parameters 6 
and 1.55. The mean is then $1,341 and standard deviation $4,252. Simulation is 
used to derive the survival function of the aggregate annual losses for the policy year 
and this is shown in the chart below. 

Figure 5.1. Survival Function for Losses on a Motor policy 
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The average annual simulated loss, from a 10,000 year simulation is $256.1 with a 
standard deviation of $1,745, skewness of 24 and a kurtosis of 930. 

The maximum annual loss simulated was just below $100,000. Note that as this 
distribution is very skew we have used a logarithmic scale for the x-axis. We can see, 
however, that the chance of a loss in a year is around 18% and that the chance of 
annual losses exceeding $1000 is 5%. 

Once we have the survival function we can calculate the Risk Adjusted Premiums 
(RAP) at various Risk Aversion Levels (RAL). The table below shows a range of 
these values together with the Risk Aversion Factors (RAF) or multiples defined as 
the ratio of these risk adjusted premiums to the expected losses. 

Table 5.1. Risk Aversion Table for the Policyholder 

RAP 
256.1 

RAL 
1 

1.02 276.9 
1.04 298.9 
1.06 322.0 
1.08 346.3 
1.1 371.8 

1.12 398.5 
1.14 426.5 

1.175 478.7 
1.2 518.3 

1.25 604.0 
1.3 698.3 
1.5 1164.9 

This table also shows the loss ratio the insurance company would expect if it charged 
the RAP. We can see from the table that if the insurer prices these policies to achieve 
a 70% loss ratio then the policyholder RAL is, approximately, 1.105. When insurance 
prices drop so that the insurer’s loss ratio increases to 80% the policyholder RAL 
drops to 1.06. In other words we could-use the RAL to monitor the pricing cycle. 

RAF 
1 .00 
1.08 
1.17 
1.26 
1.35 
1.45 
1.56 
1.67 
1.87 
2.02 
2.36 
2.73 
4.55 

L RATIO 
100% 
92% 
86% 
80% 
74% 
69% 
64% 
60% 
54% 
49% 
42% 
37% 
22% 

The insurer is not however using either of these RAL’s to price his business as his 
annual motor portfolio survival function will look very different from the individual 
policy one. Risk diversification, or the law of large numbers in this case, will ensure 
that the portfolio losses for the year will have a near-normal distribution with a very 
small coefficient of variation. In essence, the policyholder excess premium has gone 
to pay for the commissions and expenses of facilitating this risk diversification. 
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For the insurer, therefore, the RAF should reduce, for a given RAL, as the portfolio 
increases in size and the relative uncertainty in the annual loss amount reduces in 
relation to the expected. In other words, the insurers risk load reduces as the number 
of policies (actually the expected claims) in his portfolio increases. In practice, the 
variability of the insurer’s annual losses is influenced much more by competition, 
pricing cycles and the occurrence of weather events rather than any stochastic 
variability form the underlying policy frequency and severity assumptions at policy 
level. 

These other sources of variability, as well as market forces, will determine the 
implicit RAL at which the insurer actually prices his policies. These levels may well 
vary by product as well as vary by policy within product categories. The p-h 
methodology should enable the insurer to make informed decisions on these difficult 
practical choices. 

5.2. Risk Aversion Level for a High Risk (Young) Motorist 

The poor young driver has traditionally provided the most popular description of a 
‘high risk policyholder’. Whilst inexperience, the urgency to go faster and playfulness 
do result in much higher claims frequencies and severities for these drivers compared 
to their mothers, fathers or sisters, the only obvious conclusion from these 
observations is that the expected annual losses from these policies will be higher and 
so higher premiums are warranted. Higher frequency of claim usually means reduced 
variability and so the amount of risk adjustment that is appropriate for these policies 
in relation to the lower frequency ones is by no means clear cut. The expected higher 
severity, particularly from bodily injury cases, does however, have the opposite effect 
from the increased frequency as it increases the variability. 

It should be possible, with enough data, to repeat the calculations of the previous 
example for a young driver and a mature driver so as to compare the RAF at various 
RAL. Some care is required in such an exercise as the two sets of parameters will 
probably have different estimation errors as we tend to have a lot more older 
policyholders than younger ones and so are likely to have a lot more information on 
which to estimate and validate our model and parameter assumptions. 
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5.3. Risk Aversion and Roulette 

In a simple game of (European) Roulette the gambler bets on one of two colours, 
with an expected probability of winning back twice his stake of 18/37. The mean 
outcome, for a £1 stake, is then 36/37, slightly below his stake. 

