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Abstract 
 

Modelling the demographic mortality trends is of great importance due to its considerable 

impact on welfare policy, resource allocation and government planning. In this thesis, we 

propose to use various statistical methods, including Gaussian process (GP), principal curve, 

multilevel functional principal component analysis (MFPCA) for forecasting and clustering 

of human mortality data. This thesis is actually composed of three main topics regarding 

mortality modelling. In the first topic, we propose a new Gaussian process regression method 

and apply it to the modelling and forecasting of age-specific human mortality rates for a 

single population. The proposed method incorporates a weighted mean function and the 

spectral mixture covariance function, hence provides better performance in forecasting long 

term mortality rates, compared with the conventional GPR methods. The performance of the 

proposed method is also compared with Lee-Miller model and the functional data model by 

Hyndman and Ullah (2007) in the context of forecasting the French total mortality rates. 

Then, in the second topic, we extend mortality modelling for a single population 

independently to that for multiple populations simultaneously, by developing a new 

framework for coherent modelling and forecasting of mortality rates for multiple 

subpopulations within one large population. We treat the mortality of subpopulations as 

multilevel functional data and then a weighted multilevel functional principal component 

approach is proposed and used for modelling and forecasting the mortality rates. The 

proposed model is applied to sex-specific data for nine developed countries, and the 

forecasting results suggest that, in terms of overall accuracy, the model outperforms the 

independent model (Hyndman and Ullah 2007) and is comparable to the Product-Ratio model 

(Hyndman et al 2013) but with several advantages. Finally, in the third topic, we introduce a 

clustering method based on principal curves for clustering of human mortality as functional 

data. And this innovative clustering method is applied to French total mortality data for 

exploring its potential features.  

Key words: Gaussian process regression, human mortality forecasting, spectral mixture 

kernel, weighted mean function, coherent forecasts, multilevel functional principal 

component analysis (MFPCA), time series, life expectancy, functional data clustering, 

dimension reduction, principal curves 
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Chapter 1                                                              
Introduction 
 

1.1 Backgrounds 
 

The growing aged population, especially in developed countries, over the past decades, has 

given rise to significant changes in both social structures and economic conditions. 

Government as well as the insurance and pension industry need to adjust their existing 

policies according to the ever increasing aged population. They are obliged to pay billions of 

pensions and annuities, hence are heavily exposed to so-called “longevity risk”. Assessing 

and forecasting the demographic mortality trends is therefore of great interests to researchers 

due to its considerable impact on social welfare, resource allocation and governmental 

budgeting. 

Apart from using biological, medical and behavioural knowledge, statisticians have 

developed very different, pure mathematical methods to model the mortality patterns. Since 

Lee and Carter (1992) launched their pioneering work in the modelling and forecasting of 

mortality for a single population (also called independent mortality forecasting), there has 

been a surge of interest along the lines of Lee-Carter method, leading to better forecasts of 

age-specific mortality. Parallel to forecasting mortality for a single population, recently 

researchers also became aware of the importance of forecasting mortality for multiple 

populations simultaneously (also called coherent mortality forecasting). Li and Lee (2005) 

laid down the foundation for the multi-population mortality forecasting as counterparts of 

single-population mortality forecasting. Their work was followed by several improvements 

and modifications in context. Apart from mortality forecasting, clustering age-specific 

mortality data is another important topic. Overall speaking, the development of various 

statistical methods for mortality forecasting and clustering not only resolves the need for 

government to plan and budget the allocation of social resources, but also assists life 

insurance companies and pensions to carry out their business.  
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1.2 Independent mortality forecasting 
 

Independent mortality forecasting refers to forecasting the age-specific mortality rates for a 

single population. Lee and Carter (1992) first introduced their statistical model which was 

then named after them as Lee-Carter model. Lee-Carter model, based on the assumption that 

the future will be in some sense like the past, is a purely extrapolation method that constructs 

relatively simple but effective statistical tool to measure the confidence band of future 

mortality.  

The Lee-Carter model, since its publication, has aroused great attention in literature. Several 

reported post studies, focusing on assessing the long-term prediction performance of Lee-

Carter model, suggested some modifications to improve its performance. Lee and Miller 

(2001) modified the original Lee-Carter model by adjusting the coefficients series such that 

the fitted life expectancy and the observed life expectancy are equal. Research has also been 

done to prove that their modification does successfully reduce the bias of the forecasted 

results. Liu and Yu (2011) proposed the quantile regression method, instead of the original 

least square method in Lee-Carter model, for the robust estimation of the time-varying index 

since the quality of forecast relies much on it. Their study has shown that the suggested 

quantile regression method can improve the forecasting performance of the model, especially 

when data contain irregular shocks. Renshaw and Haberman (2003) introduced a parallel 

methodology based on generalized linear modelling, treating time as a known covariate. And 

there have been a few other modifications and extensions as well; see Bell (1997), Booth et al. 

(2002) for instance.  

While Lee-Carter model and its modifications and extensions provide effective multivariate 

statistical tools to forecast future mortality, the functional data analysis (FDA), developed in 

recent decades, offers a new modelling framework on mortality. Ramsay and Silverman 

(2005) define functional data as set of smooth data curves and the corresponding analysis can 

then be conducted under certain continuum similarly as conventional multivariate analysis. 

Under FDA framework, the observed age-specific mortality in a particular year can be 

regarded as discrete points of a smooth function. Hyndman and Ullah (2007) developed their 

functional data model, combining nonparametric smoothing, FDA and time series techniques. 

In their model, the curves of the age-specific mortality are decomposed into a mean function 
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and the summation of a set of orthonormal basis functions which can be solved as the 

eigenfunctions of the covariance function of the observed data. This modelling framework of 

decomposing the random part of the process into several principal components is viewed as a 

generalization of the Lee-Carter model where only the first principal component is considered. 

Compared with Lee-Carter model, the advantage of having more principal components in 

long-term forecasting has been numerically verified by Hyndman and Ullah (2007).  

Chiou and Müller (2009) further extended this FDA model based on the assumption that the 

principal components are evolving over time and introduced a Moving Window Approach to 

collect observed data curves with respect to the birth year of cohorts falling into that window. 

With the window moving forward, the mean function and principal components for each year 

are obtained consecutively, and the prediction of principal components in a future year could 

be made by functional local linear extrapolations. This method is regarded as of completely 

nonparametric feature since the coefficients of the principal components are not assumed to 

have any parametric form.  

We develop a new model on a different basis. We consider the mortality of specific age 

groups over time to follow Gaussian processes (GP). We introduce a new GPR method which 

incorporates a weighted mean function and the spectral mixture covariance function. The 

spectral mixture covariance function enables that various covariance structures in mortality 

rates over time for different age groups can be captured, and the weighted mean function 

models the long term trend. The combination of these two provides better results in 

extrapolating mortality rates, compared with the conventional GPR methods. The 

performance of the proposed method is also compared with Lee-Miller model and the 

functional data model introduced by Hyndman and Ullah (2007) in the context of forecasting 

the French total mortality rates. 
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1.3 Coherent mortality forecasting 
 

All of the work mentioned in the previous section concentrate on forecasting mortality for a 

single population. However, when dealing with a bundle of populations simultaneously, such 

individual forecasts may lose its effectiveness, since they tend to result in divergence of life 

expectancies in long run, although those populations may share extensive similarities in 

socioeconomic, environmental and biological conditions.  

With the globalization carrying on the populations of the world are linked more closely than 

before. And all the increasing similarities among populations indicate that the mortality gaps 

between them should at least not widen over time. In fact, numerous studies have pointed to a 

global convergence in life expectancy in long run (United Nations 1998; White 2002). It then 

becomes more desirable to model the mortality of multiple populations simultaneously rather 

than to isolate one population from another. Researchers start to consider models for 

forecasting mortality of subpopulations within a large population, such as different sex, or 

different states in a country, and expect the forecasting results to be non-divergent. Contrast 

to the individual forecasts, such combined forecasts within one big group are named as 

coherent forecasts (see for example, Li and Lee 2005). Li and Lee (2005) extends the Lee-

Carter model to a group of populations for coherent forecasting, by means of splitting the 

original model into a common factor and a specific factor. Oeppen (2008) applies the 

methods of compositional data analysis to transform the Lee-Carter model and then extends it 

to a multiple-decrement life table. And the test using Japanese cause of death data 

demonstrates a promising result. Hyndman et al (2013) develop an innovative method for 

coherent mortality forecasting, based on functional time series models. They define product 

and ratio from the smoothed functional data which are then decomposed individually using 

functional time series models. The implied coherent functional model for each subpopulation 

can hence be reverted simply by summing up the functional time series models for product 

and ratio. Their numerical results show that the forecasting accuracy is homogenized across 

subpopulations while the life expectancies in long run present convergence.  

We propose a new framework for coherent mortality forecasting, namely weighted multilevel 

functional principal component analysis (MFPCA). We treat the mortality rates of 

subpopulations within a large population as a set of multilevel functional data (e.g. male and 
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female mortality data within a country), and then use MFPCA to extract core information 

from the functional data and analyse them at multilevel scale, so that the model incorporates 

both overall information from the population as a whole and specific information from the 

subpopulations. Comparing to the Product-Ratio model (Hyndman et al, 2013), the proposed 

model possesses several major differences in nature which will be discussed later. 

 

1.4 Clustering mortality (fertility) as functional data 
 

Clustering, as an unsupervised learning process, aims at partitioning a data set into sub-

groups so that the instances within a group are similar to each other while they are dissimilar 

to instances of other groups. Given a set of functional data, it is an interesting and valuable 

task to identify homogeneity and heterogeneity among curves by using the clustering 

techniques, which helps to unveil the potential features and patterns of the underlying 

stochastic process. In the literature, there are several functional clustering methods that have 

been developed. Tarpey and Kinateder (2003) introduce the concept of principal points for 

functional Gaussian distributions and used k-means algorithm to estimate the cluster means. 

In Abraham et al (2003) and Rossi et al (2004), the curves are approximated by the popular 

B-spline and then k-means and Self-Organized Map are applied respectively to their 

coefficients for clustering. Peng and Müller (2008) use the k-means algorithm on the 

principal component scores obtained from functional principal component analysis (FPCA). 

Gaffney (2004) designs the Curve Clustering Toolbox for MATLAB, which implements a 

family of clustering algorithms based on Gaussian mixtures combined with spline or 

polynomial basis approximation. These methods decompose the functional data into different 

types of basis functions and then cluster on the corresponding FPCA scores (or basis 

expansion coefficients). They are referred to as hard clustering (or filtering methods). A 

parallel method to this is soft clustering (or adaptive methods), which is based on a 

probabilistic modelling of either basis expansion coefficients or FPCA scores. James and 

Sugar (2003) model on the spline basis expansion of the curves especially adapted for 

sparsely sample functional data and consider the coefficients to distribute according to a 

mixture of Gaussian distributions. In Bouveyron and Jacques (2011), the clustering algorithm 

(named as FunHDDC) is based on a functional latent mixture model, where the appropriate 
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number of clusters is determined by the Bayesian Information Criterion (BIC). Other 

examples of soft clustering are given by Fraley and Raftery (2002), Wakefield et al (2003), 

Booth et al (2008) and Shi and Wang (2008).  

A principal curve is intuitively described as one-dimensional smooth curve that pass through 

the middle of a high dimensional data set. Hastie and Stuetzle (1989), who develop the 

fundamental framework for principal curves, define principal curves as the self-consistent 

curves whose point is the average over all points that project there. Since its introduction, 

there have been many practical usages of principal curves in various fields. Banfield and 

Raftery (1992) implement a principal-curve method to identify the outlines of ice floe in 

satellite images. Stanford and Raftery (2000) construct a principal curve clustering algorithm 

to detect curvilinear features in spatial point patterns. Gorban and Zinovyev (2010) analyse 

the nonlinear quality of life index for 171 countries by finding a principal curve that goes 

through a 4D space dataset and the projections of the data points on this curve are used for 

ranking. Motivated by the above applications, we introduce the functional principal curve 

clustering method, which, to the best of our knowledge, is the first work to apply principal 

curve framework to the context of functional data clustering. The proposed method makes 

use of the nonparametric principal curves to summarize the features of the two-dimensional 

scores extracted from the original functional data for clustering purpose. A probability model 

with BIC for principal curves is introduced to automatically and simultaneously find the 

appropriate number of features and the optimal degree of smoothing. And this principal curve 

clustering method is then applied to the clustering of French total mortality as well as the 

Australian fertility.  

