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“Nothing is certain in life except death and taxes.”

— Benjamin Franklin

Raj Kumari Bahl (UoE) Mortality Bond July 25, 2016 3 /95



@ Introduction

Historical Facts

The Problem

Available Methodologies

Case Study: Swiss Re Mortality Bond 2003
A Model-independent Approach
Lower Bounds for the Swiss Re Bond
Upper Bounds for the Swiss Re Bond
Numerical Results

What Lies Ahead?

Further Research

The Modeling Aspect
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Introduction(1)

@ In the present day world, financial
institutions face the risk of un-
expected fluctuations in human
mortality

@ This Risk has two aspects

o Mortality Risk: Actual rates of
mortality are in excess of those
expected

e Longevity Risk: People outlive
their expected lifetimes

o’
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Introduction(2)
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Introduction(3)

@ A quick note on mortality risk
o Life being shorter than expected is referred to as premature death or
mortality risk
o Factors that trigger mass premature deaths are CATASTROPHES!

Catastrophes can be natural or man-made
What is a catastrophe?

e An event in which insured claims, total economic losses, or the number
of casualties exceed a certain threshold
o Lost or missing lives 20, injured 50, homeless 2000

Number of catastrophes has risen sharply in the last four decades
In the 1970’s roughly 100 catastrophic events per year

Number has more than tripled in the last decade

Between 1994 and 2013, EM-DAT recorded 6,873 natural disasters

Claimed 1.35 million lives or almost 68,000 lives on average each year

218 million people affected by natural disasters on average per annum
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Historical Facts(1): Catastrophes lead to Mortality Spikes

Deaths per 100,000
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Historical Facts(2): The 1918 Influenza Pandemic

Table 2: The change of death rates per 100,000 for cach age group, from 1917 to 1919

Bgegoups 1917 19 Rafio | Agegoups 17 19 Ratio
All 13 1810 1286 3544 2008 13393 1487

<1 104572 111672 1068 4554 1385.6 15241 1100

14 1085.0 15733 1476 5564 26786 26481 0.089
514 23560 4128 1613 6574 384 35505.0 0961
1524 4689 1070.6 2283 75.84 123862 112057 0912
2534 549.1 1643.5 2532 ~=85 245036 22135 0903

e The 1918 influenza pandemic: Increase in mortality rate by 30% overall.
*  Most affected age groups: 15-24 and 25-34

*  For individuals aged 55 and over a little decrease in the death rate

Bahl (UoE) Mortality Bon

0/95



Historical Facts(3): The 1918 Influenza Pandemic
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between 30 million and 50 million people worldwide. Among them

“The great flu pandemic of 1918 and 1919 is estimated to have killed
were 675,000 Americans. (source: CNN)” J
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Historical Facts(4): HIN1 flu

“The global HIN1 flu pandemic may have killed as many as 575,000 people,
though only 18,500 deaths were confirmed. The H1N1 virus is a type of swine flu,
which is a respiratory disease of pigs caused by the type A influenza virus.
(source: CNN)”
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Historical Facts(5): Pandemics in general

@ 13 or more influenza pandemics since 1500
Risk of an outbreak in

@ 4 Influenza Pandemics in 20th Century any oiveh ver: - 50

o Spanish Flu (1918)
Risk of a 1957-caliber

@ most severe influenza pandemic outbreak: 1-in-40
e more than 675,000 excess deaths b/w
Sep 1918 & Apr 1919 in US Risk of a 1918-caliber

o Asian Flu (1957) outbreak: 1-in-475
o Hong Kong Flu (1968) Eotce. RME paiklaricmarel

o Russian Flu (1977)

» H5N1 Avian Influenza in Hong Kong in 1997
 Swine Flu in 2009
 Could a flu happen again?

Facts on Pandemic

e Frequency: 3 per century

Attack Rate: 10-60%
 Virologists and Epidemiologists say YES! ° ’

) Zika and Ebola: A taste of things to come?
Raj Kumari Bahl (UoE) Mortality Bond July 25, 2016 13 / 95
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Historical Facts(6): Pandemics in general

@ A (flu) pandemic may occur if three conditions are met:
e a new influenza virus emerges
e the virus infects humans
o the virus spreads efficiently and in a sustained manner
@ WHO —The World Health Report 2007: “Scientists agree that the
threat of a pandemic from H5N1 continues and that the question of a
pandemic of influenza from this virus or another avian influenza virus
is still a matter of when, not if.”
@ We don't know how infectious and deadly the new virus will be
o Unlimited reservoir of influenza sub-types
o Interspecies transmission, intraspecies variation and altered virulence

Factors attenuating virulence Factors supporting virulence

o Improvement in medical care o Population Growth
o Establishment of global surveillance o Urbanization
o Crisis/emergency plans o Increased Global Mobility
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Historical Facts(7): Current Pandemic?

“Philadelphia was struck with a yellow fever epidemic in 1793 that killed a 10th of
the city's 45,000-person population. (source: CNN)”

v

“The Ministry of Health in Angola has reported an ongoing outbreak of yellow
fever. At least 3,552 suspected & confirmed cases have been reported, including
355 deaths. (source: CDC, 14th July, 2016)"
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Historical Facts(9): SARS

“Severe Acute Respiratory Syndrome, better known as SARS, was first identified
in 2003 in China, though the first case is believed to have occurred in November
2002. By July more than 8,000 cases and 774 deaths had been reported. Diseases
like AIDS bring PERSISTENT changes in mortality curve. (source: CNN)"

Raj Kumari Bahl (UoE) Mortality Bond July 25, 2016 16 / 95




Historical Facts(9): Earthquakes in 2016

e THE EDUCADOR EARTHQUAKE 16th APRIL 2016

800
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o Atleast 660 people killed
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e More than 27,732 injured