The survival function, for the bank, is very simple in this instance as there are only 
two possible outcomes, zero, with probability 19/37 and 2 with probability 18/37. 

The ‘risk adjusted’ cost at RAL p is then simply the solution to the equation: 

2 * (18/37)^ (l/p)= 1 

which gives p = ( 1n (37) - In (18)) / In( 2) = 1.03953 

Betting on a single number changes the odds and the RAL. Here the gambler bets £1 
and collects £36 with probability l/37. 

The ‘risk adjusted’ cost at RAL p is then simply the solution to the equation: 

36 * (1/37)^(1/ p ) = 1 

which gives p = In (37) / In( 36) = 1.007646 

These examples illustrate how these calculations can be extended to more complex 
games, where a number of outcomes is possible. We will consider one such example 
below. 

5.4. Risk Aversion and the UK National Lottery 

To play the UK National Lottery ones selects six numbers from 1 to 49. On the 
specified date, a Saturday or a Wednesday evening, a machine picks seven balls at 
random from a set of 49. To win the top prize one has to pick all six of the first six 
balls selected. To win a second prize the player has to have any five of the first six 
bails selected plus the seventh ball. Third prize winners have to have any five of the 
first six balls, fourth prize winners any four of the first six balls and, finally, fifth prize 
winners need three of the first six bags selected by the machine. 
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The prize money is 45% of the money collected for the particular draw, with top 
winners sharing approximately a third of the prize money. The fifth prizewinners 
collect £l0 each, which usually means that in aggregate they share a third of the prize 
money. The theoretical odds and relative prize money, which assumes a total sale of 
all possible combinations of some 13,983,816 unique selections without any multiples 
is given by the organisers as shown in the table below, which also shows the Survival 
Function for this distribution. 

Table 5.2. National Lottery Survival Function 

No of Tickets Winning Amount £ Survival Prob 
13724690 0 1 
245330 10 0.018530421 
13537 62 0.000986569 
252 1500 1.85214E-05 

6 100000 5.00579E-07 
1 2000000 7.15112E-08 

The expected or mean win is £0.45 for each £1 selection We can thus estimate the 
‘Risk Aversion Level’ implicit in this game, by solving for it. In this case we find that 
the RAL is 1.0801. In actual games, as people tend to prefer certain numbers and 
combinations of numbers, the expected winnings tend to vary somewhat from the 
theoretical values. In three weeks of December 1997, the actual outcomes of the 
Saturday draws had implicit or hindsight RAL between 1.071 and 1.077. 

When the top prize is not won the organisers add the related amount to the next 
weekly draw, sometimes guaranteeing the amount of the top prize. The draw on the 
22nd December 1997 was a ‘roll-over’ draw with a jackpot of £25m. This was shared 
by two tickets. The effective RAL for this special draw, post event, was just over 
1.04. 

5.5. Risk Aversion and Premium Bonds 

Premium Savings Bonds are a UK Government security issued by the Treasury in 
units of El. A draw is held every month and each El bond has (at the time of writing) 
a chance of 1 in 18,000 of winning a tax free prize from £50 to £1,000,000. Rules 
govern the allocation of prize money but the overall prize money is equivalent to a 
tax-free return of 5% per annum. 

The maximum holding is currently £20,000 and it is estimated that the April 1998 
draw will distribute over £40m in prize money. The following table shows the number 
of prizes expected to be distributed in the April 1998 draw. This indicates that the 
total number of premium bonds at issue at this time is around 9.7 billion. 
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Table 5.3. Premium Bonds monthly prize distribution 

Prize £ 
50 
100 
500 
1000 
5000 
10000 
25000 
50000 
100000 

Number 
396346 
106028 
7302 
2434 
122 
62 
25 
12 
6 

1000000 1 

The actual return that an investor will achieve in any one year will vary from nothing 
at all to £12m if he happens to win the top prize every month - a chance of 1 in 
9.7billion to the power of 12. The following chart shows the survival probability for 
the return an investor with the maximum holding of £20,000 can expect, ignoring 
interest on any prize money won during the year for simplicity. 