 

1.5 Thesis outline 
 

The rest of the thesis is organized as follows. 

In chapter 2, we briefly present some fundamental ideas about Gaussian process regression, 

discuss how this method can be applied in forecasting mortality rates, and introduce the new 

GPR model with weighted mean function and spectral mixture kernel. The GPR models are 

then applied to the French total mortality data and their performances are compared. We also 
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compare the forecasting performance of the proposed model with the Lee-Miller model and 

the functional data model. 

Chapter 3 starts with some backgrounds of functional principal component analysis (FPCA). 

Then the model and the framework of MFPCA are introduced in details. The MFPCA model 

is then applied to the sex-specific mortality data of nine developed countries for coherent 

forecasting, and the performance is compared with the independent model (Hyndman and 

Ullah, 2007) as well as the Product-Ratio model. We further demonstrate the performance of 

the model in terms of long-run forecasting convergence in the context of sex-specific 

mortality data of UK. 

In chapter 4, the concept of principal curves is revisited first. After that, the algorithm for 

clustering functional data under principal curve context is developed in details. The 

effectiveness of this functional clustering method is verified through simulation study. In the 

end, this clustering method is applied to the French total mortality and Australian fertility for 

clustering analysis, in order to discover some potential demographic features of these two 

countries in the past century.  

Some important discussions and future work will be provided in chapter 5.  
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Chapter 2                                                              
Gaussian process regression method for forecasting of 
mortality rates 
 

 

2.1 Introduction 
 

Gaussian process regression (GPR) has long been proved to be a powerful and effective 

Bayesian nonparametric approach for smoothing and interpolation, but less successful for 

extrapolation. In this chapter, we propose a new model by considering the mortality of 

specific age groups over time to follow Gaussian processes (GP). A new Gaussian process 

regression (GPR) method which incorporates a weighted mean function and the spectral 

mixture covariance function is developed to model the age-specific human mortality rates of 

selected age groups. After forecasts are made for these selected age groups, the age-specific 

mortality curve for a particular future year can be obtained by interpolating the forecasted 

mortality rates to all age groups. The rest of this chapter is organised as follows. In Section 

2.2, we briefly present some fundamental ideas about Gaussian process regression, discuss 

how this method can be applied in forecasting mortality rates, and introduce the new GPR 

model with weighted mean function and spectral mixture kernel. In Section 2.3, the GPR 

models are applied to the French total mortality data and their performances are compared. 

We also compare the forecasting performance of the proposed model with the Lee-Miller 

model and the functional data model. Conclusion is given in Section 2.4.  

 

2.2 Methodology 
 

2.2.1 Fundamentals of Gaussian process regression 
 

Gaussian process regression has been developed as an effective statistical method for non-

linear regression in past decades. Rather than assuming some specific models for an unknown 
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function 𝑓𝑓(𝑥𝑥), the Gaussian process is a less parametric tool and allows data to release more 

information for themselves. As Rasmussen & Williams (2006) pointed out, a Gaussian 

process is a generalization of the Gaussian probability distribution. By definition, a Gaussian 

process (GP) is a stochastic process that any finite subset throughout its domain follows a 

multivariate Gaussian (normal) distribution (Shi & Choi, 2010). Consider a nonlinear 

regression model with noise: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀, 𝜀𝜀~𝑁𝑁(0,𝜎𝜎2) . 

By Gaussian process method, the unknown function 𝑓𝑓(𝑥𝑥) is treated as a random function and 

is assumed to have a Gaussian process prior with a mean function 𝜇𝜇(∙) and a covariance 

function 𝑘𝑘(∙,∙). The covariance function relates one point to another and is defined as: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′;𝜃𝜃) = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑥𝑥′)�,          

where 𝜃𝜃 denotes the set of hyper-parameters which need to be estimated. The mean function 

is often assumed to be zero, but the covariance function is vital to GP since it determines 

properties of the unknown function 𝑓𝑓(𝑥𝑥) such as smoothness and periodicity. A commonly 

used covariance function is the squared exponential (SE) kernel which has the following form: 

𝑘𝑘𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑥𝑥′) = 𝜎𝜎𝑓𝑓2 𝑒𝑒𝑒𝑒𝑒𝑒[−(𝑥𝑥 − 𝑥𝑥′)2 2𝑙𝑙2⁄ ]. 

In the above kernel function, the hyper-parameter  𝜃𝜃 = {𝜎𝜎𝑓𝑓 , 𝑙𝑙} , which can be estimated by 

empirical Bayesian approach, given the observed data. It can be easily observed that 

𝑘𝑘𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑥𝑥′) approaches its maximum if 𝑥𝑥 ≈ 𝑥𝑥′, while 𝑘𝑘𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑥𝑥′) ≈ 0 if 𝑥𝑥 is distant from 𝑥𝑥′.  

Given the observed data 𝒟𝒟 = {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)},  the joint distribution of 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛 is 

multivariate normal: 

𝒚𝒚 = (𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑛𝑛)𝑇𝑇~𝑁𝑁𝑛𝑛(𝝁𝝁,𝛹𝛹), 

where the mean 𝝁𝝁 has entries 𝜇𝜇𝑖𝑖 = 𝜇𝜇(𝑥𝑥𝑖𝑖) and 𝛹𝛹  is an 𝑛𝑛 × 𝑛𝑛 matrix, whose (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ element is 

defined as 

𝛹𝛹𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑦𝑦𝑖𝑖,𝑦𝑦𝑗𝑗� = 𝑘𝑘�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗;𝜃𝜃� + 𝜎𝜎2𝛿𝛿𝑖𝑖𝑖𝑖, 
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where 𝛿𝛿𝑖𝑖𝑖𝑖  is the Kronecker delta. Therefore the empirical Bayes estimates of 𝜃𝜃  and 𝜎𝜎 , 

denoted as 𝜃𝜃� and 𝜎𝜎�, can be obtained by maximizing the marginal log-likelihood 

𝑙𝑙(𝜃𝜃,𝜎𝜎|𝒟𝒟) = −
1
2

log (|𝛹𝛹|) −
1
2

(𝒚𝒚 − 𝝁𝝁)𝑇𝑇𝛹𝛹−1(𝒚𝒚 − 𝝁𝝁) −
𝑛𝑛
2

log(2𝜋𝜋). 

For a new input 𝑥𝑥∗, given the training data 𝒟𝒟 the predictive distribution of 𝑓𝑓(𝑥𝑥∗) is normal 

following the multivariate normal distribution properties. Its mean and variance are given as: 

𝐸𝐸(𝑓𝑓(𝑥𝑥∗)|𝒟𝒟) = 𝜇𝜇(𝑥𝑥∗) + 𝜓𝜓𝑇𝑇(𝑥𝑥∗)𝛹𝛹−1(𝒚𝒚 − 𝝁𝝁) , 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓(𝑥𝑥∗)|𝒟𝒟) = 𝑘𝑘�𝑥𝑥∗, 𝑥𝑥∗;𝜃𝜃�� − 𝜓𝜓𝑇𝑇(𝑥𝑥∗)𝛹𝛹−1𝜓𝜓(𝑥𝑥∗) , 

where 𝜓𝜓(𝑥𝑥∗) = (𝑘𝑘�𝑥𝑥∗, 𝑥𝑥1;𝜃𝜃��, … , 𝑘𝑘�𝑥𝑥∗, 𝑥𝑥𝑛𝑛;𝜃𝜃��)𝑇𝑇  is the covariance between 𝑓𝑓(𝑥𝑥∗)  and 𝒇𝒇 =

(𝑓𝑓(𝑥𝑥1), … ,𝑓𝑓(𝑥𝑥𝑛𝑛)), and 𝛹𝛹 is the covariance matrix of (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛)𝑇𝑇 given in (6). Then the 

predictive distribution of 𝑦𝑦∗ is also normal, with mean 𝑦𝑦�∗ equal to the mean of 𝑓𝑓(𝑥𝑥∗) and the 

variance  

𝜎𝜎�∗2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓(𝑥𝑥∗)|𝒟𝒟) + 𝜎𝜎�2. 

 

2.2.2 Gaussian process regression models for mortality forecasting 
 

Let 𝑦𝑦𝑥𝑥(𝑡𝑡) denote the log mortality rates for a specific age x in year t. We assume that there is 

an underlying function 𝑓𝑓𝑥𝑥(𝑡𝑡) that we are observing with error at discrete points of t. Our 

observations are {𝑡𝑡𝑖𝑖,𝑦𝑦𝑥𝑥(𝑡𝑡𝑖𝑖)}, 𝑥𝑥 = 1, … , 𝑛𝑛, 𝑖𝑖 = 1, … ,𝑚𝑚 and satisfy 

𝑦𝑦𝑥𝑥(𝑡𝑡𝑖𝑖) = 𝑓𝑓𝑥𝑥(𝑡𝑡𝑖𝑖) + 𝜀𝜀𝑖𝑖,𝑥𝑥, 

 where 𝜀𝜀𝑖𝑖,𝑥𝑥  is a sequence of i.i.d normal random variables 𝑁𝑁(0,𝜎𝜎2) . Based on the 

observations we are interested in forecasting 𝑦𝑦𝑥𝑥(𝑡𝑡) for any 𝑥𝑥 and 𝑡𝑡 ∈ [𝑡𝑡𝑚𝑚+1, 𝑡𝑡𝑚𝑚+ℎ].  
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2.2.2.1 Basic GPR models 
 

The application of GPR models in mortality forecasting is straightforward. For any age 𝑥𝑥 we 

can build a GPR model for the unknown function 𝑓𝑓𝑥𝑥(𝑡𝑡) as discussed in the previous section, 

and the forecast of the mortality rates at a future year 𝑡𝑡∗, 𝑓𝑓𝑥𝑥(𝑡𝑡∗), can then be obtained. As the 

log mortality rates of specific age groups over time display an overall decreasing trend, a 

linear function can be used as the mean function of GPR, and three commonly used stationary 

covariance functions, namely squared exponential (SE), Matern (MA) (with degree of 

freedom equal to 3/2) and rational quadratic (RQ), will be evaluated in this chapter. The three 

covariance functions have the following forms:  

𝑘𝑘𝑆𝑆𝑆𝑆(𝜏𝜏) = 𝜎𝜎𝑆𝑆𝑆𝑆2 (−𝜏𝜏2 2𝑙𝑙𝑆𝑆𝑆𝑆2⁄ ),                

𝑘𝑘𝑀𝑀𝑀𝑀(𝜏𝜏) = 𝜎𝜎𝑀𝑀𝑀𝑀2 �1 + √3𝜏𝜏 𝑙𝑙𝑀𝑀𝑀𝑀� � 𝑒𝑒𝑒𝑒𝑒𝑒�−√3𝜏𝜏 𝑙𝑙𝑀𝑀𝑀𝑀� �,       

𝑘𝑘𝑅𝑅𝑅𝑅(𝜏𝜏) = 𝜎𝜎𝑅𝑅𝑅𝑅2 (1 + 𝜏𝜏2 2𝛼𝛼𝑙𝑙𝑅𝑅𝑅𝑅2� )−𝛼𝛼, and α is non-negative parameter,    

where 𝜏𝜏 = 𝑡𝑡 − 𝑡𝑡′.  