Fatalities reported
B
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o

e Nearly 7,000 buildings destroyed

™~
=}
S

e More than 26,000 people in shelters o

e Worst natural disaster since 1949
o A DAY EARLIER: KUMAMOTO CITY, JAPAN

e 39 people killed

e More than 1,000 injured

e 8,700 buildings damaged
o A bridge collapsed in Aso
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Historical Facts(10): The China Floods in 2016

e THE BLOOMBERG REPORTS ON JULY 11 2016
“Weeks of torrential rain across central and southern China have
caused the country's worst flooding since 1998, killing 173 people,
ruining farms and cutting major transportation arteries — and creating
potential headwinds to economy growth.
A swollen Yangtze and other rivers spilled over their banks. That was
compounded by the arrival of Typhoon Nepartak, as it made landfall
on Saturday in Fujian province.
The Ministry of Civil Affairs said flooding and rain associated with the
typhoon affected more than 31 million people in 12 provinces,
submerged more than 2.7 million hectares (6.7 million acres) of
cropland and caused 67.1 billion yuan ($10 billion) in damages.
Flooding is linked to El Nino, which originates from warm waters in the
Pacific Ocean near the equator and disrupts global weather patterns.
While forecasters said the worst weather has passed, analysts said the

economic impact from farm damage and transport disruptions would
H n

DE LJllled 1O MON s
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Types of Terrorism Attacks

&

4 7
Nuclear Conventional
100 kiloton Cruise missile
20 kiloton Multiple aircraft
10 kiloton Single aircraft
1 kiloton Large truck bomb

Small truck bomb
Car bomb
Human bomb

Historical Facts(11): Terrorist Attacks

AoN
7 3 3
Radiological Biological Chemical

Large event
Medium event
Small event

Cruise missile
Multiple aircraft
Single aircraft
Large truck bomb
Small truck bomb
Car bomb
Human bomb

Large event
Medium event
Small event

Total attack types = 24

Vo= 0 e <A
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The Problem (1) - Extreme Mortality Risk

@ Life insurance companies provide protection to their policyholders in
the form of a payout made in the event of a policyholder’s death, in
exchange for a premium

o Extreme mortality events, such as a severe pandemic or a large
terrorist attack, could result in a life insurance company needing to
make sudden payouts to many policyholders

@ This large payout would be exacerbated in that the investment
portfolio would not yet have delivered sufficient returns — the payouts
to policyholders are made sooner than expected

o Therefore it is crucial for life insurers, and life reinsurers, to manage
their exposure to extreme mortality risks where insurance portfolio
diversification by itself is insufficient
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The Problem (2)

@ Mortality jumps are infrequent but when they occur they

o Trigger a large number of unexpected death claims
o Affect the financial strength of the life insurance industry
@ [Stracke and Heinen(2006)]estimated that the worst pandemic would
result in
e Approximately €45 billion of additional claim expenses in Germany
e Amount equivalent to five times the total annual gross profit

e Or 100% of the policyholder bonus reserves in the German Life
Insurance market

@ [Toole(2007)] found that in a severe pandemic scenario

o Additional claim expenses would consume 25% of the Risk Based
Capital (RBC) of the entire US life insurance industry

o Companies with less than 100 % of RBC are at the risk of being
insolvent

Raj Kumari Bahl (UoE) Mortality Bond July 25, 2016 21 /95



Available Methodologies for Hedging Extreme Mortality Risk

o Natural Hedging: compensating longevity risk by mortality risk
o Drawback: Cost prohibitive

e Mortality-linked Securities (MLS’s) or Catastrophe (CAT) Mortality
(CATM) Bonds or Extreme Mortality Bonds (EMB'’s): Cash flows
linked to a mortality index such that the bonds get triggered by a
catastrophic evolution of death rates of a certain population

o Swiss Re Bond 2003 (VITA I): The first mortality bond
o Swiss re Bond 2015 (VITA VI): The latest mortality bond

Raj Kumari Bahl (UoE) Mortality Bond July 25, 2016 22 /95



Valuation approaches on MLS's

o Risk-adjusted process/ No-arbitrage Pricing:
o Estimate the distribution of future mortality rates in the real world
probability measure
o Transform the real-world distribution to its risk-neutral counterpart
o Calculate the price of MLS by discounting the expected payoff under
the risk-neutral probability measure at the risk-free rate
@ The Wang Transform:
o Employs a distortion operator that transforms the underlying
distribution into a risk-adjusted distribution
o MLS price is the expected value under the risk-adjusted probability
discounted by risk-free rate
@ Instantaneous Sharpe Ratio: Expected return on the MLS equals the
risk-free rate plus the Sharp ratio times its standard deviation

@ The utility-based valuation: Maximisation of the agent’s expected
utility subject to wealth constraints to obtain the MLS equilibrium
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History of Mortality Linked Securities

@ Tontines: 17th and 18th century in France

@ Annuities in Geneva: Payoffs directly linked to the survival of Genevan
"mademoiselles"

@ Speculations came to an end during French Revolution
@ Detailed overview in [Bauer(2008)]
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Recent Developments(1)

Blake & Burrows (2001) derived the concept of longevity bond
Swiss Re. (2003) issued the first mortality bond
European investment . .
bank (2004) } issued the first longevity bond
Cowley & Cummins(2005)|  show that sccuritization may increase a firm’s value
Lin & Cox (2005) study and price the mortality bonds and swaps
. . show how to price mortality-linked (inancial
(G, Bkl & BanilH0y) instruments such as the E1B bond
Blake et al. (2006) Introduce five types of longevity bonds

i Bahl (UoE) Mortality Bond July 25, 2016



Recent Developments(2
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Prime Focus(1)

Catastrophe Mortality Bonds or CATM Bonds
What are these?
e Bonds designed to transfer the risk of extreme mortality from a sponsor
to investors
e Coupon & Principal payments depend on the non-occurence of a
pre-defined catastrophic event

Transaction involves three parties

e The Ceding company or Sponsor
o Special Purpose Vehicle (SPV) or issuer
o Investors generally large institutional buyers

Transaction begins with formation of a SPV

°
@ Investment Period: 3 to 5 years

@ Can be purchased as OTC products
°

High yield debt instruments
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Prime Focus(2)

SPV issues bonds to investors

SPV invests the received capital in high quality securities such as
government or corporate AAA bonds

@ Generally held in a trust account

@ Coupon Payment

e Investment returns from trust account &
o Risk premium from ceding company

Embedded in the bonds is a call option

This call option gets triggered by a defined catastrophic event
Well defined Attachment or Trigger and Exhaustion Points
Principal is fully at risk