Figure 5.2. Survival Function of annual prize money on 20,000 Bonds 

The expected return is 5% of £20,000, or £1,000 with a fairly skew distribution with 
an estimated standard deviation of around £1,600 and skewness of over 30. Clearly, 
the chart does not extend to the ultimate limit (£l,000,000). 
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As this is however, a risky investment return we are looking at the ‘transformed 
distribution of risk adjusted returns. Let us consider how we can use the approach to 
compare these returns with alternative fixed returns. For example, if our investor puts 
his £20,000 into an equally secure Government Option Bond he can obtain just over 
4.0% tax free with a marginal tax rate of 40%. We can estimate the implicit RAL that 
investing in Premium Bonds corresponds to by reversing the transform until the mean 
value of the un-transformed distribution matches the fixed return of £800 or 4%. The 
RAL obtained by this process turns out to be just over 1.5. The following chart 
shows the implicit RAL’s for various fixed net returns. 

Figure 5.3. Premium Bond Risk Aversion Net Returns 

The implicit RAL will depend on the level of net fixed returns available to the 
investor and these can and do vary from time to time. At the beginning of April 1998 
an investor with a the top tax rate of 40% can obtain around 4.5% from a building 
society for an investment of £20,000 which reduces the implicit RAL to 1.17. Clearly 
for the investor, a higher implicit RAL the more desirable the investment in the risky 
security becomes. If the investor has an identified RAL then he can use the above 
chart to determine when it makes sense to switch his investments from fixed to 
variable returns depending on the relativities of the net returns available. 

The p-h methodology provides a framework for comparing the risk-return 
characteristics of these ‘investments’. 
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5.6. Asset Returns, risk free returns and likely Market RAL 

Risk in asset returns is generally assumed to be proportional to the standard deviation 
of these returns. We will briefly consider the application of the p-h transform 
methodology to compare the annual total return for UK Gilts and UK Equities over 
the period from 1919 to 1989 from the widely available BZW indices. 

The following chart shows the survival function for these annual total returns over 
this period, as a ratio of the total value at the end to the value at the beginning of the 
year. The return is from both price changes and income. The mean annual returns 
during this period were just over 9% for Equities and 6.1% for Gilts, standard 
deviations were 25% and 13%, skewness 1.62 and 1.31 and kurtosis of 8.1 and 2.3 
respectively. 

Figure 5.4. UK Total annual returns for equities and gilts 1919-1989 

Let us recall that we are observing returns in the ‘risk loaded’ space and consider 
what happens if we attempt to take these risk adjusted returns back to the ‘risk free 
space’. The following table shows the results of reversing the p-h transform. 
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Table 5.4. Risk deflated Asset Returns 1919-1989 

Inverse RAL Equities Gilts 
1 1.0901 1.0610 

0.95 1.0783 1.0547 
0.9 1.0665 1.0482 

0.85 1.0544 1.0417 
0.8 1.0423 1.0351 

0.75 1.0299 1.0283 
0.7 1.0172 1.0215 

0.65 1.0042 1.0145 
0.6 0.9907 1.0075 

The following charts plots the values in the table above. 

Figure 5.5. Risk deflated mean returns of UK Equities and Gilts 1919-1989 

We can see from the chart that the two curves cross at a point which in this example 
happens to be around ( 0.74, 1.027). 
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At the cross over point the mean returns are equal and so we can interpret this to 
represent the ‘original’ or ‘risk free’ space where variability does not warrant any 
additional returns. We see that using this data we have estimated this ‘period implicit 
risk free annual return’ as 2.7%. Gilts attract an additional risk return of 3.3.% and 
Equities 6.1%. 

But why stop here. We can see that during this period of time the ‘market’ was 
pricing for risk in these returns at an implicit RAL of 1.35 (1/0.74). 

Unfortunately, time has not allowed any further testing of this approach on asset 
returns and clearly this is an area with significant potential applications. In the first 
instance more asset classes need to be tested to see how stable these estimated ‘risk 
free returns’ and market RAL are when returns from more than two classes are 
compared. Also the behaviour of returns over shorter periods of time periods warrant 
study. These comparisons may, then, have implications about the relative 
attractiveness of available returns and portfolio optimisations. 

5 . 7 . O p t i o n p r i c i n g a n d t h e B l a c k  S c h o l e s m o d e

The Black-Scholes option pricing formula is one of the most important formulae in 
financial economics. Although its derivation can appear daunting, and the result 
particularly complex, most of this complexity is due to the lack of a closed form for 
the cumulative function of the normal distribution. 

