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Quotation

�Nothing is certain in life except death and taxes.�

� Benjamin Franklin
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Introduction(1)

Motivation

In the present day world, �nancial
institutions face the risk of un-
expected �uctuations in human
mortality

This Risk has two aspects

Mortality Risk: Actual rates of
mortality are in excess of those
expected
Longevity Risk: People outlive
their expected lifetimes
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Introduction(2)

Life insurers interested in mortality risk

Annuity providers, de�ned bene�t plans & social insurance programs
interested in longevity risk

A quick note on longevity risk

Life Expectancy in developed world has been increasing by
approximately 1.2 months every year
Global Life Expectancy has increased by 4.5 months per year
Substantial improvements in Longevity at older ages during 20th
century
Di�culties in Longevity Risk Management in Pension Funds due to
wrong estimation of mortality rate

What are the implications?

Underestimation of expected lifetimes leads to aggregate de�cit in
pension reserves
In 2010 alone improved life expectancy added 5 billion pounds to
corporate pension obligations in UK
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Introduction(3)

A quick note on mortality risk
Life being shorter than expected is referred to as premature death or
mortality risk
Factors that trigger mass premature deaths are CATASTROPHES!

Catastrophes can be natural or man-made
What is a catastrophe?

An event in which insured claims, total economic losses, or the number
of casualties exceed a certain threshold
Lost or missing lives 20, injured 50, homeless 2000

Number of catastrophes has risen sharply in the last four decades

In the 1970's roughly 100 catastrophic events per year

Number has more than tripled in the last decade

In 2011, there were 325 such events: 175 natural and 150 man-made

In 2014, 336 such events: 189 (highest ever) natural and 147
man-made

In 2014, 12700 people lost their lives or went missing in the disasters
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Introduction(4) : Possible Mortality Catastrophes

Natural Disasters

Terrorist Attacks

Wars

In�uenza Epidemics

Infectious diseases

Meteorite Crashes
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Historical Facts(1): Catastrophes lead to Mortality Spikes
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Historical Facts(2)

 

 

 

 

• The 1918 influenza pandemic: Increase in mortality rate by 30% overall.  

• Most affected age groups: 15-24 and 25-34   

• For individuals aged 55 and over a little decrease in the death rate 
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Historical Facts(3)

13 or more in�uenza pandemics since 1500

Four In�uenza Pandemics in the 20th Century
Spanish Flu (1918)

most severe in�uenza pandemic ever experienced
more than 675,000 excess deaths b/w Sep 1918 & Apr 1919 in US

Asian Flu (1957)
Hong Kong Flu (1968)
Russian Flu (1977)

H5N1 Avian In�uenza in Hong Kong in 1997

Swine Flu in 2009

Could a �u happen again?

Virologists and Epidemiologists say YES!

Zika and Ebola: A taste of things to come?

Raj Kumari Bahl (UoE) Mortality Bond 30th March 2016 10 / 70



The Problem - Extreme Mortality Risk

Life insurance companies provide protection to their policyholders in
the form of a payout made in the event of a policyholder's death, in
exchange for a premium

Extreme mortality events, such as a severe pandemic or a large
terrorist attack, could result in a life insurance company needing to
make sudden payouts to many policyholders

This large payout would be exacerbated in that the investment
portfolio would not yet have delivered su�cient returns � the payouts
to policyholders are made sooner than expected

Therefore it is crucial for life insurers, and life reinsurers, to manage
their exposure to extreme mortality risks where insurance portfolio
diversi�cation by itself is insu�cient
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Available Methodologies for Hedging Extreme Mortality Risk

Natural Hedging: compensating longevity risk by mortality risk

Drawback: Cost prohibitive

Mortality-linked Securities (MLS'S) or Catastrophe (CAT) Mortality
(CATM) Bonds: Cash �ows linked to a mortality index such that the
bonds get triggered by a catastrophic evolution of death rates of a
certain population

Swiss Re Bond 2003 (VITA I): The �rst mortality bond
Swiss re Bond 2015 (VITA VI): The latest mortality bond
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Valuation approaches on MLS's

Risk-adjusted process/ No-arbitrage Pricing:

Estimate the distribution of future mortality rates in the real world
probability measure
Transform the real-world distribution to its risk-neutral counterpart
Calculate the price of MLS by discounting the expected payo� under
the risk-neutral probability measure at the risk-free rate

The Wang Transform:

Employs a distortion operator that transforms the underlying
distribution into a risk-adjusted distribution
MLS price is the expected value under the risk-adjusted probability
discounted by risk-free rate

Instantaneous Sharpe Ratio: Expected return on the MLS equals the
risk-free rate plus the Sharp ratio times its standard deviation

The utility-based valuation: Maximisation of the agent's expected
utility subject to wealth constraints to obtain the MLS equilibrium
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History of Mortality Linked Securities

Tontines: 17th and 18th century in France

Annuities in Geneva: Payo�s directly linked to the survival of Genevan
"mademoiselles"

Speculations came to an end during French Revolution

Detailed overview in [Bauer(2008)]
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Recent Developments(1)
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Recent Developments(2)

 