 

2.2.2.2 GPR model with weighted mean function and SM kernel 
 

In this section we propose a new Gaussian process regression method for the modelling and 

forecasting of age-specific human mortality rates. The model incorporates a weighted mean 

function and the spectral mixture covariance function and makes use of the strengths of both 

of them. As a result the ability of extrapolation by GPR is improved and the numerical 

example shows that our method provides a stable performance for short term and long term 

mortality forecasts. 

Gaussian process has been proven to be a very effective nonparametric approach for 

smoothing and interpolation. However, its ability of pattern discovery and extrapolation is 

still to be developed. Wilson & Adams (2013) introduced spectral mixture (SM) kernels, 

which is derived by modelling a spectral density  ̶̶  the Fourier transform of a kernel  ̶  with a 
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Gaussian mixture. These kernels can support a broad class of stationary covariance functions 

and provide a better solution for extrapolation.  

According to Bochner’s theorem (Bochner, 1959; Stein, 1999), any stationary kernel can be 

expressed as an integral.  

Theorem 2.2.2.2.1 (Bochner) A complex-valued function 𝑘𝑘 on 𝑅𝑅𝑃𝑃 is the covariance function 

of a weakly stationary mean square continuous complex-valued random process on 𝑅𝑅𝑃𝑃 if 

and only if it can be represented as  

𝑘𝑘(𝜏𝜏) = ∫ 𝑒𝑒2𝜋𝜋𝜋𝜋𝑠𝑠𝑇𝑇𝜏𝜏𝜑𝜑(𝑑𝑑𝑑𝑑)𝑅𝑅𝑃𝑃 ,                                  

where 𝜑𝜑 is a positive finite measure. 

If 𝜑𝜑 has a density 𝑆𝑆(𝑠𝑠), then 𝑆𝑆 is named as the spectral density of 𝑘𝑘, and 𝑘𝑘 and 𝑆𝑆 are Fourier 

duals:  

    𝑘𝑘(𝜏𝜏) = ∫ 𝑆𝑆(𝑠𝑠)𝑒𝑒2𝜋𝜋𝜋𝜋𝑠𝑠𝑇𝑇𝜏𝜏𝑑𝑑𝑑𝑑𝑅𝑅𝑃𝑃 ,                                  (2.1) 

𝑆𝑆(𝑠𝑠) = ∫ 𝑘𝑘(𝜏𝜏)𝑒𝑒−2𝜋𝜋𝜋𝜋𝑠𝑠𝑇𝑇𝜏𝜏𝑑𝑑𝑑𝑑𝑅𝑅𝑃𝑃 . 

Given these backgrounds, Wilson & Adams (2013) point out that any stationary covariance 

kernels can actually be approximated to arbitrary precision by using a mixture of Gaussians 

in the spectral density. Consider a simple case, where 

𝜙𝜙(𝑠𝑠; 𝜇𝜇,𝜎𝜎2) = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2𝜎𝜎2

(𝑠𝑠 − 𝜇𝜇)2�,  and     

𝑆𝑆(𝑠𝑠) = [ 𝜙𝜙(𝑠𝑠) + 𝜙𝜙(−𝑠𝑠)]/2.      

Substituting 𝑆𝑆(𝑠𝑠) into (2.1), we have 

𝑘𝑘(𝜏𝜏) = 𝑒𝑒𝑒𝑒𝑒𝑒{−2𝜋𝜋2𝜏𝜏2𝜎𝜎2} 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝜋𝜋). 

Considering a mixture of Q Gaussians on 𝑅𝑅𝑃𝑃 , where the 𝑞𝑞𝑡𝑡ℎ  component has mean vector 

𝜇𝜇𝑞𝑞 = (𝜇𝜇𝑞𝑞
(1), … , 𝜇𝜇𝑞𝑞

(𝑃𝑃))  and covariance matrix 𝑀𝑀𝑞𝑞 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜐𝜐𝑞𝑞
(1), … , 𝜐𝜐𝑞𝑞

(𝑃𝑃)) , and 𝜏𝜏𝑝𝑝  is the 𝑝𝑝𝑡𝑡ℎ 

component of the P dimensional vector 𝜏𝜏 = 𝑡𝑡 − 𝑡𝑡′, then spectral mixture kernel is expressed 

as 
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𝑘𝑘𝑆𝑆𝑆𝑆(𝜏𝜏) = ∑ 𝜔𝜔𝑞𝑞
𝑄𝑄
𝑞𝑞=1 ∏ 𝑒𝑒𝑒𝑒𝑒𝑒 {−2𝜋𝜋2𝑃𝑃

𝑝𝑝=1 𝜏𝜏𝑝𝑝2𝜐𝜐𝑞𝑞
(𝑝𝑝)}𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝜏𝜏𝑝𝑝𝜇𝜇𝑞𝑞

(𝑝𝑝)), 

where the weight 𝜔𝜔𝑞𝑞 specifies the contribution of each mixture component and 𝜇𝜇𝑞𝑞 and 𝜐𝜐𝑞𝑞 are 

hyper-parameters to be optimized. In our case of modelling the log mortality rate 𝑦𝑦𝑥𝑥(𝑡𝑡), 𝑃𝑃 =

1.  

In the GPR models, the prior mean function tends to have a significant impact on the 

extrapolative mean since the extrapolation is inclined to move to the prior mean in the long 

run. Previously, the mean function is modelled by using linear regression on the training data, 

which means each data point in the past carries equal weight on the mean function. However, 

in mortality modelling, it is often the case that more recent data tend to have more impact on 

the results than those in the distant past: the more recent the data point is, the greater 

influence it tends to have on the future mortality rates. Therefore, we propose to model the 

prior mean function by assigning different weights to the training data points. The mean 

function is still modelled by linear regression, but using weighted least squares (WLS) 

method instead of the original least squares (LS) method. The parameters of the linear mean 

function is chosen to minimize the error e, 

𝑒𝑒 = ∑ 𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑚𝑚
𝑖𝑖=1 ,       

where 𝑤𝑤𝑖𝑖  is the weight of the 𝑖𝑖𝑡𝑡ℎ  data point, 𝑦𝑦𝑖𝑖  is the observed 𝑖𝑖𝑡𝑡ℎ  data point and 𝑦𝑦�𝑖𝑖  is the 

estimated 𝑖𝑖𝑡𝑡ℎ  point by linear regression. Here we assume the weights to be equal to the 

inverse of the time distance to the first year to be forecasted, namely 𝑡𝑡0 (in the numerical 

example later on, 𝑡𝑡0 =1991):  

      𝑤𝑤𝑖𝑖 = 1 (𝑡𝑡0 − 𝑡𝑡𝑖𝑖⁄ ),        

where 𝑡𝑡𝑖𝑖 denotes the year of the 𝑖𝑖𝑡𝑡ℎ data point. 

The parameter estimation and the prediction for the above model can be performed in the 

same way as the basic GPR model. It is noted that other weights can be used for the mean 

function, and if the weights involve tuning parameters, they can be determined by cross 

validation.  
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2.3 Applications of GPR method in forecasting French mortality 
rates 

 

In this section we apply the basic and the proposed GPR models to French total mortality 

rates and then compare their performance with two of the existing models in the literature, 

namely the Lee-Miller model (Lee and Miller, 2001) and the functional data model 

(Hyndman and Ullah, 2007). The data are obtained from the Human Mortality Database 

(2010), which consist of the observed mortality rates for every one year at each age. We 

select the years from 1950 to 2010 to avoid the anomalous mortality rates during the first and 

second world wars. Figure 2.1 shows the log French total mortality for 20, 30, 40 and 50-year 

groups as univariate time series, observed from 1950 to 2010.  

 

Figure 2.1: Log French total mortality for 20, 30, 40 and 50-year groups observed from 1950 
to 2010. 

 

2.3.1 Forecasting comparison based on selected age groups 
 

For testing purpose, we select four age groups 20, 30, 40 and 50 to carry out analysis and 

compare the forecasting performances of the basic GPR and the GPR with weighted mean 

and SM kernel. The mortality rates for these four age groups are among the most difficult to 

model due to the significant variation during the period of study. We split the data of each 

age group into two parts: the data from 1950 to 1990 as training data and those from 1991 to 
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2010 as testing data. The basic GPR models with the SE, MA, RQ kernels as well as the GPR 

with weighted mean and SM kernel are fitted to the training data of each age group separately. 

The hyper-parameters of each kernel are estimated using maximum likelihood estimation 

(MLE) where 100 initial values are randomly selected from a possible range and the ones that 

give the highest marginal likelihood are used as the estimates. Then the mortality forecasts 

are made for a 20-year horizon and compared with the actual values. As demonstration 

Figures 2.2 illustrates the forecasting results for the 40-year age group. 

 

 

 

Figure 2.2: Forecasting mortality of French 40-year age group using the GPR models with SE, 
MA & RQ kernels and the GPR with weighted mean and SM kernel. The training data are 
displayed in blue X-mark while the testing data are displayed in red stars. The blue solid line 
is the predictive mean, with 95% confidence interval indicated by grey shade. The black 
dashed line represents the mean function of the GP models. 
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The root mean squared error (RMSE) between the forecasted values and the actual values for 

each age group are recorded in Table 2.1.  

 

Age Basic GPR WM-SM GPR SE MA RQ 
20 0.3516 0.4245 0.4808 0.3878 

30 0.4752 0.2810 0.2445 0.3217 

40 0.1017 0.1111 0.1201 0.1003 

50 0.3026 0.0499 0.0540 0.0386 
 

Table 2.1: RMSEs of French log mortality for 20, 30, 40 and 50 years group using the GPR 
with SE, MA and RQ kernels and the GPR with weighted mean function and SM kernel (WM-
SM GPR). 

It can be observed that, for the basic GPR models, although different kernels perform 

similarly (in terms of RMSE) in the forecasting for some particular age groups (e.g. 40-years 

group), the choices of kernels still have a significant impact on forecasting for many other 

age groups. Taking SE kernel for example, it generates comparatively good result for the 20-

years group, but it performs poorly for the 50-years group. On the other hand, although the 

GPR with weighted mean function and SM kernel (WM-SM GPR) may not provide the best 

prediction for some age groups (e.g. 20 and 30 year age groups), it does significantly improve 

the overall forecasting results. The testing results of the above four age groups indicates that, 

for the basic GPR models choosing an appropriate kernel for a specific age group is of great 

importance to the accuracy of forecasting, and the proposed model mitigates this difficulty 

and provides much better overall performance in terms of forecasting accuracy. 

 

2.3.2 Comparison of forecasted mortality curves 
 

We now demonstrate the usefulness of the weighted mean function by comparing the 

accuracy of forecasted mortality curves in future years using two models: the GPR with SM 

kernel and weighted mean function and the GPR with SM kernel and unweighted mean 

function. To construct the mortality curves for a future year, we select 20 specific age groups, 
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namely, the 0, 1, 2, 5, 10, 12, 15, 18, 20, 22, 25, 28, 30, 40, 50, 60, 70, 80, 90, 100-year 

groups, fit the GPR models to each of these age groups, and then obtain the mortality curves 

by interpolating the forecasted mortality rates to all ages. The rationale for age selection is 

that we want to have dense points in the areas with large variation and sparse in those with 

small variation. Our experiment shows that there is no significant difference in the results if 

more or slightly different age groups are used. The figures showing the forecasting results of 

the above 20 age groups using GPR model (SM kernel) with and without weighted mean are 

all displayed in appendix. We also compute the forecasting errors of the two GPR models in 

terms of RMSE, for these 20 selected age groups respectively, and the results are displayed 

by a table in appendix.  

We consider to forecast the mortality curves for 1995 (5-year forecast horizon), 2000 (10-

year forecast horizon), 2005 (15-year forecast horizon) and 2010 (20-year forecast horizon), 

based on the data from 1950 to 1990 as the observation. The results are shown in Figure 2.3-

2.6.  