A call option is the right to buy a given quantity of a particular stock at a specified 
price, say X, at a given future date, time t from the time of purchase. The holder will 
only exercise his option to buy if the stock price at expiry, P(t) say, is greater than the 
exercise price X, in which case the option is worth the difference between the price at 
expiry, that is P(t)–X. If X P(t) theoption is of no (zero) value. 

If we denote the value of the option at expiry, that is at time t, by C(t) we can express 
this value as follows: 

Now let us assume that the risk free rate is r, and that the volatility of the particular 
stock, as measured by the standard deviation of logarithmic stock returns per unit 
time, is o and that no dividends are payable prior to the maturity of the option. 

In simple terms, it is assumed that share prices follow a relationship of the form: 

where m is the mean log-return. 
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The Black-Scholes call option price C(t) is then given by - (see England 1994): 

where (h) is the cumulative function of the Normal distribution and h is given by: 

It is interesting to note that the option price seems independent of this mean log 
return. This is, perhaps, not quite so as market efficiency arguments seem to boil 
down to a relationship between the risk free rate, the mean return and the volatility. If 
we assume, for example, that market efficiency means that there is no benefit in 
delaying a purchase or sale of the ‘risky’ share and investing instead in risk free 
government bonds which return a rate of, say r, we see that the mean discounted 
present value, at the risk free rate, of the future price at time t has to be equal to the 
current price. In other words 

This also enables us to validate the B-S formula as an expected value formula without 
any loading for risk. In other words it is a price at a RAL This can be easily 
demonstrated by numerical integration. This may seem surprising to those that 
believe that the formula ‘prices for risk’ since it includes the stock volatility term, , 
as one of its parameters. This volatility simply impacts the mean expected value of 
the stock price at time t, P(t) and will clearly impact the cost of the option. This cost 
is still, however, an expected value without any risk loading for the uncertainty 
inherent in the final outcome. 

We can calculate the survival function of the present value of the cost to the seller of 
these options very easily once we have a model of the stock price behaviour. For 
example, let us assume that the stock price behaviour is as outlined above and that 
we have an initial price the strike price time volatility is 
10% and the risk flee rate, r, 5%. The B-S formula gives a price of 10.87, using 
values for the Normal distribution given in a spreadsheet. 

Using the relationship between the risk free rate, the stock mean log return and 
volatility, as given by: we can easily calculate the survival function of 
these costs, which is shown in the following chart. 
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Figure 5.6. Survival Function of present value of cost of the Option 

The actual area under this chart, estimated numerically using 2000 points, is 10.82 
which is sufficiently close to the B-S formula value given the accuracy limitations in 
both calculations. The reader is encouraged to validate this result. 

We can now investigate the impact of loading these B-S prices for the risk inherent in 
the variability of the cost to the seller (present value at the risk free rate) using the p- 
h transform basis. This is analogous to pricing an insurance policy that has a 30% 
probability of producing a claim (reading from the chart) with the amount of the 
annual loss described by the above survival function. 

This enables us to calculate risk loaded option prices at any desired RAL p. which 
reduce to the B-S values when p = 1. We can go a stage further and tabulate these 
risk loaded option prices against both the RAL p as well as another of the variables 
in the model, as shown in the tables below. This is yet another area where more 
research is warranted but time has not allow in this instance. 
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Table 5.5. Risk Loaded Call Option Prices ( 500,550, = l0%, r = 5%) 

RAL 

1= BS 

1.05 
1.1 

1.15 
1.2 

1.25 
1.3 

1.35 
1.4 
1.5 

exercise of 
0.75 
6.69 
7.46 
8.24 
9.05 
9.87 
10.70 
11.55 
12.39 
13.25 
14.98 

Time to 
0.5 

3.06 
3.48 
3.93 
4.40 
4.88 
5.37 
5.88 
6.39 
6.92 
8.00 

the Call Option in years 
1 1.5 

10.82 19.81 
11.92 21.50 
13.03 23.20 
14.16 24.90 
15.29 26.60 
16.44 28.30 
17.58 30.00 
18.74 31.69 
19.89 33.37 
22.20 36.71 

2 
29.23 
31.46 
33.68 
35.89 
38.09 
40.28 
42.46 
44.62 
46.77 
51.01 

0.25 
0.51 
0.62 
0.74 
0.87 
1.00 
1.15 
1.30 
1.47 
1.64 
2.00. 