 

 

 

 

 

Chen and Cox (2009) Modelling mortality with Jumps 

Cox et al (2010)       Mortality Risk Modelling 

Shang et al (2011) Recursive Approach to MLS 

Cox et al (2013) Mortality portfolio Risk Management 

Lin et al (2013) Pricing mortality securities with 

correlated indexes 

Huang et al (2014) Price jumps of MLS in incomplete 

markets 

Pessler (2000) Criticism of Wang Transform 

Milidonis et al (2011) A regime switching mortality model 

with two states 

Deng et al (2012) 
Double-exponential jump diffusion 

model for mortality jumps & cohort 

effects 

Hunt & Blake (2015) Analysing the Swiss Re Kortis Bond 
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Prime Focus(1)

Catastrophe Mortality Bonds or CATM Bonds

What are these?

Bonds designed to transfer the risk of extreme mortality from a sponsor
to investors
Coupon & Principal payments depend on the non-occurence of a
pre-de�ned catastrophic event

Transaction involves three parties

The Ceding company or Sponsor
Special Purpose Vehicle (SPV) or issuer
Investors generally large institutional buyers

Transaction begins with formation of a SPV
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Prime Focus(2)

SPV issues bonds to investors

SPV invests the received capital in high quality securities such as
government or corporate AAA bonds

Generally held in a trust account

Coupon Payment

Investment returns from trust account &
Risk premium from ceding company

Embedded in the bonds is a call option

This call option gets triggered by a de�ned catastrophic event

Well de�ned Attachment and Exhaustion Points

Principal is fully at risk

Our choice: Swiss Re Bond 2003
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Prime Focus(3)

Speci�cations VITA I VITA II TARTAN

Sponsor Swiss Re Swiss Re Scottish Re
Arranger Swiss Re Swiss Re Goldman Sachs
Modelling Firm Milliman Milliman Milliman
SPV domicile Cayman Islands Cayman Islands Cayman Islands
Size $ 400M $ 362M $ 155M
No.of Tranches 1 3 2
Issue date December 2003 April 2005 May 2006
Maturity 4 years 5 years 3 years
Index US, UK, France, US, UK, Germany, US

Italy, Switzerland Japan, Canada

Table 1: The Initial CAT Mortality Bonds
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Prime Focus(4)

Speci�cations OSIRIS VITA III NATHAN

Sponsor AXA Swiss Re Munich Re
Arranger Swiss Re Swiss Re Munich Re
Modelling Firm Milliman Milliman Milliman
SPV domicile Ireland Cayman Islands Cayman Islands
Size e 345M $ 705M $ 100M
No.of Tranches 3 2 1
Issue date November 2006 January 2007 February 2008
Maturity 4 years 4 & 5 years 5 years
Index France, Japan, US, UK, Germany, US, UK, Canada,

US Japan, Canada Germany

Table 2: The Middle Stage CAT Mortality Bonds
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Prime Focus(5)

Speci�cations Vita IV Vita IV Vita V

Sponsor Swiss Re Swiss Re Swiss Re
Arranger Swiss Re Swiss Re Swiss Re
Modelling Firm RMS RMS RMS
SPV domicile Cayman Islands Cayman Islands Cayman Islands
Size $ 300M $ 180M $ 275M
No.of Tranches 4 2 2
Issue date I: Nov'09; II: May'10 July 2011 July 2012

III & IV: Oct 2010
Maturity 4 & 5 years 5 years 5 years

I:US, UK; II:US/UK IV:Canada/ D-1:Australia,
Index III: US/Japan, Germany(Ger.), Canada

IV: Germany/ V:Canada/Ger./ E-1:Australia,
Canada UK/US Canada, US

Table 3: The Middle Stage CAT Mortality Bonds (Contd...)
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Prime Focus(6)

Speci�cations Mythen Re Atlas IX VITA VI

Sponsor Swiss Re SCOR Re Swiss Re
Arranger Swiss Re Aon, BNP Swiss Re

Paribas, Natixis
Modelling Firm AIR/RMS RMS RMS
SPV domicile Cayman Islands Ireland Cayman Islands
Size $ 200M $ 180M $ 100M
No.of Tranches 2 2 1
Issue date November 2012 September 2013 December 2015
Maturity 4 & 5 years 5 years 5 years
Index U.S. hurricane, US Australia,

UK mortality Canada, UK

Table 4: The Latest CAT Mortality Bonds

Raj Kumari Bahl (UoE) Mortality Bond 30th March 2016 22 / 70



Prime Focus(7)

Why Swiss Re Bond...?