Our choice: Swiss Re Bond 2003
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Prime Focus(3)

’ Specifications ‘ VITA | ‘ VITA 1l ‘ TARTAN ‘
Sponsor Swiss Re Swiss Re Scottish Re
Arranger Swiss Re Swiss Re Goldman Sachs
Modelling Firm Milliman Milliman Milliman
SPV domicile Cayman Islands Cayman lIslands | Cayman Islands
Size $ 400M $ 362M $ 155M
No.of Tranches 1 3 2
Issue date December 2003 April 2005 May 2006
Maturity 3 years 5 years 3 years
Index US, UK, France, | US, UK, Germany, us

Italy, Switzerland Japan, Canada

Table 1:

Raj Kumari Bahl (UoE)
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Prime Focus(4)

’ Specifications ‘ OSIRIS ‘ VITA I ‘ NATHAN
Sponsor AXA Swiss Re Munich Re
Arranger Swiss Re Swiss Re Munich Re
Modelling Firm Milliman Milliman Milliman
SPV domicile Ireland Cayman Islands Cayman Islands
Size € 345M $ 705M $ 100M
No.of Tranches 3 2 1
Issue date November 2006 January 2007 February 2008
Maturity 4 years 4 & 5 years 5 years
Index France, Japan, | US, UK, Germany, | US, UK, Canada,

us Japan, Canada Germany

Table 2: The Middle Stage CAT Mortality Bonds
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Prime Focus(5)

| Specifications | Vita IV | Vitalv. [ VitaV
Sponsor Swiss Re Swiss Re Swiss Re
Arranger Swiss Re Swiss Re Swiss Re
Modelling Firm RMS RMS RMS
SPV domicile Cayman Islands Cayman Islands | Cayman Islands
Size $ 300M $ 180M $ 275M
No.of Tranches 4 2 2
Issue date [: Nov'09; II: May'10 July 2011 July 2012
& 1V: Oct 2010
Maturity 4 & 5 years 5 years 5 years
[:US, UK; 11:US/UK IV:Canada/ D-1:Australia,
Index [l: US/Japan, Germany(Ger.), Canada
IV: Germany/ V:Canada/Ger./ | E-1l:Australia,
Canada UK/US Canada, US
Table 3:  The Middle Stage CAT Mortality Bonds (Contd...)
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Prime Focus(6)

| Specifications | MythenRe [ AtlasIX | VITAVI |
Sponsor Swiss Re SCOR Re Swiss Re
Arranger Swiss Re Aon, BNP Swiss Re
Paribas, Natixis
Modelling Firm AIR/RMS RMS RMS
SPV domicile Cayman Islands Ireland Cayman Islands
Size $ 200M $ 180M $ 100M
No.of Tranches 2 2 1
Issue date November 2012 | September 2013 | December 2015
Maturity 4 & 5 years 5 years 5 years
Index U.S. hurricane, us Australia,
UK mortality Canada, UK

Table 4: The Latest CAT Mortality Bonds

Raj Kumari Bahl (UoE)
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Prime Focus(7)

@ Why Swiss Re Bond...?
e An Innovative Security...one of its kind
o A kind of pioneer and path setter
o Shifted the risk exposure from the balance sheet to the capital markets

Attracted lot of attention and was fully subscribed (Euroweek, 19
December 2003)

Investors included a large number of pension funds

Established a Special Purpose Vehicle (SPV) called VITA | for the
securitization

A 3-year bond issued in December 2003 with maturity on Jan 1, 2007

Principal s.t. mortality risk defined in terms of an index g; in yr t;
Quarterly coupons of three-month US-dollar LIBOR + 135 basis points
Strength: Extreme Transparency
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The Bond Mechanism

Bahl (UoE)

Off balance Quarterly coupons
sheet (USD LIBOR + 135bps)
Swiss Re SPV (Vita Bond holders
Capital)
—
Principal
payment $400m
Up to $ 400m if Check Up to $400m if
extreme terminal exlrem.e .
mortality is mortality morta}ny is not
experienced index v alue experienced

July 25, 2016
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The Mortality Index

@ Mortality index constructed as a weighted average of mortality rates
(deaths per 100,000) over age, sex (male 65%, female 35%) and na-
tionality (US 70%, UK 15%, France 7.5%, Italy 5%, Switzerland 2.5%)

qi = Zj G Yok Ak (qul’:j.t; + qulf,j,t,-)

° g, and q,';j’ti = mortality rates (deaths per 100,000) for males and
females respectively in the age group k for country j at time t;

C; = weight attached to country j
A = weight attributed to age group k (same for males and females)

G™ and G = gender weights applied to males and females respectively

go = base index
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Index Distribution

Geographic distribu‘tti?n within the vita index
aly

Swizerland 2%

5%

France
7%

. 20-24 7579
070 Age-Weights 14 1%
1% gopq 6569 2529
2% 5%

5559 3%
7%
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Design of the Swiss Re Bond(1)

Principal Loss Percentage

0 if gi < Kiqo
L = (( ’f{ll‘;‘;z if Kigo < qi < K2qo (1)
1 if gi > Kaqo

@ For Swiss Re Bond: Trigger Point K; = 1.3 and Exhaustion Point
Ky =15

o P c ifj=12 1L ,
0; = 5P+L/,C_|_X> =3 (2)

@ SP: Spread value (1.35%), L/;: LIBOR rates, C: Face Value, X: a
random variable
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Design of the Swiss Re Bond(2)

@ Proportion of the principal returned to the bondholders on the
maturity date:

3 +
X_C<1—ZL,-> , (3)
i=1

o C = $400 million
@ Risk-neutral price of the random pay-off at time 0 with @ as the EMM

P = e TEq[X *)

@ r is nominal annual interest rate

Discounted Cashflow of Payments

12 O,
DC (r) = - 5
LT ®
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Design of the Swiss Re Bond(3)

Attachment Paint: [1001 1% Exhausrion Point; 100y %

100%

% Reduction in Principal

100 100+x 100+
Index Results (% of Base Index Value)

100%
90%
80%
70% =
60%
50%
40%
30%
20%
10%

Capital crosion

Principal Repayment (%)
Attachment point

Mortality Index Level (q)
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What is the main Problem?