Table 5.6. Risk Loaded Call Option Prices ( 500,550, t=l, r = 5%) 

RAL Volatility of underlying stoke price 
5.0% 7.5% l0.0% 12.5% 
2.52 6.39 10.82 15.50 
2.85 7.10 11.92 17.00 
3.20 7.81 13.03 18.52 
3.55 8.54 14.16 20.05 
3.92 9.29 15.29 21.60 
4.29 10.04 16.44 23.15 
4.67 10.79 17.58 24.71 
5.06 11.55 18.74 26.27 
5.45 12.32 19.89 27.83 
6.25 13.85 22.20 30.94 

2.5% 
0.17 
0.21 
0.25 
0.30 
0.35 
0.40 
0.46 
0.52 
0.59 
0.73 

15.0% 
20.30 
22.22 
24.16 
26.11 
28.08 
30.06 
32.04 
34.02 
36.00 
39.95 

1 
1.05 
1.1 

1.15 
1.2 
1.25 
1.3 

1.35 
1.4 
1.5 

More of these tables could be produced reasonably easily for further study of the 
implications of the various input parameters on the ‘risk loading’ of options. Once 
again this is somewhat beyond the scope of this paper. 
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6. POTENTIAL FURTHER APPLICATIONS OF THE P-H RAL 

6.1. Risk Discount Rates (RDR), WACC, RAROC . . . . . 

When we consider the pricing of an insurance policy the main issue is the 
identification of the likely cash flows that will be incurred, their timing and the level 
of uncertainty around both the amounts of these payments and their timing. 

When considered in such a framework, the underlying reasons for the cash flows are 
not particularly relevant. For example, we may be considering building a supermarket 
and need to test its financial viability given the likely costs of the development and the 
projected future profit stream and its uncertainty. 

In the commercial world, these issues may be seen as unrelated or even opposite, 
primarily due to misunderstandings on the amounts of capital which may or may not 
be at risk (of being lost) if things go very wrong. In either case, some return above 
risk free rates is demanded for any capital (money) that is at risk of being lost. In 
reality, terms such as RDR (Risk Discount Rates), ‘hurdle rates’, RAROC (Risk 
Adjusted Returns On Capital), ROCAR (Return On Capital At Risk), WACC or 
Weighted Average Cost of Capital, and so on, are attempts to price the underlying 
cash flows for the level of risk involved. On the whole, these values are selected 
subjectively rather than objectively. 

We will consider a number of examples below to demonstrate how the p-h transform 
basis provides a framework for developing objective values for these benchmarks. 

6.2. Claims reserves, prudential margins and risk discount rates 

Consider that we have estimated the future payments that will be made in respect of a 
block of insurance claims to be $1000 spread over a number of years according to an 
estimated payment pattern. Let us further assume that our estimation process has also 
enabled us to estimate the statistical distributions of these future payments, which is 
taken to be log-normal with payments in each year being independent of payments in 
any other year. For details on how one may actually arrive at such estimates the 
reader can start by reviewing some of the papers in Volume 2 of the Institute of 
Actuaries Claims Reserving Manual (1997) and Lowe (1994). 

The following table shows how this very simple model may be set-up in a 
spreadsheet. 
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Table 6.1. Claims payments simulation model 

Mean Proj PAID 

Sim ValueLogNor 
Risk Free 

Disc Factor 0.929 

Present Value 294.4 

Undiscounted 

1000.0 

Year 1 
400 
10% 
418.2 

5% 
0.976 

408.1 
0.885 0.843 0.803 
168.2 64.5 44.4 

150 100 
20% 30% 
190.0 76.5 

Risk Disc Kate 2.49% 
Risk Disc Factor 0.988 0.964 0.940 0.917 0.895 Target 
Risk Disc Value 395.1 289.1 141.0 91.7 44.8 961.8 

SD as % of Mean 

Year 2 
300 
15% 

316.8 

Year3 
50 

50% 
55.3 

Year4 Year5 Total 
1000 

1056.8 

979.6 

The simulated values are assumed to come from a lognormal distribution with the 
mean and standard deviation as shown for each of the year’s expected payments. The 
top table shows a single simulation which happens to project total payments of 
$1056.8 with a present value of $979.6 at the assumed risk free rate of 5%. These 
calculations assume that payments take place at the mid-year. 

The second part of the table shows the discounting of the expected payments at a 
different discount rate which has been allowed to vary so as to produce a target value 
for the total as shown in the table below. 

Let us now look at the results of the simulation for the two key values in question, 
that is the undiscounted and discounted (at the risk free rate) future payments. These 
results are based on a minimum 2000 simulations. The number of simulations needed 
in practice to obtain stable results depends on the variability in the underlying 
distributions. 