An Innovative Security...one of its kind
A kind of pioneer and path setter
Shifted the risk exposure from the balance sheet to the capital markets

Attracted lot of attention and was fully subscribed (Euroweek, 19
December 2003)

Investors included a large number of pension funds

Established a Special Purpose Vehicle (SPV) called VITA I for the
securitization

A 3-year bond issued in December 2003 with maturity on Jan 1, 2007

Principal s.t. mortality risk de�ned in terms of an index qi in yr ti

Quarterly coupons of three-month US-dollar LIBOR + 135 basis points

Strength: Extreme Transparency
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The Bond Mechanism

 

 

 

 

Swiss Re  Bond holders  SPV (Vita 

Capital)  

Check 
terminal 
mortality 

index v alue  

Up to $400m if 
extreme 
mortality is not 

experienced  

Up to $ 400m if 
extreme 
mortality is 

experienced   

Quarterly coupons 

 (USD LIBOR + 135bps)   

Principal 

payment $400m  

Off balance 

sheet   
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The Mortality Index

Mortality index constructed as a weighted average of mortality rates
(deaths per 100,000) over age, sex (male 65%, female 35%) and na-
tionality (US 70%, UK 15%, France 7.5%, Italy 5%, Switzerland 2.5%)

Index =
∑

j Cj

∑
i

(
GmAiq

m
i ,j ,t + G fAiq

f
i ,j ,t

)

qmi ,j ,t and qfi ,j ,t = mortality rates (deaths per 100,000) for males and
females respectively in the age group i for country j

Cj = weight attached to country j

Ai = weight attributed to age group i (same for males and females)

Gm and G f = gender weights applied to males and females respectively

q0 = base index
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Index Distribution

 

 

 

Table showing distribution by age within the VITA index 

Age 

Group 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 

Weight 1% 5% 12.50% 20% 20% 16% 12% 7% 3% 2% 1% 0.50% 

 

 

            

             

US

70%

UK

15%

France

8%

Swizerland

5%

Italy

2%

Geographic distribution within the vita index

Raj Kumari Bahl (UoE) Mortality Bond 30th March 2016 26 / 70



Design of the Swiss Re Bond(1)

Principal Loss Percentage

Li =


0 if qi ≤ K1q0
(qi−K1q0)
(K2−K1)q0

if K1q0 < qi ≤ K2q0

1 if qi > K2q0

(1)

For Swiss Re Bond K1 = 1.3 K2 = 1.5

Coupons

Cj =


(
S+LIj

4

)
.C if j = 1

4 ,
2
4 , ...,

11
4 ,(

S+LIj
4 .C + X

)
if j = 3,

(2)

S : Spread value, LIj : LIBOR rates, C : Face Value, X : a random
variable
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Design of the Swiss Re Bond(2)

Proportion of the principal returned to the bondholders on the
maturity date:

X = C

(
1−

3∑
i=1

Li

)+

, (3)

C = $400 million

Risk-neutral price of the random pay-o� at time 0 with Q as the EMM

P = e−rTEQ [X ] (4)

r is nominal annual interest rate

Discounted Cash�ow of Payments

DC (r) =
12∑
i=1

C i
4(

1 + r
4

)i (5)
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Design of the Swiss Re Bond(3)

 

100% - 

90% - 

70% - 

60% - 

50% - 

40% - 

30% - 

20% - 

10% - 

0% - 

80% - 

1     1.05     1.1     1.15      1.2       1.25      1.3     1.35     1.4     1.45     1.5     1.55       1.6

P
ri

n
c
ip

al
 R

ep
ay

m
en

t 
(%

) 

1     1.15      1.2       1.25      1.3     1.35     1.4     1.45     1.5     1.55       1.6

Mortality Index Level (q) 

A
tt

ac
h

m
e
n

t 
p

o
in

t 

E
x

h
au

st
io

n
 p

o
in

t 

Capital erosion 

 

 

1     1.15      1.2       1.25      1.3     1.35     1.4     1.45     1.5     1.55       1.6 

Raj Kumari Bahl (UoE) Mortality Bond 30th March 2016 29 / 70



Our Approach for Bond Evaluation

Adapt the payo� of the bond in terms of the payo� of an Asian put
option

Assume the existence of an Equivalent Martingale Measure (EMM)

Present model-independent bounds

Exploit comonotonic theory as illustrated in
[Albrecher et al.(2008)Albrecher, Mayer, and Schoutens] for the
pricing of Asian options

Carry out Monte Carlo simulations to estimate the bond price under
Black-Scholes Model

Draw graphs of the bounds by varying the interest rate r and mortality
rate q0
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Payo� as that of an Asian Put Option

Alternative form of writing Payo�

P = De−rTE
[
(q0 − S)+

]
(6)

D = C
q0

Si = 5 (qi − 1.3q0)+

S =
3∑

i=1

Si

Call counterpart of the payo�

P1 = De−rTE
[
(S − q0)+

]
(7)
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Put-call parity for the Swiss Re Bond

The relation

P1 − P = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(8)

De�ne

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(9)

Bounding P1 by bounds l1 and u1

Corresponding bounds for the Swiss Re Mortality Bond:

(l1 − G )+ ≤ P ≤ (u1 − G )+ (10)
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Some Basic Concepts

De�nition

Stop-loss Premium: The stop-loss premium with retention d of a random
variable X is de�ned as E

[
(X − d)+

]
.