Pricing the Swiss Re Bond with no closed form solution

What can be done?

An incomplete mortality market that has no arbitrage guarantees the
existence of at least one risk-neutral measure termed the equivalent

martingale measure @ that can be used for calculating fair prices of

mortality securities
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Our Approach for Bond Evaluation

Adapt the payoff of the bond in terms of the payoff of an Asian put
option

Assume the existence of an Equivalent Martingale Measure (EMM)
Present model-independent bounds

Exploit comonotonic theory as illustrated in
[Albrecher et al.(2008)Albrecher, Mayer, and Schoutens] for the
pricing of Asian options

Carry out Monte Carlo simulations to estimate the bond price under a
variety of models

Draw graphs of the bounds by varying the interest rate r and mortality
rate qo

v
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Payoff as that of an Asian Put Option

Alternative form of writing Payoff

P =De "TE[(q0 — S)"] (6)

Call counterpart of the payoff
Pr = De "TE[(S — q0)"] (7)
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Put-call parity for the Swiss Re Bond

The relation

3
P, — P =De " [52 e C(1.3qo, t;) — QO] (8)
i=1

o Define

i=1

3
G=De " [5 D e™C(1.3qo, t7) — QO] (9)

e Bounding P; by bounds /; and vy
e Corresponding bounds for the Swiss Re Mortality Bond:

(h—G)Y"<P<(m—-G)t (10)
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Some Basic Concepts

Definition

Stop-loss Premium: The stop-loss premium with retention d of a random
variable X is defined as E [(X — d)+].

Definition

Stop-loss Order: Consider two random variables X and Y. Then X is said to
precede Y in the stop-loss order sense, written as X <y Y/, if and only if X
has lower stop-loss premiums than Y:

E[(X-—d)"]<E[(Y-d)T] —-oco<d<oo (11)

Definition

Convex Order: X is said to precede Y in terms of convex order, written as
X <« Y, ifand only if X <y Y and E[X] = E[Y].
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Lower Bound for the Call Counterpart

Lower Bound using Jensen's Inequality

n aF
P, > De 'TE [<Z5 (E (qi|A) — 1.3g0)" — qo>
i=1

(12)

o We define: Z; =5(E(qi|\) —1.3q0)";i=1,2,..n & Z = ZZi
i=1

© S>>y ZorE[(S— qo)+] >E[(Z - qo)+]

@ The conditioning variable A is chosen in such a way that E [g;|A] is
either increasing or decreasing for every |

o This implies the vector: Z' = (2, ..., Z,) is comonotonic & yields

Stop-loss lower bound for the call-counterpart
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The Trivial Lower Bound

o if the random variable A is independent of the mortality evolution
{at} >0 we get

The Trivial Lower Bound

n +
P> Ce " (ZS (exp (rt;) — 1.3)" — 1) =: Ibg (14)

i=1

e Using

3
G =De T [5 Z e C(1.3qo, t;) — QO] (15)
i=1

e Corresponding bound for the Swiss Re Mortality Bond:

P> (1lbp— G)" = SWLBy (16)
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The Lower Bound SWLB;

@ We choose A = g in (13)
@ Use the martingale argument for the discounted mortality process

r(t,-—t1

Elgilqi] = E [e"e Mgi|q1] = e 1.

The Lower Bound SWLB;

= 1.3
P1 > SDZG (T t:)C (qo.max (X7 m) 9 tl) =" Ib] (17)

i=1

n
+
@ where x is the solution of Z (e’(tf’“)x - 1.3) =0.2
i=1
e C(K,ty) is the price of a European call on the mortality index with
strike K, maturity t; and current mortality index qg
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A Model-independent Lower Bound(1)

e Additional assumption that holds good for stationary exponential Lévy
models

n j—1 n
1—t; i P
Saiza | Do af T 0g 4 Y e, (18)
i=1 i=1 i=j

e for0<t<Tandj=min{i: t;>t}
@ We then use the following two results
Proposition

Let (X, Y) ~ BVN (ux, py,0%, 0%, p), where BVN stands for bivariate
normal distribution. The conditional distribution function of X, given the
event Y =y, is given as

x — (ux +pX(y — uy))

Fyiy—,(x)=®
X|Yy() O'X\/m
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A Model-independent Lower Bound(2)

Proposition
Let W = (W;),t > 0 be a standard Brownian motion. Then the
conditional expectation of W;, given W; is given as

ti
E[th.|Wt] = ?Wt for any t; <t

@ The above proposition then leads to the following proposition

Proposition

The additional assumption (18) holds for stationary exponential Lévy
models with mortality evolution q; = qo exp (U;), where (Ut),~ is a Lévy
process
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A Model-independent Lower Bound(3)

@ We use this result to achieve the lower bound for the Asian-type call

option

ji-1 a ti/t +
25 (qilgr) —13q0)" = 25%(() —1.3>
i—1 do
+ En:5q0 (qte'(ff—f) - 1.3>Jr
qo0

i=j

= Sk (20)

@ S% is the same as Z with A being replaced by q;
@ So we have S >, Sk
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A Model-independent Lower Bound(4)

@ Define Y = (Y1,...,Y,) with

qt i/t " H H
y - 5q0 ((q()) — 1.3> 1<y

+
50 ((%) er(ti=t) _ 1.3) P>
0 i=12..n

@ Y is comonotonic:-components are strictly increasing functions of g

@ By the comonotonic theory

E[( '2—%)] ZE[( v (Fss (qo))>+] (21)

o where Fgi, (go) is the distribution function of S evaluated at qo
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A Model-independent Lower Bound(5)

@ such that for an

arbitrary t, we have:

= P [S"z < qo]
— P<§ ((EZ)W - 1.3)

n i ((g(:) er(ti—t) _ 1.3)+ < 0.2) (22)

1

@ Substitute x for g¢/qo in (22)

@ where x solves

(xff/f - 1.3)+ + Z (xe’(ff—f) - 1.3)+ —02  (23)
i~

@ Then S < qq if and only if g; < xqo

Raj Kumari Bahl (UoE)
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A Model-independent Lower Bound(6)

@ This yields

FY,' 5qo (th/t — 13)+ i<y

Fy, (590 (Xer(ti*t) — 1.3)+> >

The Lower Bound Ib{®
X . ) . +
Pl > 5De—rT(Zq(]J-—t:/tE |:<q::/t_ qé’:/f.max (Xti/t71,3>) :|

LN 1.3
+Zertlc <QO.maX (X, m) 9 t))
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A Model-independent Lower Bound(7)

° Ibg2) is a lower bound for all t and can be maximized w.r.t. t to yield
the optimal lower bound:

P, > max b (25)
0<t<T

o As before, we have on using the put-call parity

Jr
P> (lb?) - G) —: swLB® (26)
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First Upper Bound for the Swiss Re Bond(1)

The payoff of the call option is a convex function® of the strike price, i.e.,
E[(X - x)+] is convex in x.