Table 6.2. Simulation results summary 

Mean 
Std Deviation 

Coeff Variation 
Skewness 
Kurtosis 

80.5 
8.05% 
0.287 
3.12 

Discounted 
926.4 
73.3 

7.91% 
0.271 
3.11 
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The results show that the simulated values do exhibit some skewness although the 
kurtosis is not that far away from that of the Normal distribution. Further 
investigation identifies the log-normal distribution as providing a reasonable fit to the 
data. Taking the discounted values, the log-normal distribution with the same mean 
and standard deviation as the distribution of simulated values has a skewness of 0.24 
(cf 0.27) and kurtosis of 3.10 (cf 3.11). This is, perhaps, not too surprising given the 
model assumptions. 

The following table shows the risk adjusted values of both the undiscounted and 
discounted future cash flows. It also shows the implicit Risk Discount Rates at each 
Risk Aversion Level derived by targeting the risk adjusted discounted values as 
indicated in the table above. 

Table 6.3. Risk adjusted discounted values and implicit RDR 

Undiscounted Discounted 
RAL 

1 
1.2 
1.4 

1.6 
1.8 

2 
2.25 
2.5 
3 

Value 
1000.0 
1014.2 
1027.1 
1038.9 
1049.9 
1060.2 
1072.1 
1083.1 
1102.9 

Value 
926.4 
939.3 
951.0 
961.8 
971.8 
981.1 
992.0 
1002.1 
1020.3 

Implicit 
RDR 
5.00% 
4.06% 
3.23% 
2.49% 
1.82% 
1.21% 
0.50% 
-0.13% 
-1.24% 

The RDR in this example are lower than the underlying, assumed, risk free rate as the 
cash flows are payments and not receipts. Where the cash flows to be valued are 
future receipts then these RDR will exceed the underlying risk free rate. 

In essence this ‘valuation’ of the future payments prices the reserve run-off. For 
example, an investor who demands returns consistent with a RAL of, say 2, would 
value this run-off at $981.1 assuming he concurs with all the other assumptions 
concerning the inherent variability in these cash flows, including the appropriateness 
of the assumed risk free rate. 

We can also see that such a basis can be used by the managers of the business for 
setting discounted claims provisions with explicit and consistent ‘Prudential Margins’ 
as each percentile level of the final distribution corresponds to a RAL 
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In practice, perhaps the easiest way to obtain the distribution of the present value of 
the run-off is by bootstrapping the payments using a chain ladder or similar 
underlying model. For more details on how this may be done, and how the results 
compare with a number of other stochastic reserving methods see Lowe (1994). 

6.3. Appraised and Shareholder Values 

Appraised Values and RDR 

The Appraised Value of a company is generally defined as the present value of the 
future cash flows ‘valued at an appropriate (risk) discount rate’. In essence then as 
the uncertainty in these future cash flows (profits) increases the appraised value 
decreases. The selection of what an ‘appropriate RDR’ ought to be then soon 
degenerates into a fairly subjective argument about similar transactions, market 
conditions, benchmark rates appropriate for the industry and a number of other 
similar but generally subjective arguments. 

The P-H methodology is clearly able to deliver such RDR’s given that we can model 
the underlying uncertainty and have a means of ‘selecting’ the appropriate RAL at 
which to value these cash flows. The previous example demonstrates how this may be 
done in practice and there is no need to repeat any of these explanations. This 
approach also highlights the need to understand the inherent variability in the future 
cash flows in order to value these in a consistent pricing framework. Stochastic 
modelling is here to stay and together with such pricing principles will revolutionise 
these valuations. Questions on variability of other inputs, such as future risk free 
rates, simply become another challenge for the modeller in constructing, validating 
and calibrating the model to be used in the valuations. At least, the existence of such 
a model will facilitate sensitivity testing of the results against the input assumptions 
and thus provide additional and potentially very useful information to management. 

Questions on the choice of appropriate RAL to use in a particular instance are 
equivalent to the ‘strength’ of the valuation. Clearly, a low value of RAL may be 
selected to defend an unwelcome bid as it will produce a higher value. Note, 
however, that more aggressive profit projections or more aggressive strategies may 
also imvolve increases in the ‘uncertainty’ in the projected profit streams. The p-h 
framework will correct for this whilst a more subjective basis is unlikely to do so. 