 

Figure 2.3: Forecasted and real log French total mortality curves for 1995. The black dashed 
curves represent the forecasted log mortality curves using the SM GPR model with 
unweighted mean function, while the blue smooth curves represent those using the SM GPR 
model with weighted mean function. The red curves are the real mortality curves. 
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Figure 2.4: Forecasted and real log French total mortality curves for 2000. The black dashed 
curves represent the forecasted log mortality curves using the SM GPR model with 
unweighted mean function, while the blue smooth curves represent those using the SM GPR 
model with weighted mean function. The red curves are the real mortality curves. 

 

 

Figure 2.5: Forecasted and real log French total mortality curves for 2005. The black dashed 
curves represent the forecasted log mortality curves using the SM GPR model with 
unweighted mean function, while the blue smooth curves represent those using the SM GPR 
model with weighted mean function. The red curves are the real mortality curves. 
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Figure 2.6: Forecasted and real log French total mortality curves for 2010. The black dashed 
curves represent the forecasted log mortality curves using the SM GPR model with 
unweighted mean function, while the blue smooth curves represent those using the SM GPR 
model with weighted mean function. The red curves are the real mortality curves. 

 

It can be observed that, for short-term forecast (with 5-year forecast horizon), the GPR 

models with and without weighted mean function produces quite similar results, which are 

both close to the real mortality curve. For long-term forecasts (with 10, 15, 20-year forecast 

horizons), whilst both of the GPR models give very good forecasts for over 40s, they tend to 

overestimate the mortality rates of the young age groups (approximately from 2 to 30-year 

groups). However, the SM GPR model with weighted mean function still provides better 

results: its forecasted curves are closer to the real ones; it can also be reflected from the 

RMSEs between the forecasted values and the actual values displayed in Table 2.2. It is 

obvious that incorporating the weighted mean function into the GPR model gives rise to a 

significant improvement in forecasting accuracy.  
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 1995 2000 2005 2010 

unweighted 0.1284 0.1936 0.2897 0.3502 

weighted 0.0844 0.1517 0.2397 0.2884 

 

Table 2.2: RMSEs of the forecasted log French total mortality curves for 1995, 2000, 2005 
and 2010 by SM GPR with unweighted mean function and weighted mean function. 

 

Now we compare the forecast accuracy of the proposed model with some existing models in 

the literature. We choose the methods of Lee and Miller (2001) and Hyndman and Ullah 

(2007) as benchmarks for comparison, both of which can be implemented using R package 

‘demography’. Our GPR model, Hyndman-Ullah model (also called functional data model, 

FDM) and Lee-Miller model (LM) are applied to the French total mortality data for years 

from 1950 to 𝑍𝑍 (where 𝑍𝑍 = 1981, … , 1990) and forecasts are made for up to 20-year horizon, 

i.e. to forecast the mortality rates for 𝑍𝑍 + 1, … , min (𝑍𝑍 + 20, 2010) . The forecasts are 

compared with the actual mortality rates (on log scale) and the RMSEs over 20-year horizon 

for 𝑍𝑍 = 1981, … ,1990 are calculated. The average of the 10 RMSEs is calculated and then 

defined as root mean square forecasting error (RMSFE). The obtained RMSFEs for these 

three methods are presented in Figure 2.7.  

 

Figure 2.7: Forecasting accuracy of three methods in terms of out-of-sample RMSE (RMSFE). 
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It can be seen from the above figure that, the performances of our model and the functional 

data model are indistinguishable in short term (from 1 to 6-year forecasting horizon). But 

from 7-year horizon onwards, the proposed model substantially outperforms the functional 

data model. In contrast, the performance of our model is almost equal to that of the Lee-

Miller in long term (for 15 to 20-year horizons). However, it has much better accuracy for 1 

to 15-year horizons when compared with the Lee-Miller model. In the mid-term, the 

proposed GPR model is significantly better than both of the other two. Overall, our method 

provides very stable performance in terms of forecasting error in both short term and long 

term with much improved forecasting accuracy in mid-term, when compared with the 

functional data model and the Lee-Miller model, based on the French total mortality data.  

 

2.4 Conclusion 
 

We have introduced Gaussian process regression as a new approach for modelling and 

forecasting mortality rates. As a Bayesian nonparametric method, Gaussian process models 

have shown the effectiveness for smoothing and interpolation. We first considered several 

basic types of GPR models to test their abilities for extrapolation in the context of mortality 

rates and the numerical examples showed that choosing an appropriate type of the GPR 

kernel can be vital to the result of extrapolation. To solve the difficulty of manually choosing 

an appropriate kernel function, we proposed to use the spectral mixture kernel with a 

weighted mean function in the GPR model in order to capture the future trend more 

accurately as well as to automatically discover potential patterns from the training data. The 

numerical examples showed the proposed model improved the forecasting accuracy of 

mortality rates in long term, compared with the basic GPR methods. The performance of the 

proposed method was also compared with Lee-Miller model and the functional data model by 

Hyndman and Ullah (2007). The results demonstrated that our method provides a more stable 

performance in terms of forecasting errors. 

In contrast to the conventional functional data model and Lee-Miller model, which directly 

act on the historical mortality curves for forecasting, our method provides a different angle to 

handle this forecasting issue. We focus on modelling the mortality rates of specific age 
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groups over time and assume that they follow Gaussian processes. After forecasts are made 

for some age groups, the mortality rates at other ages for a particular future year can be 

obtained by interpolating the forecasted mortality rates to all age groups. Therefore the 

forecasting accuracy depends on the choice of the age groups to be modelled. In our example, 

20 specific age groups were selected, including 0, 1, 2, 5, 10, 12, 15, 18, 20, 22, 25, 28, 30, 

40, 50, 60, 70, 80, 90, 100-years groups. The reason for choosing these age groups is that, the 

patterns of an age-specific mortality curve tend to be very fluctuated from 0 to 30 years while 

it increases almost linearly from 30 to 100 years. Hence we need more dense grids for 

interpolation in the interval from 0 to 30 years and fewer points from 30 years onwards. Our 

experiment showed that there was no significant difference in the results if more or slightly 

different age groups were used. 
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Chapter 3                                                              
Coherent mortality forecasting: the weighted multilevel 
functional principal component approach 
 

 

3.1 Introduction to coherent mortality modelling 
 

In human mortality modelling, if a population consists of several subpopulations it is always 

desired to model their mortality rates simultaneously while taking into account the 

heterogeneity among them. The traditional mortality forecasting methods tend to result in 

divergent forecasts for subpopulations when independence is assumed. However, under 

closely related social, economic and biological backgrounds, mortality patterns of these 

subpopulations are expected to be non-divergent in long run. In this chapter, we propose a 

new framework for coherent modelling and forecasting of mortality rates for multiple 

subpopulations within one large population. We treat the mortality of subpopulations as 

multilevel functional data and then a weighted multilevel functional principal component 

approach is proposed and used for modelling and forecasting the mortality rates. The 

proposed model is applied to sex-specific data for nine developed countries, and the 

forecasting results suggest that, in terms of overall accuracy, the model outperforms the 

independent model (Hyndman and Ullah 2007) and is comparable to the Product-Ratio model 

(Hyndman et al 2013) but with several advantages.  
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3.2 Coherent mortality model based on multilevel functional 
principal component analysis 

 

3.2.1 A review of the functional principal component analysis (FPCA) 
 

In the past, statisticians focused on solving problems on multivariate statistics when the 

dimension of data is large. And the extension of data dimension from finite space to infinite 

space generates the idea of functional data naturally. The recent development in computing 

and data collection has enabled such extension from the traditional multivariate data to 

functional data. Functional data is represented by a set of curves belonging to an infinite 

dimensional space (Ferraty and Vieu, 2006). Under the functional data context, a curve is a 

random function, which is also considered as a sample from a stochastic process. Functional 

principal component analysis (FPCA) refers to the statistical methodology of analysing 

functional data (Shang, 2014). Functional principal component analysis can reveal more 

statistical information contained in the smoothness and derivatives of the functions, which 

distinguishes it from the multivariate principal component analysis (Ramsay and Silverman, 

2005).  
 

As a natural extension of the multivariate PCA, the core of FPCA technique is based on the 

Karhunen-Loève (KL) expansion of a stochastic process (Karhunen 1946; Loève 1946). Later 

on, Rao (1958) and Tucker (1958) applied the KL expansion to functional data. In Dauxois et 

al (1982), some important asymptotic properties of FPCA elements for the infinite-

dimensional data were derived. Since then, there had been many theoretical developments of 

FPCA mainly in two streams: the linear operator point of view and the kernel operator point 

of view. The former includes work done by Besse (1992), Mas (2002, 2008) and Bosq (2000). 

And the latter relates to more recent work by Yao et al (2005), Hall et al (2006) and Shen 

(2009). Besides, some extensions and modifications of FPCA, including smoothed FPCA, 

sparse FPCA, multilevel FPCA are also proposed by researchers. The ultimate goal of FPCA 

is to reduce the infinite dimension of functional data into finite dimensions in principal 

directions of variation.  
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Let 𝑌𝑌  be an 𝐿𝐿2 -continuous stochastic process defined on some set 𝒯𝒯  (time interval for 

instance) and 𝑌𝑌 is with finite variance ∫ 𝐸𝐸(𝑌𝑌2) < ∞𝒯𝒯 . Let  𝜇𝜇(𝑥𝑥) = 𝐸𝐸[𝑌𝑌(𝑥𝑥)]𝑥𝑥∈𝒯𝒯  denote the 

mean function of 𝑌𝑌. If 𝐿𝐿2(𝒯𝒯) is the space of the square-integrable functions defined on 𝒯𝒯, the 

covariance function of 𝑌𝑌, denoted as 𝐾𝐾, is defined as: 

 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌(𝑥𝑥),𝑌𝑌(𝑥𝑥′)� = 𝐸𝐸��𝑌𝑌(𝑥𝑥) − 𝜇𝜇(𝑥𝑥)��𝑌𝑌(𝑥𝑥′) − 𝜇𝜇(𝑥𝑥′)��,   𝑥𝑥, 𝑥𝑥′ ∈ 𝒯𝒯. 

 

And the covariance operator 𝒦𝒦of 𝑌𝑌 is induced by: 

 

𝒦𝒦: 𝐿𝐿2(𝒯𝒯) → 𝐿𝐿2(𝒯𝒯), 

𝑓𝑓 → 𝒦𝒦𝒦𝒦 = ∫ 𝐾𝐾(∙,𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝒯𝒯 . 

 

Having covariance operator defined, we are able to carry out the spectral analysis of 𝐾𝐾: 

 

𝒦𝒦𝒦𝒦 = 𝜆𝜆𝜆𝜆, 

 

to obtain a set of nonnegative eigenvalues {𝜆𝜆𝑖𝑖}𝑖𝑖≥1  associated with a set of orthonormal 

eigenfunctions {𝜙𝜙𝑖𝑖}𝑖𝑖≥1 , where 𝜆𝜆1 > 𝜆𝜆2 > ⋯ ≥ 0 and ∫ 𝜙𝜙𝑖𝑖(𝑥𝑥)𝒯𝒯 𝜙𝜙𝑖𝑖′(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1 if 𝑖𝑖 = 𝑖𝑖′  and 0 

otherwise.  