?A function f : | — R , where / is an interval in R, is convex if and only if
flax+(1—a)y)<af(x)+(1—a)f(y) Vae]l0,1] and any pair of elements
x,y €1 .

o Define a vector A = (\1,...,\;) such that \; e Rand > 7 ; \i=1

o With the help of X we can write the payoff of the Asian-type call option

as . I
P, =Ce'TE [(Z (5 (% - 1.3)+ - A,-)) ] . ()
i=1

@ The above result for the call option implies

Py <5De 7Y eiC <qo <1.3 + ;) , t,-> (28)
i=1
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First Upper Bound for the Swiss Re Bond(2)

e Employing the Lagrangian with ¢ as the Lagrange's multiplier, we have

L(X ¢)= qu’t’C<qo<13+ ) >+¢<Z)\—1) (29)

The Upper Bound ub;

Py <5De™ 'TZ e"iC (F, (X) tj) =: ubs (30)
i=1

e where x € (0, 1) solves z; Fq_,,1 (x) = % (1+46.5n)
o Put-Call parity yields: P < (ub; — G)™ =: SWUB;
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First Upper Bound for the Swiss Re Bond (3)(Aliter)

@ The same upper bound by using comonotonicity theory

@ Define the comonotonic counterpart of q = (g1, ..., qn) as

o q" = (F5!(U), .. F5 (), U~ U(0,1)
o Let , ,
SC=> Fs'(U)=)_Sf. (31)
i=1 i=1
o Clearly,
S5 <& S (32)
@ cx denotes convex ordering

e So

n + n
E [(Zsi - Clo) ] < ZE [(5,' - ,_—5—’_1 (Fse (CIO))>+] - (33)
i—1 i—1
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First Upper Bound for the Swiss Re Bond(4) (Aliter)

@ As a result, an upper bound for the call counterpart of the Swiss Re
bond is given as

n Fo* (Fse
Py <5De” Y eiC (1.3% + 5(;(%)) t;) (34)
i=1

@ So the upper bound becomes

P, < 5De—f72n: eiC(1.3qy+ M ti (35)
1> < -2q0 5 s b
@ x € (0,1) is the solution of the equation

Y Fst(x)=a (36)
i=1
@ In fact, this yields the same upper bound

n
P < 5De*’TZ e'iC (qu,1 (x), t,-) =: uby (37)
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Improved Upper Bound for the Swiss Re Bond(1)

@ A sharper upper bound is possible

o if we assume that some additional information concerning the
stochastic nature of (g1, g2, ..., gn) is available

That is, if we can find a random variable A, with a known distribution
s.t. the individual conditional distributions of g; given the event A = A
are known for all j and all possible values of A

Define
Z sin(U) = ZS“ (38)

@ Then

S <ex S <o S° (39)
o Let g = (5¢,...,S5})
° <F5_1|/\ x o Fs, |1/\ ) ) is comonotonic, so that

5u|/\ A (P) = Z SiiA= y(p), pe(0,1). (40)
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Improved Upper Bound for the Swiss Re Bond(2)

o It follows that, in this case
Z 5|/\ \ (Fsuia=x (90)) = qo. (41)

@ The tower property & the convex order relationship given by (39) yield

1
The upper bound ub(t )

De-'Tgf_Ze[(q,- Fahr 00) A= a0 = bl (a2

@ where x € (0,1) solves the equation

ZFM/\ 5( +6.5n). (43)

@ This is is an upper bound for all t and minimise (42) over t € [0, T]
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Bounds for Black Scholes Case

@ A Tight Lower Bound on lines of SWLBgz)

@ Improved Upper Bound assuming dependence of Mortality index g; on
Brownian Motion

Bound for Transformed Gamma Distribution

A compact expression for SWLB?)
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A Lower Bound under Black-Scholes Model(1)

@ Assume that the mortality evolution process {q;},~ follows the Black-

Scholes model written as g, = eVt
@ where
o? .
Uy = log. (qo) + r— = t+ oW, (44)
and {W;'},-, denotes a standard Brownian motion
° 2
g 2
U~ N <Ioge qo + (r — 2) t,o t> (45)

Proposition

If (X, Y) ~ BVN (ux,py,0%,0%,p), the conditional distribution of the
lognormal random variable X, given the event e¥ =y is

loge x — (ux + p3 (loge y — uv))

oxy\/1— p?

FeX|eY:y x)=9¢
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A Lower Bound under Black-Scholes Model(2)

@ Given the time points t;, t for each f
@ let p be the correlation between Uy, and Uy

e Then, (U, Ut) ~ BVN <NUti7MUt7U%/ti7U%/t7p>

@ where MUt,»HUtaU%/t, and a%jt are given by (46)

o Now g; = eVt

@ The distribution function of g; conditional on the event g; = s; is

given as

Falgi=s: (x) = ®(a(x))

@ where a(x) is given by

log x — <|0g <qo (%)p > + (’ - 072) (ti — pﬁ))
a(x)= :

o t,'(l—p2)

e

(47)
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A Lower Bound under Black-Scholes Model(3)

o For the mortality evolution process {q;},~q defined as q; = e!*

L 2
g\t UT:i(t*ti) t<t
E (qilg:) = qo(qo) ¢ e

(48)
gre"(i=t) t>t.
@ Use this result to achieve the lower bound for the Asian-type call
option
o
@ DefineY = (Yq,...,Y))
@ where
t,‘/l’ oct;
5qo ((Z;) e (17t) 1 3) i <j
l' =