De�nition

Stop-loss Order: Consider two random variables X and Y. Then X is said to
precede Y in the stop-loss order sense, written as X ≤sl Y , if and only if X
has lower stop-loss premiums than Y:

E
[
(X − d)+

]
≤ E

[
(Y − d)+

]
−∞ < d <∞ (11)

De�nition

Convex Order: X is said to precede Y in terms of convex order, written as
X ≤cx Y , if and only if X ≤sl Y and E [X ] = E [Y ].
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Lower Bound for the Call Counterpart

Lower Bound using Jensen's Inequality

P1 ≥ De−rTE

[(
n∑

i=1

5 (E (qi |Λ)− 1.3q0)+ − q0

)+]
(12)

We de�ne: Zi = 5 (E (qi |Λ)− 1.3q0)+ ; i = 1, 2, ..., n & Z =
n∑

i=1

Zi

S ≥sl Z or E
[
(S − q0)+

]
≥ E

[
(Z − q0)+

]
The conditioning variable Λ is chosen in such a way that E [qi |Λ] is
either increasing or decreasing for every i
This implies the vector: Zl = (Z1, . . . ,Zn) is comonotonic & yields

Stop-loss lower bound for the call-counterpart

P1 ≥ De−rT
n∑

i=1

E

[(
5 (E (qi |Λ)− 1.3q0)+ − F−1Zi

(FZ (q0))
)+]

(13)
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The Trivial Lower Bound

if the random variable Λ is independent of the mortality evolution
{qt}t≥0 we get

The Trivial Lower Bound

P1 ≥ Ce−rT

(
n∑

i=1

5 (exp (rti )− 1.3)+ − 1

)+

=: lb0 (14)

Using

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(15)

Corresponding bound for the Swiss Re Mortality Bond:

P ≥ ( lb0 − G )+ =: LB0 (16)
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The Lower Bound LB1

We choose Λ = q1 in (13)

Use the martingale argument for the discounted mortality process

E [qi |q1] = E
[
erti e−rtiqi |q1

]
= er(ti−t1)q1.

The Lower Bound LB1

P1 ≥ 5D
n∑

i=1

e−r(T−ti )C

(
q0

(
1.3

er(ti−t1)
+

(
x − 1.3

er(ti−t1)

)+
)
, t1

)
=: lb1

(17)

where x is the solution of
n∑

i=1

(
er(tj−t1)x − 1.3

)+
= 0.2

C (K , t1) is the price of a European call on the mortality index with
strike K, maturity t1 and current mortality index q0
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The Lower Bound LB
(1)
t

Further improvement using additional assumptions
The following inequality holds for every random variable Y and every
constant c

⇒ E
[
a+
]
≥ E

[
a1I{Y≥c}

]
(18)

Utilizing the above inequality twice
and further assume: qi and 1I{qt≥c} are non-negatively correlated for
t > ti

The Lower Bound LB
(1)
t

P1 ≥ 5De−rT max
0≤t≤T

C
(∼
ct , t

) n∑
i=j

erti =: lb
(1)
t (19)

where j = min {i : ti ≥ t} and

∼
ct = q0

(
(0.2 + 1.3n)−

∑j−1
i=1e

rti∑n
i=je

r(ti−t)

)
(20)
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A Model-independent Lower Bound(1)

Additional assumption that holds good for stationary exponential Lèvy
models

n∑
i=1

qi ≥sl

 j−1∑
i=1

q
(1−ti/t)
0 q

ti/t
t +

n∑
i=j

er(ti−t)qt

 (21)

for 0 ≤ t ≤ T and j = min {i : ti ≥ t}
We then use the following two results

Proposition

Let (X , Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, where BVN stands for bivariate

normal distribution. The conditional distribution function of X , given the
event Y = y , is given as

FX |Y=y (x) = Φ

x −
(
µX + ρσXσY (y − µY )

)
σX
√
1− ρ2

 (22)
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A Model-independent Lower Bound(2)

Proposition

Let W = (Wt) , t ≥ 0 be a standard Brownian motion. Then the
conditional expectation of Wti given Wt is given as

E [Wti |Wt ] =
ti
t
Wt for any ti < t

The above proposition then leads to the following proposition

Proposition

The additional assumption (21) holds for stationary exponential Lèvy
models with mortality evolution qt = q0 exp (Ut), where (Ut)t≥0 is a Lèvy
process
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A Model-independent Lower Bound(3)

We use this result to achieve the lower bound for the Asian-type call
option

n∑
i=1

5 (E (qi |qt)− 1.3q0)+ =

j−1∑
i=1

5q0

((
qt
q0

)ti/t

− 1.3

)+

+
n∑
i=j

5q0

(
qt
q0

er(ti−t) − 1.3

)+

=: S l2 . (23)

S l2 is the same as Z with Λ being replaced by qt

So we have S ≥sl S
l2
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A Model-independent Lower Bound(4)

De�ne Y = (Y1, . . . ,Yn) with

Yi =

5q0

((
qt
q0

)ti/t
− 1.3

)+

i < j

5q0
((

qt
q0

)
er(ti−t) − 1.3

)+
i ≥ j

i = 1, 2, ..., n

Y is comonotonic:-components are strictly increasing functions of qt

By the comonotonic theory

E

[(
S l2 − q0

)+]
=

n∑
i=1

E

[(
Yi − F−1Yi

(FS l2 (q0))
)+]