Shareholder Value Analysis 

A related concept to Appraised Value and one that is gaining momentum at present, 
is that of Shareholder Value Added or SVA. In its simplest form this is the ‘value of 
the cash flows generated by the business conducted during the period’ where these 
cash flows are valued at some appropriate RDR. 
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This concept is particularly useful to management as it enables them to identify the 
areas of their business which are producing returns that exceed those expected for the 
amount of risk or variability inherent in these returns, or ‘creating SV’ and those that 
may be destroying it or producing returns inferior to those required to compensate 
for their inherent variability or level of risk. 

The main problem with these calculations is the choice of this illusive RDR 
appropriate for the calculations at such a level, which is exactly the same problem 
described above. The solution is then simply the same as that outlined above. Clearly, 
for maximum value to management, the modelling will identify the key components 
or sources of variability and these can then be targeted for monitoring purposed. 
Companies that recognise the potential benefits from such an approach and are then 
able to implement it .successfully should be better placed to achieve their objectives, 
create and perhaps also sustain competitive advantage. 

The following table is based on the results of the claims run-off example above but 
treating the projected payments as risk adjusted returns, that is the transformed 
distribution. The RAL are then inverted to calculate the means of the underlying 
distributions for ‘pricing’ purposes and for identifying the implicit risk discount rates. 

Table 6.4. Risk ‘deflated’ discounted values and implicit RDR 

Undisc Disc Implicit 
RAL INV RAL Value Value RDR 

1 1.000 1000.0 926.4 5.00% 
1.2 0.833 986.9 914.5 5.89% 
1.4 0.714 976.5 905.1 6.62% 
1.6 0.625 968.0 897.3 7.23% 
1.8 0.556 960.9 890.8 7.75% 
2 0.500 954.8 885.2 8.20% 

2.25 0.444 948.2 879.2 8.70% 
2.5 0.400 942.5 874.1 9.13% 
3 0.333 933.2 865.6 9.85% 

This approach can thus be used to identify the appropriate RDR to apply in these 
evaluations. Further analysis would, however, be beyond the objectives of this paper. 
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The explicit derivation of these ‘appropriate’ risk discount rates should be contrasted 
with the alternative approach often adopted in practice of using a so-called WACC or 
Weighted Average Cost of Capital. This may incorporate some beta adjustment on 
the cost of equity capital arising from overestimation of returns, given the beta, by 
the Capital Asset Pricing Model. This known limitation of the CAPM does not seem 
that surprising in a P-H Risk loading context, given the non-linearity between the P-H 
risk adjusted values and the standard deviation as a measure of risk. We have also 
identified instances where this framework (CAPM) may work, that is with 
distributions with zero or, perhaps, fixed skewness. This, potentially, has implications 
for a significant amount of these theories and their use in determining return 
objectives and portfolio optimisations but is, once again beyond the scope of this 
paper. 

6.4. Allocation of Capital to Classes of Business 

Efficient Capital Allocation is a very popular Conference Title, whatever efficiency 
may mean. The reasons for this are fairly easy to see. In the absence of a usable 
definition and quantification of ‘risk’ the ability to allocate one’s capital to the classes 
or products of the business provides an easy benchmark against which to measure the 
relative performance of these products or classes in a ‘risk-return’ exercise. 

The reality is, however, that such allocations of capital to classes are generally based 
on some fairly basic and haphazard assumptions, such as x% for product A, y% for 
product B and so on, without any foundation or validation that they are in any way 
appropriate. Under such circumstances, the use of these values for determining 
pricing, comparing performance, setting targets or identifying value creation is very 
questionable and fraught with potential and real dangers. 

This obsession with capital allocation often raises questions on the proportion of the 
available capital that is exposed to ‘additional risk’ and so warrants additional 
returns. At the most basic level, we could argue that the amount of capital required to 
cover ‘risk’ or uncertainty in any projected cash flow has to, at least, be sufficient to 
cover all eventualities. This would be very inefficient and as a consequence some 
lower level is considered appropriate, often determined by market practice and 
expectations. In certain instances, particularly for banks and US insurers, Risk Based 
Capital requirements have been devised and implemented by the regulators. These 
tend to be a mixture of art, science and some final scaling to produce answers that 
look believable or close to those the market generally can find acceptable. Further 
discussion of these aspects is beyond the scope of this paper. We will return to capital 
allocation at the end of the next section. 
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6.5. Required Returns for a Class of Business 

Since investors expect and demand returns on their capital in excess of risk-free 
returns and commensurable with the levels. of perceived risk associated with the 
business this capital is invested in, the companies in which they invest have to 
generate sufficient profits to satisfy these demands. So the real issue with regard to 
product pricing or comparative performance measurement or the creation of value, is 
not capital allocation but profit allocation. We can now make some progress. 