5q0 <<%> erltimt) 1 3) P>

e =12 ..n

@ Y is comonotonic
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A Lower Bound under Black-Scholes Model(4)

o Define S5 =37,V
@ By the comonotonic theory

(st - )| = e[ (vi- s ) ] )
i=1

o where Fgy, (qo) is the distribution function of S® evaluated at qo
@ such that for an arbitrary t, we have:

Fou (q0) = P[S" < qo]

j—1 t,/t 2 +
<Z ez (E74) _ 1.3)

i=1

+ - << ) r(ti=t) _ >+<0.2> (50)

i=j
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A Lower Bound under Black-Scholes Model(5)

@ Substitute x for g¢/qo in (50)

@ where x solves

jil ozt- + n +

> <xtf/fezr’(f—ff) - 1.3) + (xer(t"_t) - 1.3) =02 (51)

i=1 i=j
e Then S < qq if and only if g; < xqo
@ This yields

( [t i (tt) "
Fy, | 5q0 <Xt’ teze (E-8) 1.3) i</,
Fsis (q0) = Fq. (xq0) =

Fy, (5q0 (xer(t—) — 1.3)*) i>j
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A Lower Bound under Black-Scholes Model(6)

o As a result we have:

o'2t-
P > 5De_rT<Zq1 ti/tp <<q:i/te2t‘(t—t,)

i=1

o2+ + +
i/t (1.3 + (xff/fezf’(f—tf) — 1.3> ) ) )
1.3 1.3 \*
rt; o
N IB)
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A Lower Bound under Black-Scholes Model(7)

@ Denote the term within the first summation as E; and its value is

given below.
a2t,- +
E; =5qo | et (diy)— | 1.3+ <xff/fezf(f—tf) - 1.3) ® (daai)
(52)
@ where dy,; and dy,; are given respectively as
— log, (@) + (r— Lz) t
q0 2
i — 53
2ai U\/E ( )
t.
drai = daai + Uﬁ (54)

@ and da; is given as

1.3 13\
da; = qo T 4+ [ Xt/ — 02:7 (55)
eTtI(t_ti) eTt’(t_ti)
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A Lower Bound under Black-Scholes Model(8)

@ As a result we have

The Lower Bound Ib{*)

_j—]. sz‘
5De”"T (Z o (e’tf(b (dhai) — max (1.3,xt"/t62t'(t_t")) ® (d2ai)>
i=1

+ Ze’t"C (qo max (%,x) , t) > =: Ibng) (56)

i=j

v

@ The bound Ibng) can undergo treatment similar to |b§2) in sense of
maximization with respect to t yielding

P; > max IbS_LBS)

57
0<t<T (57)
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The Upper Bound SWUB{®®) (1)

e SWUB; is improved if there exists A s.t. Cov (X;,A) # 0 Vi.

@ Suppose the mortality index {q:},~, depends on an underlying
standard Brownian motion {W;}co,7]

@ Then
—rT -1 + _ w
P; <5De Z/ [ q,IWt )) ‘Wt = W:| do <\/E>
(58)
o where x solves
zn:F—l () =2 (1+65n) (59)
qi|We=w T 5 ) :

i=1

@ An explicit formula for the conditional inverse distribution function of
g; given the event W; = w, is provided by the following result
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The Upper Bound SWUB(®®) (2)

Under the assumptions of the Black-Scholes model, conditional on the
event W; = w, the conditional distribution function of q; is given by

qoe(r—”zj)t,-+a%"w+01/t?"(t—t,-)4>_1(x) i<
= ’ (60)
H W= _ﬁ - e -
il We=w qoe(r & )t,+crw+a'\/(t, t)d1(x) P>

where j = min{i : t; > t}.

e From equation (59), we then solve the following for x.

02 + 13[7 = Ji e("*%) ti+0't?iw+o'md>—l(x)
i=1

+Ze(r_v;)t,-+aw+a (t—1) 1 (x) (61)
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The Upper Bound SWUB(tBS) ©))

@ The improved upper bound for the call counterpart of the Swiss Re
bond in the Black-Scholes case

The Upper bound ubgBS)

<I> (cl(i)>

—(0.2+1.3n) (1 —x))dcb (%) —: ub®)  (62)

V.

—00

P < 5CerT/°° (z":e(, o (;t,Att) )t,
i=1

e with
0 _ { Le—t) =07 () i<, (63)
o/(ti—t) — d71(x) i>]

@ and x € (0,1) solves equation (61)
e For optimal upper bound minimise (62) over t € [0, T]
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Log Gamma Distribution (1)

@ Log Gamma distribution: a particular type of transformed Gamma
distribution

@ The mortality index ‘g’ follows log Gamma distribution if

log. g — p

= x ~ Gamma (p, a), (64)
o

e where u, 0, p and a are parameters (> 0) and log is the natural
logarithm
@ Useful references for transformed gamma distribution are

o [Johnson et al.(1994)Johnson, Kotz, and Balakrishnan]
o [Vitiello and Poon(2010)]
o [Cheng et al.(2014)Cheng, Tzeng, Hsieh, and Tsai]
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Log Gamma Distribution (2)

The Lower Bound Ib{-¢)

5Ce_'T<j_1 qo—ti/t ((Z?;p [1 e (dé, P, 0”)] - K [1 = (dév P)})

i=1
D er(ti—t)

(qoe™[1 — G (ch, p)] — Ka[1 — G (dn, P)])) (65

i=j

<

/
no /ti o rt— 1/p o Ind —u
os.t.a—l—a?,a—l—(qoe Y dy = ——,

/ t/t; AL/t 13
d1 = gop. Mmax <X1-“i/f7 1.3) , K = (d1> 7 Ky = 0. max | x, -3
er(ti—t)
o dy = ol dh = ch +InKy — ps
G (x p):/x L p1axgy G<X p a") :/x ﬂque-(a"x)c
’ 0 r(p) ’ T 0 r(p)

Raj Kumari Bahl (UoE) Mortality Bond July 25, 2016 74 / 95



Numerical Results(1)

@ Assume that the mortality evolution process {q:},~, obeys the
Black-Scholes model, specified by the following stochastic differential
equation (SDE)

dqg; = rqidt + oq: dW;.