 

By KL expansion, a stochastic process 𝑌𝑌 can then be expressed as: 

 

𝑌𝑌(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) +  ∑ 𝛽𝛽𝑘𝑘𝜙𝜙𝑘𝑘∞
𝑘𝑘=1 (𝑥𝑥),   𝑥𝑥 ∈ 𝒯𝒯,  

 

where 𝛽𝛽𝑘𝑘 = ∫ (𝑌𝑌(𝑥𝑥) − 𝜇𝜇(𝑥𝑥))𝜙𝜙𝑘𝑘(𝑥𝑥)𝒯𝒯 𝑑𝑑𝑑𝑑 are uncorrelated random variables with mean zero 

and variance 𝜆𝜆𝑘𝑘. These random variables are called principal component scores. The principal 

component scores can be intuitively interpreted as the projection of the centred stochastic 

process 𝑌𝑌(𝑥𝑥) − 𝜇𝜇(𝑥𝑥) in the direction of the 𝑘𝑘-th eigenfunction 𝜙𝜙𝑘𝑘. In practice, only the first 

several eigenfunctions are needed to represent the important features of the set of random 
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functions. Therefore we usually truncate the expansion at the first 𝑁𝑁  terms to obtain an 

approximation of 𝑌𝑌(𝑥𝑥) in 𝐿𝐿2 norm:  

 

𝑌𝑌(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) +  ∑ 𝛽𝛽𝑘𝑘𝜙𝜙𝑘𝑘𝑁𝑁
𝑘𝑘=1 (𝑥𝑥),   𝑥𝑥 ∈ 𝒯𝒯.  

 

 

3.2.2 Multilevel FPCA 
 

In practice it is sometimes the case that a set of functional data comprise a number of subsets 

with strong correlations so that the functional data have a multilevel structure, such as the 

mortality rates for male and female in a country. The standard FPCA is not suitable for this 

type of functional data since it ignores the heterogeneity among subgroups. To address the 

challenges, Di et al (2009) proposes a multilevel FPCA (MFPCA), which combines FPCA 

and multilevel mixed models. Let 𝑌𝑌𝑖𝑖𝑖𝑖(𝑥𝑥) denote a random function for subgroup 𝑗𝑗  within 

subject 𝑖𝑖, 𝑖𝑖 = 1,2, … , 𝐼𝐼 and 𝑗𝑗 = 1,2, … , 𝐽𝐽. Consider a two-way functional ANOVA model 

 

𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) + 𝜂𝜂𝑗𝑗(𝑥𝑥) + 𝑍𝑍𝑖𝑖(𝑥𝑥) + 𝑊𝑊𝑖𝑖,𝑗𝑗(𝑥𝑥), 

 

where 𝜇𝜇(𝑥𝑥) is the overall mean function, 𝜂𝜂𝑗𝑗(𝑥𝑥) is the group-specific mean shift from the 

overall mean, 𝑍𝑍𝑖𝑖(𝑥𝑥)  is the subject-specific deviation from the group-specific mean, and 

𝑊𝑊𝑖𝑖,𝑗𝑗(𝑥𝑥) is the residual subject and group specific deviation from the subject-specific mean. In 

such model, 𝜇𝜇(𝑥𝑥)  and 𝜂𝜂𝑗𝑗(𝑥𝑥)  are fixed functions while 𝑍𝑍𝑖𝑖(𝑥𝑥)  and 𝑊𝑊𝑖𝑖,𝑗𝑗(𝑥𝑥)  are zero-mean 

stochastic processes. 𝑍𝑍𝑖𝑖(𝑥𝑥), termed as the level-one functions, and 𝑊𝑊𝑖𝑖,𝑗𝑗(𝑥𝑥), the level-two 

functions, are assumed to be uncorrelated. This model incorporates multiple nested levels of 

random effect functions, which distinguishes it from the other functional principal component 

models in the literature. 

  

Both the level-one and the level-two functions can then be decomposed using the Karhunen-

Loève (KL) expansion as follows: 

𝑍𝑍𝑖𝑖(𝑥𝑥) = ∑ 𝛽𝛽𝑖𝑖,𝑘𝑘𝑘𝑘 𝜙𝜙𝑘𝑘
(1)(𝑥𝑥), 

𝑊𝑊𝑖𝑖,𝑗𝑗(𝑥𝑥) = ∑ 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙𝑙𝑙 𝜙𝜙𝑙𝑙
(2)(𝑥𝑥), 
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where 𝜙𝜙𝑘𝑘
(1)(𝑥𝑥) and 𝜙𝜙𝑙𝑙

(2)(𝑥𝑥) are level-one and level-two eigenfunctions respectively, and 𝛽𝛽𝑖𝑖,𝑘𝑘 

and 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙 are their corresponding principal component scores. With these expansions, the 

model can then be expressed as 

 

𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) + 𝜂𝜂𝑗𝑗(𝑥𝑥) + ∑ 𝛽𝛽𝑖𝑖,𝑘𝑘𝑘𝑘 𝜙𝜙𝑘𝑘
(1)(𝑥𝑥) + ∑ 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙𝑙𝑙 𝜙𝜙𝑙𝑙

(2)(𝑥𝑥).                    (3.1) 

 

A set of assumptions are made for the model: 

 

(1) 𝐸𝐸�𝛽𝛽𝑖𝑖,𝑘𝑘� = 0, 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑖𝑖,𝑘𝑘� = 𝜆𝜆𝑘𝑘
(1), 𝐸𝐸�𝛽𝛽𝑖𝑖,𝑘𝑘1𝛽𝛽𝑖𝑖,𝑘𝑘2� = 0 for any 𝑖𝑖, 𝑘𝑘1 ≠ 𝑘𝑘2; 

(2) {𝜙𝜙𝑘𝑘
(1)(𝑥𝑥):𝑘𝑘 = 1,2, … } is an orthonormal basis of 𝐿𝐿2[0,1]; 

(3) 𝐸𝐸�𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙� = 0, 𝑣𝑣𝑣𝑣𝑣𝑣�𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙� = 𝜆𝜆𝑙𝑙
(2), 𝐸𝐸�𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙1𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙2� = 0 for any 𝑖𝑖, 𝑗𝑗, 𝑙𝑙1 ≠ 𝑙𝑙2; 

(4) {𝜙𝜙𝑙𝑙
(2)(𝑥𝑥): 𝑙𝑙 = 1,2, … } is an orthonormal basis of 𝐿𝐿2[0,1]; 

(5) {𝛽𝛽𝑖𝑖,𝑘𝑘: 𝑘𝑘 = 1,2, … } are uncorrelated with {𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙: 𝑙𝑙 = 1,2, … }.  

 

The first four assumptions are standard for FPCA while the last one is related to the 

previously stated assumption that 𝑍𝑍𝑖𝑖(𝑥𝑥) and 𝑊𝑊𝑖𝑖,𝑗𝑗(𝑥𝑥) are uncorrelated. Note that the level-one 

and level-two eigenfunctions are assumed to be orthonormal, but they are not necessarily 

mutually orthogonal.  

To obtain the eigenfunctions (or the principal components) in the model, we need to estimate 

the covariance functions first. Let 𝐾𝐾𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) = 𝑐𝑐𝑐𝑐𝑐𝑐{𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥𝑠𝑠),𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥𝑟𝑟)}  be the overall 

covariance function, 𝐾𝐾𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) = 𝑐𝑐𝑐𝑐𝑐𝑐{𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥𝑠𝑠),𝑌𝑌𝑖𝑖,𝑘𝑘(𝑥𝑥𝑟𝑟)}  the covariance functions between 

level two units within the same level one unit. And define 𝐾𝐾𝑊𝑊(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) ≔ 𝐾𝐾𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) −

 𝐾𝐾𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟). It follows from (3.1) that 

𝐾𝐾𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) =  ∑ 𝜆𝜆𝑘𝑘
(1)𝜙𝜙𝑘𝑘

(1)(𝑥𝑥𝑠𝑠)𝜙𝜙𝑘𝑘
(1)(𝑥𝑥𝑟𝑟)∞

𝑘𝑘=1 + ∑ 𝜆𝜆𝑙𝑙
(2)𝜙𝜙𝑙𝑙

(2)(𝑥𝑥𝑠𝑠)𝜙𝜙𝑙𝑙
(2)(𝑥𝑥𝑟𝑟)∞

𝑙𝑙=1 , 

𝐾𝐾𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) =  ∑ 𝜆𝜆𝑘𝑘
(1)𝜙𝜙𝑘𝑘

(1)(𝑥𝑥𝑠𝑠)𝜙𝜙𝑘𝑘
(1)(𝑥𝑥𝑟𝑟)∞

𝑘𝑘=1 , 

𝐾𝐾𝑊𝑊(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) =  ∑ 𝜆𝜆𝑙𝑙
(2)𝜙𝜙𝑙𝑙

(2)(𝑥𝑥𝑠𝑠)𝜙𝜙𝑙𝑙
(2)(𝑥𝑥𝑟𝑟)∞

𝑙𝑙=1 . 
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In practice, each function 𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥) is observed at a set of grid points and we assume that a 

common grid is used for every subject and subgroup. Then, 𝜇𝜇(𝑥𝑥𝑠𝑠), 𝜂𝜂𝑗𝑗(𝑥𝑥𝑠𝑠), 𝐾𝐾𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) and 

𝐾𝐾𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) can be estimated as follows:  

𝜇̂𝜇(𝑥𝑥𝑠𝑠) =  1
𝐼𝐼𝐼𝐼
∑ 𝑌𝑌𝑖𝑖,𝑗𝑗𝑖𝑖,𝑗𝑗 (𝑥𝑥𝑠𝑠), 

𝜂̂𝜂𝑗𝑗(𝑥𝑥𝑠𝑠) = 1
𝐼𝐼
∑ 𝑌𝑌𝑖𝑖,𝑗𝑗𝑖𝑖 (𝑥𝑥𝑠𝑠) − 𝜇̂𝜇(𝑥𝑥𝑠𝑠), 

𝐾𝐾�𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) = 1
𝐼𝐼𝐼𝐼
∑ {𝑖𝑖,𝑗𝑗 𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥𝑠𝑠) − 𝜇̂𝜇(𝑥𝑥𝑠𝑠) − 𝜂̂𝜂𝑗𝑗(𝑥𝑥𝑠𝑠)}{𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥𝑟𝑟) − 𝜇̂𝜇(𝑥𝑥𝑟𝑟) − 𝜂̂𝜂𝑗𝑗(𝑥𝑥𝑟𝑟)}, 

𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) = 2
𝐼𝐼𝐼𝐼(𝐽𝐽−1)

∑ ∑ {𝑌𝑌𝑖𝑖,𝑗𝑗1(𝑥𝑥𝑠𝑠) − 𝜇̂𝜇(𝑥𝑥𝑠𝑠) − 𝜂̂𝜂𝑗𝑗1(𝑥𝑥𝑠𝑠)}{𝑌𝑌𝑖𝑖,𝑗𝑗2(𝑥𝑥𝑟𝑟) − 𝜇̂𝜇(𝑥𝑥𝑟𝑟) − 𝜂̂𝜂𝑗𝑗2(𝑥𝑥𝑟𝑟)}𝑗𝑗1<𝑗𝑗2𝑖𝑖 . 

 

Since 𝐾𝐾𝑊𝑊(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) is estimated by the difference between 𝐾𝐾�𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) and 𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟), it may 

not always be positive definite. This can be solved by trimming pairs of eigenvalue and 

eigenfunction where the eigenvalue is negative (Hall et al 2008). Consequently the 

eigenfunctions can be estimated based on the decomposition of covariance functions as 

follows: 

Step 1. Estimate the mean and covariance functions 𝜇̂𝜇(𝑥𝑥𝑠𝑠), 𝜂̂𝜂𝑗𝑗(𝑥𝑥𝑠𝑠), 𝐾𝐾�𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) and 𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) ; 

set 𝐾𝐾�𝑊𝑊(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) =  𝐾𝐾�𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) −  𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟). 

Step 2. Decompose 𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) to obtain 𝜆̂𝜆𝑘𝑘
(1), 𝜙𝜙�𝑘𝑘

(1)(𝑥𝑥); 

Step 3. Decompose 𝐾𝐾�𝑊𝑊(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) to obtain 𝜆̂𝜆𝑙𝑙
(2), 𝜙𝜙�𝑙𝑙

(2)(𝑥𝑥); Then trim those pairs of eigenvalue 

and eigenfunction where the eigenvalue is negative.  

Step 4. Estimate the principal component scores for both levels (see below). 