(24)

where FS l2 (q0) is the distribution function of S l2 evaluated at q0
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A Model-independent Lower Bound(5)

such that for an arbitrary t, we have:

FS l2 (q0) = P

[
S l2 ≤ q0

]
= P

(
j−1∑
i=1

((
qt
q0

)ti/t

− 1.3

)+

+
n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

)
(25)

Substitute x for qt/q0 in (25)

where x solves

j−1∑
i=1

(
x ti/t − 1.3

)+
+

n∑
i=j

(
xer(ti−t) − 1.3

)+
= 0.2 (26)

Then S l2 ≤ q0 if and only if qt ≤ xq0
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A Model-independent Lower Bound(6)

This yields

FS l2 (q0) = Fqt (xq0) =

FYi

(
5q0

(
x ti/t − 1.3

)+)
i < j

FYi

(
5q0

(
xer(ti−t) − 1.3

)+)
i ≥ j

The Lower Bound lb(2)t

P1 ≥ 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

[(
q
ti/t
t − q

ti/t
0

(
1.3 +

(
x ti/t − 1.3

)+))+
]

+
n∑
i=j

ertiC

(
q0

(
1.3

er(ti−t)
+

(
x − 1.3

er(ti−t)

)+
)
, t

))
=: lb

(2)
t (27)
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A Model-independent Lower Bound(7)

lb
(2)
t is a lower bound for all t and can be maximized w.r.t. t to yield

the optimal lower bound:

P1 ≥ max
0≤t≤T

lb
(2)
t (28)

As before, we have on using the put-call parity

P ≥
(
lb

(2)
t − G

)+
=: LB

(2)
t (29)
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A Lower Bound under Black-Scholes Model(1)

Assume that the mortality evolution process {qt}t≥0 follows the Black-
Scholes model written as qt = eUt

where

Ut = loge (q0) +

(
r − σ2

2

)
t + σW ∗

t (30)

and {W ∗
t }t≥0 denotes a standard Brownian motion

Ut ∼ N

(
loge q0 +

(
r − σ2

2

)
t, σ2t

)
(31)

Proposition

If (X , Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, the conditional distribution of the

lognormal random variable eX , given the event eY = y is

FeX |eY=y (x) = Φ

 loge x −
(
µX + ρσXσY (loge y − µY )

)
σX
√
1− ρ2

 (32)
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A Lower Bound under Black-Scholes Model(2)

Given the time points ti , t for each i

let ρ be the correlation between Uti and Ut

Then, (Uti ,Ut) ∼ BVN
(
µUti

, µUt , σ
2
Uti
, σ2Ut

, ρ
)

where µUti
, µUt , σ

2
Uti

and σ2Ut
are given by (46)

Now qt = eUt

The distribution function of qi conditional on the event qt = st is
given as

Fqi |qt=st (x) = Φ (a (x))

where a (x) is given by

a (x) =

loge x −

(
log

(
q0
(

st
q0

)ρ√ ti
t

)
+
(
r − σ2

2

)
(ti − ρ

√
ti t)

)
σ
√
ti (1− ρ2)

.

(33)
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A Lower Bound under Black-Scholes Model(3)

For the mortality evolution process {qt}t≥0 de�ned as qt = eUt

E (qi |qt) =

q0
(

qt
q0

) ti
t
e

σ2ti
2t

(t−ti ) ti < t,

qte
r(ti−t) ti ≥ t.

(34)

Use this result to achieve the lower bound for the Asian-type call
option

De�ne Y = (Y1, . . . ,Yn)

where

Yi =

5q0

((
qt
q0

)ti/t
e

σ2ti
2t

(t−ti ) − 1.3

)+

i < j

5q0
((

qt
q0

)
er(ti−t) − 1.3

)+
i ≥ j

i = 1, 2, ..., n

Y is comonotonic
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A Lower Bound under Black-Scholes Model(4)

De�ne S l3 =
∑n

i=1 Yi

By the comonotonic theory

E

[(
S l3 − q0

)+]
=

n∑
i=1

E

[(
Yi − F−1Yi

(FS l3 (q0))
)+]

(35)

where FS l3 (q0) is the distribution function of S l3 evaluated at q0
such that for an arbitrary t, we have:

FS l3 (q0) = P

[
S l3 ≤ q0

]
= P

(
j−1∑
i=1

((
qt
q0

)ti/t

e
σ2ti
2t

(t−ti ) − 1.3

)+

+
n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

)
(36)
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A Lower Bound under Black-Scholes Model(5)

Substitute x for qt/q0 in (36)

where x solves

j−1∑
i=1

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+

+
n∑
i=j

(
xer(ti−t) − 1.3

)+
= 0.2 (37)

Then S l3 ≤ q0 if and only if qt ≤ xq0

This yields

FS l3 (q0) = Fqt (xq0) =


FYi

(
5q0

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

i < j ,

FYi

(
5q0

(
xer(ti−t) − 1.3

)+)
i ≥ j
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A Lower Bound under Black-Scholes Model(6)

As a result we have:

P1 ≥ 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

((
q
ti/t
t e

σ2ti
2t

(t−ti )

− q
ti/t
0

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
))+)

+
n∑
i=j

ertiC

(
q0

(
1.3

er(ti−t)
+

(
x − 1.3

er(ti−t)

)+
)
, t

))
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A Lower Bound under Black-Scholes Model(7)

Denote the term within the �rst summation as E1 and its value is
given below.