@ In order to simulate a path, we will consider the price of the asset on a

finite set of n = 3 evenly spaced dates ty, ..., t,.

The Brownian Simulation

1
gy, = qr;_, exp [(r— 502) 6t—|—0\/§Uj] U~N(,1), j=1,2,...,n

(66)

Parameter choices in accordance with [Lin and Cox(2008)]

go = 0.008453, r = 0.0, T=3, tp =0, n=3, o = 0.0388

4
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Numerical Results(2

.
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0

q
0.007
0.008

0.008453
0.009

0.01
0.011
0.012
0.013
0.014

Bahl (UoE)

Table 5: Table showing the various bounds and the Monte Carlo estimate for the B-S Model for varying values of

SWLBO SWLB1 SWLBt_(BS) mC
0.899130889131400 0.899130889153152 0.899131577418890 0.899130939228525
0.913324024542464  0.913324024546338  0.913324256505855 0.913324120543246
0.92744 9274, 44 92744
0941626342686440 0.941626342686542 0.941626365599735 0.941626356704134
0.955935721003105  0.955935721003120 0.955935727716106 0.955935715488521
0970419124545862  0.970419124545864 0.970419126422140 0.970419112046475
0.985101139986133  0.985101139986134 0.985101140486345  0.985101142704466
0.999995778015617 0.999995778015617 0.999995778142797  0.999995730678518

Table 6: Table showing the various bounds and the Monte Carlo estimate for B-S Model

SWUBt_(8S) SWUB_(1)

0.899131588499602  0.899131637780299
0913324317265175  0.913324320930395
0.927447605312234  0.927447619324390
0.941626369726985 0.941626384748977
0.955935732229503  0.955935736078305
0.970419126801821 0.970419129771609
0.985101140839740 0.985101141738075
0.999995778174612  0.999995778583618

for varying values of q0 when r:

SWLBO SWLB1 SWLB_(BS) MC

SWUBt_(8S) SWUB_(1)

o. 0. 0. 17 1

0.999999915251651 0.999999915251651 0.999999915252175 0.999999935586330
0.999995778015617 0.999995778015617 0.999995778142797 0.999995730678518
0.999821987943444 0.999821987949893  0.999822025862818 0.999816103328680
0.978292691034648 0. X 1499 0. 9
0.572750782003669 0.610962124257773 0.610962123857400 0.

0. 17 0.
0.999999915252765 0.999999915253115
0.999995778174612  0.999995778583618
0.999822374801022  0.999822875816246
0.978292691184203  0.986262918346612
0.

0.000000000000000 0.040209774144029 0.040209770810359  0.094615386163640
o. 0. o. 0.001662471990070

0.000000000000000 0.395672911251278
0.000000000000000 0.083466184427206

o. 0. o. 0. 132

0. X 1

ly 25, 2016
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Numerical Results(3)

Figurel: Rel. Diff. of LBt(2), LBt(3) and UB1 w.r.t. MC estimate under Black-Scholes model
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Figure2: Comparison of different bounds under B-S model in terms of difference from MC estimate for r=0
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Numerical Results(4)
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Numerical Results(5)

@ Assume that the mortality rate ‘q’ obeys the four-parameter
transformed Normal (S,) distribution ([Johnson(1949)] and
[Johnson et al.(1994)Johnson, Kotz, and Balakrishnan]) which is
defined as follows

sinh™* (qﬁa) =x~ N (g, 02) , (67)

e «a, 3, and o are parameters (3,0 > 0) and sinh™! is the inverse
hyperbolic sine function
o Let go = 0.008453.

Parameter choices in accordance with [Tsai and Tzeng(2013)]

a = [0.008399, 0.008169, 0.007905], 3 = [0.000298, 0.000613, 0.000904],

1 = [0.70780,0.58728, 0.58743] and o = [0.67281, 0.50654, 0.42218].
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Numerical Results(6)

Table 7: Table showing the various bounds and the Monte Carlo estimate for the Su distn. for varying values of r

r SWLB0 SWLBL SWLBL_2) MC SWUB_(1)
0035 0.883255461690070 0.884321427701533 0.885548150428771 0.884689900254432 0.886806565750194
003 0903403981322902 0.904010021303490 0.904693957669362 0.904223406591320 0.905481788284534
0025 0.921607066867317 0.921935518850858 0.922291170234705 0922030679117868 0.922759498340311
002 0938407830148741 0938576980453810 0.938747560828014 0.938598989786277 0.939010425491579
0015 0.954287129640998 0.954369722665066 0.954444088119093 0.954415686472720 0.954582647473048
001 0969639544072264 0969677756802278 0.969706604342752 0.969633647401862 0.969774875755017
0005 0.984762743262391 0.984779521693468 0.984789115794819 0.984784143645072 0.984820459036106
0.999861354235404 0999868375732131 0.999870879263060 0.999871208429012 0.999884274666239

o

Note: LBt2 obtained by Numerical Integration in MATLAB

i Bahl
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Numerical Results(7)

@ Assume that the mortality index {q;},~ follows log gamma
distribution, which is defined as

log. g — p

= x ~ Gamma(p, a), (68)
g

@ 4,0, p and a are parameters (> 0) and log is the natural logarithm.