As discussed in the previous subsection, in standard FPCA the principal component scores 

(PC scores) can be estimated straightforwardly by numerical integration, using 𝛽𝛽𝑘𝑘 =

∫ (𝑌𝑌(𝑥𝑥) − 𝜇𝜇(𝑥𝑥))𝜙𝜙𝑘𝑘(𝑥𝑥)𝒯𝒯 𝑑𝑑𝑑𝑑. However, estimating the PC scores for multilevel functional data 

involves extra complication because the two levels of eigenfunctions, namely 𝜙𝜙𝑘𝑘
(1)(𝑥𝑥) and 

𝜙𝜙𝑙𝑙
(2)(𝑥𝑥), are not necessarily mutually orthogonal. Di et al (2009) assumes that 𝛽𝛽𝑖𝑖,𝑘𝑘 and 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙 
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both follow Gaussian distributions and proposes two parallel methods for estimating the 

scores. In the first method, the estimated 𝜇𝜇(𝑥𝑥), 𝜂𝜂𝑗𝑗(𝑥𝑥),𝜆𝜆𝑘𝑘
(1), 𝜆𝜆𝑙𝑙

(2),𝜙𝜙𝑘𝑘
(1)(𝑥𝑥)  and 𝜙𝜙𝑙𝑙

(2)(𝑥𝑥)  are 

treated as fixed while the PC scores 𝛽𝛽𝑖𝑖,𝑘𝑘 and 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙  are random effects to be estimated. The 

model can then be written as: 

⎩
⎪
⎨

⎪
⎧
𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) + 𝜂𝜂𝑗𝑗(𝑥𝑥) + �𝛽𝛽𝑖𝑖,𝑘𝑘𝜙𝜙𝑘𝑘

(1)(𝑥𝑥)
𝑁𝑁1

𝑘𝑘=1

+ �𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙𝜙𝜙𝑙𝑙
(2)(𝑥𝑥) + 𝜀𝜀𝑖𝑖,𝑗𝑗(𝑥𝑥);

𝑁𝑁2

𝑙𝑙=1

𝛽𝛽𝑖𝑖,𝑘𝑘~𝑁𝑁�0, 𝜆𝜆𝑘𝑘
(1)�;      𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙~𝑁𝑁�0, 𝜆𝜆𝑙𝑙

(2)�;      𝜀𝜀𝑖𝑖,𝑗𝑗(𝑥𝑥)~𝑁𝑁(0,𝜎𝜎2),

 

where 𝜀𝜀𝑖𝑖,𝑗𝑗(𝑥𝑥) is i.i.d and appears only when functional data are observed with error (if the 

functional data is already smoothed or perfectly observed, simply remove this term from the 

model). And 𝜎𝜎2 is the prior parameter (assuming 1 𝜎𝜎2⁄  to follow a gamma distribution with 

mean equal to one and a large variance). It is in fact a linear mixed effect model in nature, 

therefore the random effects can be estimated by either best linear unbiased prediction 

(BLUP) or Markov Chain Monte Carlo (MCMC). This model is appropriate for both dense 

and sparse functional data. However, it faces computational challenges, especially when 

dealing with large volume of data. Therefore the second method will be adopted in our 

proposed model.  

The intuition behind the second method is to project each mean centred function into the 

space spanned by each eigenfunction at different levels (Di et al 2009). We denote 

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑘𝑘 =  ∫ �𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥) − 𝜇𝜇(𝑥𝑥) − 𝜂𝜂𝑗𝑗(𝑥𝑥)�𝜙𝜙𝑘𝑘
(1)(𝑥𝑥)𝑑𝑑𝑑𝑑1

0 = 𝛽𝛽𝑖𝑖,𝑘𝑘 + ∑ 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙𝑐𝑐𝑘𝑘,𝑙𝑙
𝑁𝑁2
𝑙𝑙=1 + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑘𝑘

(1) ,       (3.2) 

𝐵𝐵𝑖𝑖,𝑗𝑗,𝑙𝑙 =  ∫ �𝑌𝑌𝑖𝑖,𝑗𝑗(𝑥𝑥) − 𝜇𝜇(𝑥𝑥) − 𝜂𝜂𝑗𝑗(𝑥𝑥)�𝜙𝜙𝑙𝑙
(2)(𝑥𝑥)𝑑𝑑𝑑𝑑1

0 = 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙 + ∑ 𝛽𝛽𝑖𝑖,𝑘𝑘𝑐𝑐𝑘𝑘,𝑙𝑙
𝑁𝑁1
𝑘𝑘=1 + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑙𝑙

(2) ,         (3.3) 

where 𝑐𝑐𝑘𝑘,𝑙𝑙 = ∫ 𝜙𝜙𝑘𝑘
(1)(𝑥𝑥)1

0 𝜙𝜙𝑙𝑙
(2)(𝑥𝑥)𝑑𝑑𝑑𝑑  is the inner product of two eigenfunctions at different 

levels, and 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑘𝑘
(1)  and 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑙𝑙

(2)  are the residuals which can be expressed as 

𝜖𝜖𝑖𝑖,𝑗𝑗,𝑘𝑘
(1) = � {

1

0
� 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑙𝑙𝜙𝜙𝑙𝑙

(2)(𝑥𝑥) + 𝜀𝜀𝑖𝑖,𝑗𝑗(𝑥𝑥)}𝜙𝜙𝑘𝑘
(1)(𝑥𝑥)𝑑𝑑𝑑𝑑

∞

𝑙𝑙=𝑁𝑁2+1

 

𝜖𝜖𝑖𝑖,𝑗𝑗,𝑘𝑘
(2) = � {

1

0
� 𝛽𝛽𝑖𝑖,𝑘𝑘𝜙𝜙𝑘𝑘

(1)(𝑥𝑥) + 𝜀𝜀𝑖𝑖,𝑗𝑗(𝑥𝑥)}𝜙𝜙𝑙𝑙
(2)(𝑥𝑥)𝑑𝑑𝑑𝑑

∞

𝑘𝑘=𝑁𝑁1+1
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respectively. Equations (3.2) and (3.3) can be rewritten in matrix format. Letting 

𝑨𝑨𝑖𝑖,𝑗𝑗 = (𝐴𝐴𝑖𝑖,𝑗𝑗,1,𝐴𝐴𝑖𝑖,𝑗𝑗,2, … ,𝐴𝐴𝑖𝑖,𝑗𝑗,𝑁𝑁1)𝑇𝑇,  𝑩𝑩𝑖𝑖,𝑗𝑗 = (𝐵𝐵𝑖𝑖,𝑗𝑗,1,𝐵𝐵𝑖𝑖,𝑗𝑗,2, … ,𝐵𝐵𝑖𝑖,𝑗𝑗,𝑁𝑁2)𝑇𝑇, 

𝛽𝛽𝑖𝑖 = (𝛽𝛽𝑖𝑖,1,𝛽𝛽𝑖𝑖,2, … ,𝛽𝛽𝑖𝑖,𝑁𝑁1)𝑇𝑇,   𝛾𝛾𝑖𝑖,𝑗𝑗 = (𝛾𝛾𝑖𝑖,𝑗𝑗,1, 𝛾𝛾𝑖𝑖,𝑗𝑗,2, … , 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑁𝑁2)𝑇𝑇, 

𝜖𝜖𝑖𝑖,𝑗𝑗
(1) = (𝜖𝜖𝑖𝑖,𝑗𝑗,1

(1) , 𝜖𝜖𝑖𝑖,𝑗𝑗,2
(1) , … , 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑁𝑁1

(1) )𝑇𝑇,  𝜖𝜖𝑖𝑖,𝑗𝑗
(2) = (𝜖𝜖𝑖𝑖,𝑗𝑗,1

(2) , 𝜖𝜖𝑖𝑖,𝑗𝑗,2
(2) , … , 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑁𝑁2

(2) )𝑇𝑇, 

Then (2) and (3) are transformed as follows: 

⎩
⎨

⎧𝑨𝑨𝑖𝑖,𝑗𝑗 = 𝛽𝛽𝑖𝑖 + 𝐶𝐶𝛾𝛾𝑖𝑖,𝑗𝑗 + 𝜖𝜖𝑖𝑖,𝑗𝑗
(1),    𝑩𝑩𝑖𝑖,𝑗𝑗 = 𝛾𝛾𝑖𝑖,𝑗𝑗 + 𝐶𝐶𝑇𝑇𝛽𝛽𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑗𝑗

(2),

𝛽𝛽𝑖𝑖 ~ 𝑁𝑁�0,   𝛬𝛬(1)�,    𝛾𝛾𝑖𝑖,𝑗𝑗 ~ 𝑁𝑁�0,   𝛬𝛬(2)�,

𝜖𝜖𝑖𝑖,𝑗𝑗
(1) ~ 𝑁𝑁�0,   𝜎𝜎12𝑰𝑰𝑁𝑁1�,    𝜖𝜖𝑖𝑖,𝑗𝑗

(2) ~ 𝑁𝑁�0,   𝜎𝜎22𝑰𝑰𝑁𝑁2�,

 

where C = (𝑐𝑐𝑘𝑘,𝑙𝑙)𝑘𝑘,𝑙𝑙  is an 𝑁𝑁1 × 𝑁𝑁2  matrix, 𝛬𝛬(1) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆1
(1), 𝜆𝜆2

(1), … , 𝜆𝜆𝑁𝑁1
(1)) , and 𝛬𝛬(2) =

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆1
(2), 𝜆𝜆2

(2), … , 𝜆𝜆𝑁𝑁2
(2)). The residual variance 𝜎𝜎12  and 𝜎𝜎22  can be estimated from the data. 

This is also a linear mixed effects model and MCMC is implemented for estimation of the PC 

scores.  

Determining the number of eigenfunctions in the approximation is always important in the 

context of principal component analysis. A relatively simple solution is to rely on the 

proportion of variance explained. In the MFPCA model, the cumulative percentage of the 

total variation explained by the first 𝑁𝑁1  components at level one is given by the ratio 

∑ 𝜆𝜆𝑘𝑘
(1)𝑁𝑁1

𝑘𝑘=1 ∑ 𝜆𝜆𝑘𝑘
(1)∞

𝑘𝑘=1� . Similarly, the cumulative percentage of the total variation explained by 

the first 𝑁𝑁2 components at level two is given by the ratio ∑ 𝜆𝜆𝑙𝑙
(2)𝑁𝑁2

𝑙𝑙=1 ∑ 𝜆𝜆𝑙𝑙
(2)∞

𝑙𝑙=1� . Therefore the 

number of eigenfunction can be determined given a threshold for the cumulative percentage 

of the total variation explained by the first 𝑁𝑁1 (𝑁𝑁2) components at level one (level two). And 

the proportion of variation explained by the level one and level two against the overall 

variation of the entire data set can be calculated as 
∑ 𝜆𝜆𝑘𝑘

(1)∞
𝑘𝑘=1

∑ 𝜆𝜆𝑘𝑘
(1)∞

𝑘𝑘=1 +∑ 𝜆𝜆𝑙𝑙
(2)∞

𝑙𝑙=1
 and 

∑ 𝜆𝜆𝑙𝑙
(2)∞

𝑙𝑙=1

∑ 𝜆𝜆𝑘𝑘
(1)∞

𝑘𝑘=1 +∑ 𝜆𝜆𝑙𝑙
(2)∞

𝑙𝑙=1
 

respectively.  

In reality, functional data are usually observed with error. Smoothing is therefore needed 

before analysis is carried out. In the literature of FPCA, there are three methods commonly 

used for smoothing: smoothing the data before applying FPCA, introducing a penalty term 
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(Ramsay and Silverman 2005), and smoothing the covariance function. In our later 

application on mortality modelling, we will adopt the first method to smooth the raw data 

first before the MFPCA is conducted. This will be discussed again in the next section. 