E1 = 5q0

(
erti Φ (d1ai )−

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

Φ (d2ai )

)
(38)

where d2ai and d1ai are given respectively as

d2ai =
− loge

(
dai
q0

)
+
(
r − σ2

2

)
t

σ
√
t

(39)

d1ai = d2ai + σ
ti√
t

(40)

and dai is given as

dai = q0

(
1.3

e
σ2ti
2t

(t−ti )
+

(
x ti/t − 1.3

e
σ2ti
2t

(t−ti )

)+)t/ti

(41)
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A Lower Bound under Black-Scholes Model(8)

As a result we have

The Lower Bound lb(3)t

P1 ≥ 5De−rT

(
j−1∑
i=1

q0

(
erti Φ (d1ai )−

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

Φ (d2ai )

)

+
n∑
i=j

ertiC

(
q0

(
1.3

er(ti−t)
+

(
x − 1.3

er(ti−t)

)+
)
, t

))
=: lb

(3)
t (42)

The bound lb
(3)
t can undergo treatment similar to lb

(2)
t in sense of

maximization with respect to t yielding

P1 ≥ max
0≤t≤T

lb
(3)
t (43)
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An Upper Bound for the Swiss Re Bond(1)

Proposition

The payo� of the call option is a convex functiona of the strike price, i.e.,
E
[
(X − x)+

]
is convex in x.

aA function f : I → R , where I is an interval in R, is convex if and only if
f (ax + (1− a) y) ≤ af (x) + (1− a) f (y) ∀a ∈ [0, 1] and any pair of elements
x , y ∈ I .

De�ne a vector λ = (λ1, . . . , λn) such that λi ∈ R and
∑n

i=1 λi = 1
With the help of λ we can write the payo� of the Asian-type call option
as

P1 = Ce−rTE

[(
n∑

i=1

(
5
(

qi
q0
− 1.3

)+
− λi

))+]
. (44)

The above result for the call option implies

P1 ≤ 5De−rT
n∑

i=1

ertiC

(
q0

(
1.3 +

λi
5

)
, ti

)
(45)
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An Upper Bound for the Swiss Re Bond(2)

Employing the Lagrangian with φ as the Lagrange's multiplier, we have

L (λ, φ) =
5

q0

n∑
i=1

ertiC

(
q0

(
1.3 +

λi
5

)
, ti

)
+ φ

(
n∑

i=1

λi − 1

)
(46)

The Upper Bound ub1

P1 ≤ 5De−rT
n∑

i=1

ertiC
(
F−1qi

(x) , ti
)

=: ub1 (47)

where x ∈ (0, 1) solves
n∑

i=1

F−1qi
(x) =

q0
5

(1 + 6.5n)

Put-Call parity yields: P ≤ (ub1 − G )+ =: UB1
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Numerical Results(1)

Assume that the mortality evolution process {qt}t≥0 obeys the
Black-Scholes model, speci�ed by the following stochastic di�erential
equation (SDE)

dqt = rqtdt + σqtdWt .

In order to simulate a path, we will consider the price of the asset on a
�nite set of n = 3 evenly spaced dates t1, ..., tn.

The Brownian Simulation

qtj = qtj−1
exp

[(
r − 1

2
σ2
)
δt + σ

√
δtUj

]
Uj ∼ N (0, 1) , j = 1, 2, . . . , n

(48)

Parameter choices in accordance with [Lin and Cox(2008)]

q0 = 0.008453, r = 0.0, T = 3, t0 = 0, n = 3, σ = 0.0388
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Numerical Results(2)

Table 5:  Table showing the various lower bounds, upper bound and the Monte Carlo estimate for the B-S Model for varying values of r 

 

r LB0 LB1 LBt_(1) LBt_(2) LBt_(3) UB MC 

0.035 0.899130889131400 0.899130889153152 0.899130889163207 0.899131563852078 0.899131577418890 0.899131637780299 0.899130939228525 

0.03 0.913324024542464 0.913324024546338 0.913324024548259 0.913324251738880 0.913324256505855 0.913324320930395 0.913324120543246 

0.025 0.927447505802074 0.927447505802722 0.927447505803066 0.927447578831809 0.927447580428344 0.927447619324390 0.927447582073642 

0.02 0.941626342686440 0.941626342686542 0.941626342686600 0.941626365090140 0.941626365599735 0.941626384748977 0.941626356704134 

0.015 0.955935721003105 0.955935721003120 0.955935721003129 0.955935727561107 0.955935727716106 0.955935736078305 0.955935715488521 

0.01 0.970419124545862 0.970419124545864 0.970419124545865 0.970419126377220 0.970419126422140 0.970419129771609 0.970419112046475 