The p-h methodology provides us with a consistent basis for ‘allocating’ the overall 
company profit objective to profit centres. We will outline the process and 
demonstrate this with a simple example. The process starts with identifying the 
required overall profit objective of the company. This may be something the 
Directors determine in order to satisfy stakeholder expectations. b-respective of the 
profit objective, there will be an implicit RAL associated with it at the overall level. 
We could, but do need to identify this level. 

We will instead look at a simplified example for a company that has three classes of 
business, say Product A, Product B and Product C. 

Let us suppose that we have investigated the profit or results variability of these 
classes, say as we discussed in Section 4.4, and identified the appropriate risk loading 
factors on expected costs for a range of RAL. The results of such an exercise are 
shown in the following chart. Here, it is assumed that the expected values are 
discounted for the value of money at the risk free rate. 
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Figure 6.1. Risk loading factors for three Products A, B and C 

Now let us suppose that the business, by volume or premium, consists of 50% 
Product A, 30% Product B and 20% for Product C. 

Let us also suppose that the required profit target, is 9.5% of the Premium. We can 
now identify the RAL at which the combined profit adds to this value. This is close to 
a RAL of 1.6. We can see from the chart that at this RAL the Product A business has 
to be priced to produce a 5% return (profit target), Product B a 12.5% return and 
Product C, which is clearly the high risk business in this portfolio, a high 17% return. 
For the whole portfolio the overall return is then 9.65% indicating that the implicit 
RAL required is slightly lower than 1.6. The overall profit objective was chosen to 
ease the explanation and should not be taken as indicative of appropriate values to be 
used in practice. 

Capital Allocation Revisited 

We can now return to the capital allocation conundrum and provide a plausible, but 
totally redundant basis. Let us suppose that, in exactly the same way that a given 
overall profit objective is given as a starting point, we now have an amount of capital 
to service which then needs to be allocated to classes so as to receive the return 
commensurate with the ‘risk’ inherent in this class return. 
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Suppose that this capital was 40% of the premium and a return of some 24% from 
insurance was required, chosen to match the earlier objective for illustration 
purposes. We know from above that for this return of 9.6% overall, the Product A 
business needs to deliver 2.5% (5% on 50%), the Product B business the next 3.75% 
and Product C the final 3.4%. The Capital can then be allocated in proportion to 
these values so that the Product A gets 25.9% (2.5/9.65) of the 40%, or 10.3% of the 
overall which equates to 20.7% of its premium, Product B finishes with a ‘capital 
allocation’ of 51.1% of its premium and, finally, Product C attracts capital of 70.5% 
of its premium. 

This is however pretty useless, or redundant, information as we had to have a 
solution to the required risk loadings to derive these answers. We also saw how it is 
much more sensible to concentrate on profit objectives in relation to premiums from 
which these profits are to be generated rather than try and set these by allocating 
some notional capital on which a fixed percentage return is required. 

Shareholder Value Creation 

The RAL route to ‘profit allocation’ also provides the means to another tricky and 
topical issue, that of identifying and measuring shareholder value creation. Without 
getting into any details of definitions and explanations it suffices to note that relative 
to our overall profit objective and its RAL allocation to products, a product that 
returns in excess of its allocated profit is creating value equal to this excess amount. 

6.6. Optimisation of Portfolios 

Following on from the target setting we could turn and consider the available returns 
for each class given the derived target returns. This simple analysis will identify the 
classes that are under-performing and those that are over-performing in relation to 
our desired objectives/expectations. 

Note, however, that changing the mix of business will change the experience of the 
overall new portfolio and its required profit expectation at the required risk load. 

We could attempt to evaluate the impact of a marginal change in the amount of 
business from a class in both the overall portfolio and hence attempt to establish if 
there is some optimum size for the particular class of business. Note here also that as 
we change the size of business we may be changing its variability in relation to 
premium and SO may require a higher load at the same risk aversion factor. 

Although this is a complex process, it should be possible to develop a computer 
model to progess this sort of investigation, given that we start with a good 
appreciation of the underlying processes and can describe these and their correlations 
sufficiently in an appropriate manner. 
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