 

3.2.3 Weighted MFPCA for coherent mortality forecasting 
 

In this section we propose a weighted MFPCA approach for coherent forecast of the future 

mortality of a number of subpopulations within one large population. Let 𝑦𝑦𝑡𝑡,𝑗𝑗(𝑥𝑥) denote the 

log of the death rate of the 𝑗𝑗𝑡𝑡ℎ subpopulation for age x in year t. And we assume that there is 

an underlying function 𝑓𝑓𝑡𝑡,𝑗𝑗(𝑥𝑥)  that we are observing with error at discrete points of 𝑥𝑥 . 

Suppose we have observed �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑡𝑡,𝑗𝑗(𝑥𝑥𝑖𝑖)�, 𝑡𝑡 = 1, … ,𝑛𝑛, 𝑖𝑖 = 1, … ,𝑝𝑝, 𝑗𝑗 = 1, … ,𝑚𝑚. Then, 

𝑦𝑦𝑡𝑡,𝑗𝑗(𝑥𝑥𝑖𝑖) = 𝑓𝑓𝑡𝑡,𝑗𝑗(𝑥𝑥𝑖𝑖) + 𝜎𝜎𝑡𝑡,𝑗𝑗(𝑥𝑥𝑖𝑖)𝑒𝑒𝑡𝑡,𝑗𝑗,𝑖𝑖, 

where 𝑒𝑒𝑡𝑡,𝑗𝑗,𝑖𝑖 is i.i.d standard normal random variables and 𝜎𝜎𝑡𝑡,𝑗𝑗(𝑥𝑥𝑖𝑖) allows the amount of noise 

to vary with age 𝑥𝑥.  

In demographic modelling, it is often the case that more recent data tend to have more impact 

on the results than those in the distant past. Hence, we propose to incorporate the concept of 

weight into the MFPCA model to allow recent mortality data to affect forecasting result more 

significantly, as discussed below.  

The overall mean function 𝜇𝜇(𝑥𝑥) is estimated using a weighted average: 

𝜇̂𝜇(𝑥𝑥) =  ∑ (𝑤𝑤𝑡𝑡 𝑚𝑚⁄ )𝑓𝑓𝑡𝑡,𝑗𝑗𝑡𝑡,𝑗𝑗 (𝑥𝑥), 

where 𝑓𝑓𝑡𝑡,𝑗𝑗(𝑥𝑥) is the smoothed function from 𝑦𝑦𝑡𝑡,𝑗𝑗(𝑥𝑥), 𝑚𝑚 is the total number of subgroups, and 

𝑤𝑤𝑡𝑡 = 𝜅𝜅(1 − 𝜅𝜅)𝑛𝑛−𝑡𝑡 is a geometrically decaying weight with 0 <  𝜅𝜅 < 1. The larger 𝜅𝜅 is, the 

faster the weight for the past years is decaying over time. Therefore, 𝜅𝜅 represents people’s 

perception on how past data should be weighted. The parameter 𝜅𝜅 can be determined by cross 

validation or specified a priori. 

The subgroup-specific shift from the overall mean, 𝜂𝜂𝑗𝑗(𝑡𝑡), is then estimated as: 
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𝜂̂𝜂𝑗𝑗(𝑡𝑡) =  ∑ 𝑤𝑤𝑡𝑡𝑓𝑓𝑡𝑡,𝑗𝑗𝑡𝑡 (𝑥𝑥) −  𝜇̂𝜇(𝑥𝑥) . 

The mean-adjusted functional data are denoted as 𝑓𝑓𝑡𝑡,𝑗𝑗
∗ (𝑥𝑥) = 𝑓𝑓𝑡𝑡,𝑗𝑗(𝑥𝑥) − 𝜇̂𝜇(𝑥𝑥) − 𝜂̂𝜂𝑗𝑗(𝑡𝑡). Note that 

the weights are incorporated into the mean-adjusted data 𝑓𝑓𝑡𝑡,𝑗𝑗
∗ (𝑥𝑥) in order to calculate the 

weighted functional principal components. Similar to Hyndman and Ullah (2007), the 

weighted multilevel functional principal components 𝜙𝜙�𝑘𝑘
(1)(𝑥𝑥) and 𝜙𝜙�𝑙𝑙

(2)(𝑥𝑥) can be obtained as 

follows. We first discretize 𝑓𝑓𝑡𝑡,𝑗𝑗
∗ (𝑥𝑥) on a dense grid of 𝑝𝑝 equally spaced points {𝑥𝑥1, … , 𝑥𝑥𝑝𝑝} and 

denote the discretized 𝑓𝑓𝑡𝑡,𝑗𝑗
∗ (𝑥𝑥) as an 𝑛𝑛𝑛𝑛 × 𝑝𝑝 matrix 𝐹𝐹. Then the weights are incorporated by 

multiplying a weight matrix 𝑊𝑊 to 𝐹𝐹, where 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑤𝑤1
𝑚𝑚

,𝑤𝑤1
𝑚𝑚

, …�������
𝑚𝑚

, … ,𝑤𝑤𝑛𝑛
𝑚𝑚

,𝑤𝑤𝑛𝑛
𝑚𝑚

, …�������
𝑚𝑚

). Thus 𝐹𝐹 is 

transformed into 𝐹𝐹∗ = 𝑊𝑊𝑊𝑊. Based on the weighted mean-adjusted matrix 𝐹𝐹∗, the covariance 

functions 𝐾𝐾�𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟)  and 𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟)  can be estimated using the methods discussed in the 

previous subsection and 𝐾𝐾�𝑊𝑊(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) = 𝐾𝐾�𝑇𝑇(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) − 𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) is calculated accordingly. The 

weighted multilevel functional principal components 𝜙𝜙�𝑘𝑘
(1)(𝑥𝑥)  and 𝜙𝜙�𝑙𝑙

(2)(𝑥𝑥)  can then be 

obtained by decomposing 𝐾𝐾�𝐵𝐵(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟) and 𝐾𝐾�𝑊𝑊(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟). And finally, the PC scores at two levels 

can be directly estimated using either of the methods described before. Therefore, the entire 

weighted MFPCA model for coherent forecasting of the mortality of subpopulations is given 

as: 

𝑦𝑦𝑡𝑡,𝑗𝑗(𝑥𝑥𝑖𝑖) = 𝜇𝜇𝑗𝑗(𝑥𝑥𝑖𝑖) + ∑ 𝛽𝛽𝑡𝑡,𝑘𝑘𝜙𝜙𝑘𝑘
(1)(𝑥𝑥𝑖𝑖)

𝑁𝑁1
𝑘𝑘=1 + ∑ 𝛾𝛾𝑡𝑡,𝑗𝑗,𝑙𝑙𝜙𝜙𝑙𝑙

(2)(𝑥𝑥𝑖𝑖)
𝑁𝑁2
𝑙𝑙=1 + 𝜎𝜎𝑡𝑡,𝑗𝑗(𝑥𝑥𝑖𝑖)𝑒𝑒𝑡𝑡,𝑗𝑗,𝑖𝑖, 

where 𝜇𝜇𝑗𝑗(𝑥𝑥𝑖𝑖) = 𝜇𝜇(𝑥𝑥𝑖𝑖) + 𝜂𝜂𝑗𝑗(𝑥𝑥𝑖𝑖) is the mean of the subpopulation 𝑗𝑗. Forecasts can then be 

achieved by extrapolating the level-one and level-two scores 𝛽𝛽𝑡𝑡,𝑘𝑘 = {𝛽𝛽𝑡𝑡,1, … ,𝛽𝛽𝑡𝑡,𝑁𝑁1}  and 

𝛾𝛾𝑡𝑡,𝑗𝑗,𝑙𝑙 = �𝛾𝛾𝑡𝑡,𝑗𝑗,1, … , 𝛾𝛾𝑡𝑡,𝑗𝑗,𝑁𝑁2�, 𝑗𝑗 = 1, …𝑚𝑚, using time series models. Since the level-one scores are 

independent we assume independent possibly non-stationary autoregressive integrated 

moving average (ARIMA) models for each of {𝛽𝛽𝑡𝑡,1, … ,𝛽𝛽𝑡𝑡,𝑁𝑁1}. As for the level-two scores 

𝛾𝛾𝑡𝑡,𝑗𝑗,𝑙𝑙 , it is noted that, for the same order 𝑙𝑙 (𝑙𝑙 = 1, … ,𝑁𝑁2), the set of scores for different 

subpopulations �𝛾𝛾𝑡𝑡,1,𝑙𝑙, … , 𝛾𝛾𝑡𝑡,𝑚𝑚,𝑙𝑙� share the same basis 𝜙𝜙𝑙𝑙
(2)(𝑥𝑥), which implies that the scores 

�𝛾𝛾𝑡𝑡,1,𝑙𝑙, … , 𝛾𝛾𝑡𝑡,𝑚𝑚,𝑙𝑙�are not independent and hence multivariate time series models are more 

appropriate. However, in order to avoid model and computation complexity, a univariate 

autoregressive moving average (ARMA) model with stationary restriction is used for each of 
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the level-two scores in our numerical examples. The stationary constraint is to ensure the 

coherence in mortality forecasting.  

Let 𝛽̂𝛽(𝑡𝑡+ℎ),𝑘𝑘 denote the h-step ahead forecast of 𝛽𝛽(𝑡𝑡+ℎ),𝑘𝑘 and 𝛾𝛾�(𝑡𝑡+ℎ),𝑗𝑗,𝑙𝑙 denote the h-step ahead 

forecast of 𝛾𝛾(𝑡𝑡+ℎ),𝑗𝑗,𝑙𝑙. Then the h-step ahead forecast of 𝑦𝑦𝑡𝑡,𝑗𝑗(𝑥𝑥) is obtained as: 

𝑦𝑦�(𝑡𝑡+ℎ),𝑗𝑗(𝑥𝑥) =  𝜇̂𝜇𝑗𝑗(𝑥𝑥) +  ∑ 𝛽̂𝛽(𝑡𝑡+ℎ),𝑘𝑘𝜙𝜙�𝑘𝑘
(1)(𝑥𝑥)𝑁𝑁1

𝑘𝑘=1 + ∑ 𝛾𝛾�(𝑡𝑡+ℎ),𝑗𝑗,𝑙𝑙𝜙𝜙�𝑙𝑙
(2)(𝑥𝑥)𝑁𝑁2

𝑙𝑙=1 . 

Due to the fact that each component in the model is uncorrelated with each other, the 

forecasting variance can be obtained by adding up the variance of each component: 

𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦(𝑡𝑡+ℎ),𝑗𝑗(𝑥𝑥)� = 𝜎𝜎�𝜇𝜇𝑗𝑗
2 (𝑥𝑥) + �𝑢𝑢(𝑡𝑡+ℎ),𝑘𝑘{𝜙𝜙�𝑘𝑘

(1)(𝑥𝑥)}2
𝑁𝑁1

𝑘𝑘=1

 

+∑ 𝑣𝑣(𝑡𝑡+ℎ),𝑗𝑗,𝑙𝑙{𝜙𝜙�𝑙𝑙
(2)(𝑥𝑥)}2𝑁𝑁2

𝑙𝑙=1 + {𝜎𝜎(𝑡𝑡+ℎ),𝑗𝑗(𝑥𝑥)}2, 

 

where 𝜎𝜎�𝜇𝜇𝑗𝑗
2 (𝑥𝑥) denotes the variance of the smoothed means and can be estimated from the 

smoothing method used; 𝑢𝑢(𝑡𝑡+ℎ),𝑘𝑘 = 𝑣𝑣𝑣𝑣𝑣𝑣{𝛽̂𝛽(𝑡𝑡+ℎ),𝑘𝑘}  and 𝑣𝑣(𝑡𝑡+ℎ),𝑗𝑗,𝑙𝑙 = 𝑣𝑣𝑣𝑣𝑣𝑣{𝛾𝛾�(𝑡𝑡+ℎ),𝑗𝑗,𝑙𝑙}  can be 

obtained from the time series models; and the observational variance {𝜎𝜎(𝑡𝑡+ℎ),𝑗𝑗(𝑥𝑥)}2 can be 

estimated from the historical data (see Hyndman and Ullah 2007).  