0.005 0.985101139986133 0.985101139986134 0.985101139986134 0.985101140473942 0.985101140486345 0.985101141738075 0.985101142704466 

0 0.999995778015617 0.999995778015617 0.999995778015617 0.999995778139535 0.999995778142797 0.999995778583618 0.999995730678518 

 

 

Table 6:  Table showing the various lower bounds, upper bound and the Monte Carlo estimate for B-S Model  for varying values of q0 when r=0.0 

 

q0 LB0 LB1 LBt(1) LBt(2) LBt(3) UB MC 

0.007 0.999999999999517 0.999999999999517 0.999999999999517 0.999999999999517 0.999999999999517 0.999999999999517 1.000000000000000 

0.008 0.999999915251651 0.999999915251651 0.999999915251651 0.999999915252160 0.999999915252175 0.999999915253115 0.999999935586330 

0.008453 0.999995778015617 0.999995778015617 0.999995778015617 0.999995778139535 0.999995778142797 0.999995778583618 0.999995730678518 

0.009 0.999821987943444 0.999821987949893 0.999821987949893 0.999822025862818 0.999822025862818 0.999822875816246 0.999816103328680 

0.01 0.978292691034648 0.978310383929407 0.978310383929037 0.978503560221413 0.978503560221499 0.986262918346612 0.978738658827918 

0.011 0.572750782003669 0.610962124257773 0.610962123857399 0.610962123857399 0.610962123857400 0.877336305501968 0.652440509314875 

0.012 0.000000000000000 0.040209774144029 0.040209770810356 0.040209770810359 0.040209770810359 0.395672911251278 0.094615386163640 

0.013 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.083466184427206 0.001662471990070 

0.014 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.008942985848261 0.000003376858132 
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Numerical Results(3)

Figure1:  Rel. Diff. of LBt(2), LBt(3) and UB1 w.r.t. MC estimate under Black-Scholes model 

 

 

Figure2:  Comparison of different bounds under B-S model in terms of difference from MC estimate for r=0 
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Numerical Results(4)

 

 

 

 

 

Figure3:  Price Bounds under Black-Scholes model for the parameter choice of Lin and Cox(2008) Model 
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Numerical Results(5)

Assume that the mortality rate ‘q′ obeys the four-parameter
transformed Normal (Su) distribution ([Johnson(1949)] and
[Johnson et al.(1994)Johnson, Kotz, and Balakrishnan]) which is
de�ned as follows

sinh−1
(
q − α
β

)
= x ∼ N

(
µ, σ2

)
, (49)

α, β, µ and σ are parameters (β, σ > 0) and sinh−1 is the inverse
hyperbolic sine function

Let q0 = 0.008453.

Parameter choices in accordance with [Tsai and Tzeng(2013)]

α = [0.008399, 0.008169, 0.007905], β = [0.000298, 0.000613, 0.000904],

µ = [0.70780, 0.58728, 0.58743] and σ = [0.67281, 0.50654, 0.42218].
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Numerical Results(6)

 

 

 

 

 

 

Table 7:  Table showing the various lower bounds, upper bound and the Monte Carlo estimate for the Su distn. for varying values of r 

 

         r                LB0                LB1                 LBt1                LBt2                      UB1                    MC

0.035 0.883255461690070 0.884321427701533 0.884321427701545 0.885548150428771 0.886806565750194 0.884689900254432

0.03 0.903403981322902 0.904010021303490 0.904010021303483 0.904693957669362 0.905481788284534 0.904223406591320

0.025 0.921607066867317 0.921935518850858 0.921935518850855 0.922291170234705 0.922759498340311 0.922030679117868

0.02 0.938407830148741 0.938576980453810 0.938576980453809 0.938747560828014 0.939010425491579 0.938598989786277

0.015 0.954287129640998 0.954369722665066 0.954369722665065 0.954444088119093 0.954582647473048 0.954415686472720

0.01 0.969639544072264 0.969677756802278 0.969677756802278 0.969706604342752 0.969774875755017 0.969683647401862

0.005 0.984762743262391 0.984779521693468 0.984779521693468 0.984789115794819 0.984820459036106 0.984784143645972

0 0.999861354235404 0.999868375732131 0.999868375732131 0.999870879263060 0.999884274666239 0.999871208429012
 

 

Note: LBt2 obtained by Numerical Integration in MATLAB 
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Numerical Results(7)

Assume that the mortality index {qt}t≥0 follows log gamma
distribution, which is de�ned as

log

(
q − µ
σ

)
= x ∼ Gamma (p, a) , (50)

µ, σ, p and a are parameters (> 0) and log is the natural logarithm.