Parameter choices in accordance with

[Cheng et al.(2014)Cheng, Tzeng, Hsieh, and Tsai]

go = 0.0088, p = [61.6326,64.2902, 71.8574], a = [0.0103,0.0098, 0.0080],

1 = [~5.2452, —5.4600, —5.7238] & o = [7.4x107°>,9.5x107°>,9.4x10°].
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Numerical Results

8

Table 8: Table showing the various bounds and the Monte Carlo estimate for the TGD for varying values of r

r SWLBO SwLB1 SWLBt_(LG) MC SWUB_(1)
0.035  0.848032774815386 0.84842404478; o. 0 0.854 0.
003 087357 0 0.87381 0.8791 0. 428 0.887240130128182
0025 0.8 0.897242672828637 0, 16024 0. o.
002 0.918896959516680 0.918977921696450 0.921421185492669 0.921030195923945 0.926366403382851
0.015  0.939240965473512 0.939286791778834 0. 7441 0.94 0.9441 4068
001  0.958403723325091 0.958429070673721 0.959452704642603 0.959485386731500 0.962230654369936
0.005  0.976635430514097 0.976649121750369 0.977286229664468 0.977322136744823 0.979302971604630
0 0.994162849651329 0.994170066410978 0.994555652671267 0.994698510160850 0.995987334249625

Table 9: Table showing the various bounds and the Monte Carlo estimate for the TGD for varying values of g0 when r=0.0

a0 SWLBO SWLB1 SWLBt_(LG) SWUB_(1)

0,008 0. 14250 0999 0.999793281501976 0.999779562416927
0.0088 0.994162849651329 0.994170066410978 0.994555652671267 0.994686720834666 0.995987334249625
0,009 0.989104987070782 0.989146149900171 0.989952105692831 0.990012775482666 0.993383346707654
001 0.876692543049394 0.888049181229988 0.896376305638172 0.891609413787780 0.958189590378894
0011 0.410971060715423 O, o, 0.568675584083477 0. 23077
0012 o. 0.2 0.20708 2 061

0,013 0.000000000000000 0.082740708460284 0.082740708460278 0.045779872978350 0.381822437530697
0014 0.000000000000000 0.012702023135424 0.012702023135418  0.006694089213835 0.212229375394606
0015 0. o. o. 0.000883157235603  0.110420349200491
0016 0. o. o. 0.000084710725625 0.055539272590864
0017 o. o. o. 454 X

0018 0. o. o. 50 0.013697961782757
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Numerical Results(9)

Figure 4: Rel. Diff. of Lower Bounds and UB1 w.r.t. MC estimate under Transformed Gamma Dist
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Figure 5: Comparison of different bounds under Transformed Gamma distn in terms of difference from MC estimate for r=0
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Numerical Results(10)

Figure 6 Price Bounds under Transformed Gamma Distn. for the parameter choice of Lin and Cox(2008) Model
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What did Swiss Re achieve?

@ Swiss Re thrives from Life Insurance Business
It achieved Mortality Risk Transfer
Protection against extreme mortality events
Got counter parties to offload mortality risk
No dependence on retrocessionaire

e Profitability negatively correlated to mortality rates

@ Methodology: Catastrophic bond with loss measurement based on a
parametric index

@ Investors in the bond took opposite position

@ Received an enhanced return if an extreme mortality event doesn’t
occur
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What Lies Ahead...?

o Mortality risk transfer expected to become more of a concern for life
insurers and reinsurers
@ Under Solvency Il access to fully collateralized ILS capacity beneficial
on a capital efficiency basis
@ More such transactions predicted in the future
@ ILS investors pleased to see VITA VI
o A new extreme (or excess) mortality catastrophe bond deal
o Keen to access the diversification it can offer
o The fact that it is Swiss Re again welcomed
@ The giant has transferred over $ 2.2 billion of mortality risk to the
capital market
@ A lot of variations being tried
@ Swiss Re has experimented with
o Longevity Trend Bond - KORTIS (2010)
e Multiple Peril Bond - MYTHEN RE (2012)
@ A more transparent and liquid Longevity and mortality market is
emerging (since the formation of LLMA (2010))
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Further Research

This research is a crucial breakthrough in the pricing of catastrophic
mortality bonds

Model-independent bounds give freedom of choice for selecting
mortality models

Only one earlier publication by
[Huang et al.(2014)Huang, Tsai, Yang, and Cheng] in direction of
price bounds for the Swiss Re bond

These authors propose gain-loss bonds that suffer from model risk
The present scenario poised for further research

Deriving even more tighter upper bound

Using these bounds for the Longevity Trend Bond - KORTIS

The success of our research hinges upon the trading of vanilla options
written on the mortality index
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TO THE BOND ISSUER

e Securing protection for insurance liabilities when claims are horrendous

o Multiyear coverage compared to 1-year given by stop-loss reinsurance

e Gaining access to capital from investors which is used to generate
further returns

o Flexibility to access capital markets when required by using shelf

programs
o A kind of 'ALTERNATIVE RISK TRANSFER'

TO THE BUYER

e High yields offered from these bonds
o Diversification to the portfolio
o A type of charity for the rich

A WIN-WIN situation for both
One phrase to summarize these bonds: '"HIGH RISK HIGH REWARD’

Raj Kumari Bahl (UoE) Mortality Bond July 25, 2016 88 / 95



A Few Disadvantages

@ Significant up-front transaction costs
Legal
Risk Modeling
Broker
Rating agency
Bank fees
@ that require minimum transaction sizes for the issuance to be
economical
e '‘BASIS RISK’
e since the payoff trigger is index based
e and the actual loss suffered is unlikely to be perfectly matched by the
bond payoff

o Capital Credit given by regulators and rating agencies may be reduced
for CATM's in comparison to traditional reinsurance

@ Terms are fixed throughout the duration of coverage but can be
adjusted for traditional reinsurance every year allowing for short term
commitment and flexibility
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The Modeling Aspect

Pricing of the CAT mortality bonds depends on the estimation and
forecast of mortality rates
The development of new catastrophic mortality bonds and
longevity-linked securities is
Aided by and in turn encouraged the development of increasingly
sophisticated "Mortality Models’
Many stochastic models are being proposed
Experimentation being done with the celebrated
o Lee-Carter Model ([Lee and Carter(1992)])
o CBD Model ([Cairns et al.(2006)Cairns, Blake, and K])
Mortality modeling with Lévy Processes very popular
Mortality jumps are being incorporated in these models
Examples of Mortality Models
o DEJD: Double Exponential Jump Diffusion
([Deng et al.(2012)Deng, Brockett, and MacMinn])
e Geometric Brownian Motion with log-normal jump size distribution
([Lin and Cox(2008)])
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“If there will be one day such a severe world-wide pandemic that one
of the bonds | bought will be triggered, there will be more important
things to look after than an investment portfolio.”

— ANONYMOUS CATM INVESTOR

Thanks!
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