Parameter choices in accordance with
[Cheng et al.(2014)Cheng, Tzeng, Hsieh, and Tsai]

q0 = 0.0088, p = [61.6326, 64.2902, 71.8574], a = [0.0103, 0.0098, 0.0080],

µ = [−5.2452,−5.4600,−5.7238] & σ = [7.4×10−5, 9.5×10−5, 9.4×10−5].
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Numerical Results(8)

Table 8:  Table showing the various lower bounds, upper bound and the Monte Carlo estimate for the TGD for varying values of r 

 

r LB0 LB1 LBt1 LBt2 UB1 MC 

0.035 0.848032774815386 0.848424044789595 0.848490721686796 0.855969730838120 0.866104360048102 0.854167495146694 

0.03 0.873577023530120 0.873813448730075 0.873845296962823 0.879110918002518 0.887240130128182 0.878026709161428 

0.025 0.897102805167311 0.897242672828637 0.897255685548042 0.900881660116024 0.907283088296566 0.900486935407607 

0.02 0.918896959516680 0.918977921696450 0.918981602796468 0.921421185492669 0.926366403382851 0.921030195923945 

0.015 0.939240965473512 0.939286791778834 0.939286791778834 0.940888331577441 0.944633306794068 0.941092453291025 

0.01 0.958403723325991 0.958429070673721 0.958429070673721 0.959452704642603 0.962230654369936 0.959485386731500 

0.005 0.976635430514097 0.976649121750369 0.976649121750369 0.977286229664468 0.979302971604630 0.977322136744823 

0 0.994162849651329 0.994170066410978 0.994170066410978 0.994555652671267 0.995987334249625 0.994698510160850 

 

 

      
 

 

 

 

Table 9:  Table showing the various lower bounds, upper bound and the Monte Carlo estimate for the TGD  for varying values of q0 when r=0.0 

 
 

       q0                LB0                LB1                 LBt1                 LBt2                      UB1                    MC 

0.008 0.999766066714250 0.999766066846378 0.999766071151593 0.999772840361840 0.999779562416927 0.999793281501976 

0.0088 0.994162849651329 0.994170066410978 0.994170066410978 0.994555652671267 0.995987334249625 0.994686720834666 

0.009 0.989104987070782 0.989146149900171 0.989146149900171 0.989952105692831 0.993383346707654 0.990012775482666 

0.01 0.876692543049394 0.888049181229988 0.888049181229988 0.896376305638172 0.958189590378894 0.891609413787780 

0.011 0.410971060715423 0.596089667856852 0.596089667856850 0.596089667856850 0.837207974723077 0.568675584083477 

0.012 0.000000000000000 0.271045973759684 0.271045973759678 0.271045973759680 0.613838720959082 0.207081909248152 

0.013 0.000000000000000 0.082740708460284 0.082740708460275 0.082740708460278 0.381822437530697 0.045779872978350 

0.014 0.000000000000000 0.012702023135424 0.012702023135415 0.012702023135418 0.212229375394606 0.006694089213835 

0.015 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.110420349200491 0.000883157235603 

0.016 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.055539272590864 0.000084710725625 

0.017 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.027576845294053 0.000004497045497 

0.018 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.013697961782757 0.000000019842250 
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Numerical Results(9)

Figure 4:  Rel. Diff. of Lower Bounds and UB1 w.r.t. MC estimate under Transformed Gamma Distribution 

 

 

Figure 5:  Comparison of different bounds under Transformed Gamma distn in terms of difference from MC estimate for r=0 
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Numerical Results(10)

 

 

 

Figure 6:  Price Bounds under Transformed Gamma Distn. for the parameter choice of Lin and Cox(2008) Model 
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Conclusions

Swiss Re thrives from Life Insurance Business

It achieved Mortality Risk Transfer

Main purpose of Swiss Re:- Protection against extreme mortality
events

Pro�tability negatively correlated to mortality rates

Needed counter parties to o�oad mortality risk

No dependence on retrocessionaire

Methodology: Catastrophic bond with loss measurement based on a
parametric index

Investors in the bond took opposite position

Received an enhanced return if an extreme mortality event doesn't
occur
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What Lies Ahead...?

Mortality risk transfer expected to become more of a concern for life
insurers and reinsurers
Under Solvency II access to fully collateralized ILS capacity bene�cial
on a capital e�ciency basis
More such transactions predicted in the future
ILS investors pleased to see VITA VI
A new extreme (or excess) mortality catastrophe bond deal
Keen to access the diversi�cation it can o�er
The fact that it is Swiss Re again welcomed
The giant has transferred over $ 2.2 billion of mortality risk to the
capital market
A lot of variations being tried
Swiss Re has experimented with

Longevity Trend Bond - KORTIS (2010)
Multiple Peril Bond - MYTHEN RE (2012)

A more transparent and liquid Longevity and mortality market is
emerging (since the formation of LLMA (2010))
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Further Research

This research is a crucial breakthrough in the pricing of catastrophic
mortality bonds

Model-independent bounds give freedom of choice for selecting
mortality models

Only one earlier publication by
[Huang et al.(2014)Huang, Tsai, Yang, and Cheng] in direction of
price bounds for the Swiss Re bond

These authors propose gain-loss bonds that su�er from model risk

The present scenario poised for further research

Deriving even more tighter upper bound

Using these bounds for the Longevity Trend Bond - KORTIS

The success of our research hinges upon the trading of vanilla options
written on the mortality index
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�If there will be one day such a severe world-wide pandemic that one
of the bonds I bought will be triggered, there will be more important
things to look after than an investment portfolio.�

� ANONYMOUS CATM INVESTOR

Thanks!
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