 

3.3 Applications 
 

In this section we evaluate our weighted MFPCA model by applying it to some sex-specific 

mortality data. We first consider the coherent forecasting of the sex-specific mortality rates in 

the UK, and forecast the male and female life expectancies in the UK with thirty years 

horizon to see if the forecasting result appears to be non-divergent. We then compare the 

forecasting accuracy of our model with that of the Product-Ratio model as well as the 

independent model using the sex-specific mortality rates of nine different countries. 
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3.3.1 Coherent forecasting for the male and female mortality in the UK 
 

The sex-specific mortality data in the UK are obtained from the Human Mortality Database 

(2010). The data provide the observed mortality rates for every one year at per age. We select 

the years from 1950 to 2010 and the ages from 0 to 100 to avoid the anomalous mortality 

rates during the first and second world wars and the erratic rates above 100. The mortality 

curves are first smoothed by using the weighted penalized regression splines with a 

monotonicity constraint (Hyndman and Ullah, 2007). The smoothed curves are shown in 

Figure 3.1.  

 

Figure 3.1: The smoothed log death rates for male and female in the UK from 1950 to 2010, 
viewed as functional data series. 

 

The weighted MFPCA model is then fitted to the data. The weight parameter 𝜅𝜅 is set as 𝜅𝜅 =

0.05  as suggested by Hyndman et al (2013) in their studies, thus giving a weight of 

0.05(0.95) = 0.0475 to the most recent year, 0.05(0.95)2 = 0.0451 to the year before that, 

and so on. The numbers of principal components for both level-one and level-two are 𝑁𝑁1 =

𝑁𝑁2 = 3 since the first three PCs have accounted for more than 85% of the variation. The 

level-one and level-two mean functions, functional principal components as well as their 

corresponding scores are estimated as discussed in the previous section. The time series 

modelling and forecasting for the scores are performed using the R package ‘forecast’ 
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(Hyndman and Khandakar, 2008). The estimates and the forecasts with 30-year horizon are 

shown in Figures 3.2 and 3.3 respectively. 

 

 

 

 

Figure 3.2: Level-one decomposition: the overall mean function, the first three level-one 
functional principal components and their corresponding scores with 30-year forecast 
horizon and 80% confidence interval using ARIMA models without restriction. 
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Figure 3.3: Level-two decomposition: the sex-specific deviations from the overall mean 
function, the first three level-two functional principal components and their corresponding 
scores with 30-year forecast horizon and 80% confidence interval using stationary ARMA 
models. 

 

Figure 3.2 displays the level-one components which are shared by both male and female 

subpopulations. As can be seen in the figure, the first principal component of level-one 

models the degree of variation of mortality among different age groups, which is very large 

for child age groups and relatively small for twenties and old age groups. The second and 

third principal components present more complicated patterns and are difficult to interpret. 

The result shows that the first three principal components explain around 97.7%, 1.6% and 

0.3% of the level one variation respectively, and the level-one variation takes up 94% of the 

total variation.  

Figure 3.3 displays the level-two components which are specific for male and female 

subpopulations (except for the level-two principal components which are shared by both male 

and female). It can be seen that the male and female deviations from the overall mean are 

complementary to each other, and such pattern can be verified if the number of subgroups is 

two, because of the method used for calculating the mean and deviations. The first three 

principal components explain around 61.8%, 17.2% and 7.0% of the level-two variation 

respectively, and the level-two variation takes up 6% of the total variation. As mentioned 

before, univariate stationary ARMA models are used to model the level-two scores in order 

to reduce model and computation complexity, despite that they are theoretically dependent.  

Figure 3.4 shows the 30-year forecasts of the male and female life expectancies at birth by 

our proposed model as well as the independent model (Hyndman and Ullah, 2007). It can be 

observed that the independent model produces a more divergent forecasting result than our 

coherent model does. The life expectancies of male and female in 2040 forecasted by the 

independent model are 82.5 years and 86.8 years respectively, in contrast to 83.1 years and 

86.6 years by our weighted MFPCA model. It can also be viewed that the forecasted life 

expectancies of male and female in 2010 are 78.4 years and 82.3 years respectively, 

indicating a 3.9 years sex gap. This gap is increased by the independent model to 4.3 years in 

2040 while it is decreased by our coherent model to 3.5 years. Hence, our coherent model 

demonstrates slow convergence in forecasted life expectancies in the UK.  
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Figure 3.4: 30-year forecasted life expectancies for male and female in the UK by the 
weighted MFPCA model (solid lines) and the independent model (dotted lines). Blue lines 
represents female group, while red lines represent male group. 

 

3.3.2 Comparing accuracy with the Product-Ratio model and the 
independent model 

 

We now compare the forecasting accuracy of our proposed model with those of the Product-

Ratio model and the independent model for the UK mortality rates. We use the UK male and 

female mortality data from 1950 to 1973+𝑡𝑡 as observations and forecast the mortality rates 

for years 1973+𝑡𝑡 + 1, …, 1973+𝑡𝑡 + 30, for 𝑡𝑡 = 0, … , 9. Thus, ten sets of forecasts with 1 to 

30 year horizons are obtained and compared with the actual values. For a specific forecast 

horizon ℎ (ℎ = 1, … , 30), the out-of-sample root mean square forecast error (RMSFE) for the 

𝑗𝑗𝑡𝑡ℎ subpopulation is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗(ℎ) = � 1
10𝑝𝑝

∑ ∑ {𝑦𝑦(1973+𝑡𝑡+ℎ),𝑗𝑗(𝑥𝑥𝑖𝑖) − 𝑦𝑦�(1973+𝑡𝑡+ℎ),𝑗𝑗(𝑥𝑥𝑖𝑖)}2𝑝𝑝
𝑖𝑖=1

9
𝑡𝑡=0 . 

For the UK male and female mortality data, the values of the out-of-sample RMSFE are 

obtained using the weighted MFPCA model, the Product-Ratio model and the independent 

model and are illustrated in the top panels of Figure 3.5.  
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Figure 3.5: Out-of-sample RMSFEs for male and female of three countries using the 
weighted MFPCA model (solid lines), the Product-Ratio model (dotted lines) and the 
independent model (dashed lines). Top panels: the UK; the middle: Italy; the bottom: 
Australia. The left panel shows the comparison between the weighted MFPCA and the 
Product-Ratio model whilst the right panel is between the weighted MFPCA and the 
independent model. Blue lines represents female group and red lines represent male group.  
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It can be observed that the MFPCA model presents a considerably higher forecasting 

accuracy than the Product-Ratio model and the independent model, for both male and female 

groups. The average RMSFE (over forecast horizon and sex) by the MFPCA model is 0.1916, 

compared with 0.2672 by the Product-Ratio model and 0.2685 by the independent model. 

The numerical results show that, in overall terms, the MFPCA model performs considerably 

better than the Product-Ratio model and the independent model for the UK mortality forecast.  

The same experiment is further performed to the male and female mortality data of eight 

other developed countries, including Australia, USA, France, Japan, Spain, Canada, 

Netherlands and Italy. As demonstration the out-of-sample RMSFEs for Italy and Australia 

are shown in the lower panels of Figure 12.  

It can be seen from the above figures that the RMSFE by the MFPCA model is slightly 

smaller than that of the Product-Ratio model for Italian male for almost all forecast horizons. 

For Italian female, the MFPCA model has a marginally smaller RMSFE for forecast horizons 

from 1 to 20. After 20 year horizon, the RMSFE of the MFPCA model exceeds that of the 

Product-Ratio model marginally. And the RMSFE of the MFPCA model is slightly smaller 

than that of the independent model for all forecast horizons, for both Italian male and female. 

Overall, for the Italian case the MFPCA model performs slightly better than the Product-

Ratio model (average RMSFE 0.2512 vs 0.2572) while it performs much better than the 

independent model (average RMSFE 0.2512 vs 0.2694) in terms of forecast accuracy. 

For Australian male and female the RMSFEs of the MFPCA model are almost the same as 

those by the Product-Ratio model. Compared with the independent model, the forecast error 

by the MFPCA model is lowered for Australian male, at the cost of the increase in error for 

the female. In other words, the MFPCA model homogenizes the forecast error across male 

and female, compared with the independent model. Overall, for the Australian case the 

MFPCA model performs almost as well as the Product-Ratio model (average RMSFE 0.2774 

vs 0.2757) while it performs marginally better than the independent model (average RMSFE 

0.2774 vs 0.2806) in terms of forecast accuracy. 

The values of the average RMSFE by the three models for all nine countries are given in 

Table 3.1.  
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 MFPCA Product-Ratio Independent 

AUS 0.2774 0.2757 0.2806 

USA 0.1568 0.1247 0.1614 

UK 0.1916 0.2672 0.2685 

FRA 0.2483 0.2188 0.2362 

JPN 0.3616 0.3551 0.3614 

ESP 0.2855 0.2766 0.3404 

CAN 0.2353 0.2039 0.2451 

NLD 0.2415 0.2383 0.2851 

ITA 0.2512 0.2572 0.2694 

 

Table 3.1: The average RMSFEs by the weighted MFPCA model, the Product-Ratio model 
and the independent model for nine developed countries. 

 

It can be observed that the MFPCA model outperforms the independent models in most of the 

cases, and is comparable to the Product-Ratio model in terms of average RMSFE. For the UK 

mortality the MFPCA model presents a significant advantage over the other two models. 

Further analysing the experimental result, we notice that the MFPCA model presents a 

significant advantage over the other two models in minimizing the short-term RMSFE 

(average RMSFE for 1 to 10-year horizon). With respect to short-term RMSFE, the MFPCA 

model outperforms the other two models for 7 out of 9 countries. The values of the short-term 

RMSFE by the three models for all nine countries are given in Table 3.2.  
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 MFPCA Product-Ratio Independent 

AUS 0.1548 0.1592 0.1617 

USA 0.0927 0.0886 0.0927 

UK 0.1065 0.1271 0.1243 

FRA 0.1115 0.1116 0.1139 

JPN 0.1262 0.1507 0.1522 

ESP 0.1615 0.1618 0.1801 

CAN 0.1406 0.1305 0.1425 

NLD 0.1547 0.1586 0.1697 

ITA 0.1182 0.1220 0.1243 

 

Table 3.2: The short-term RMSFEs (average of 1 to 10-year horizon) by the weighted MFPCA 
model, the Product-Ratio model and the independent model for nine developed countries. 

 

 

3.4 Conclusion 
 

In this chapter, we proposed a new model for coherent forecasting of mortality rates among 

several subpopulations. The model is based on the multilevel functional principal component 

analysis (MFPCA) framework and is incorporated with weights which allow more recent data 

to have more significant impact on forecasting result. The mortality curves of different 

subpopulations are treated as a set of multilevel functional data, and the principal components 

and their corresponding scores are obtained at two levels and forecasts are made by 

extrapolating these scores using time series models. Using the sex-specific mortality data of 

nine developed countries, we demonstrated the usefulness of the proposed model and 

compared the results with the Product-Ratio model and the independent model.  

The MFPCA model consists of a group mean, a decomposition of level-one functions and a 

decomposition of level-two functions. The level-one functions govern the common properties 

of the entire population while the level-two functions involve properties which are specific to 

subpopulations. Therefore the model possesses a simple and explicit form which makes 
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modelling procedure easy and interpretable. Since the level-one functions are largely 

dominated by their first principal component, the age pattern of change at this level is 

relatively fixed. However, the governance of level-two functions are separated into several 

principal components, which gives a flexible age pattern of change at level two. In such way, 

the MFPCA model provides more flexibility in the age pattern of change compared with the 

independent model which contains only a single level of principal components.  

It can be seen that the MFPCA model has a similar structure to the Product-Ratio model. For 

instance, the Product-Ration model is composed of a group mean, a decomposition of product 

function and a decomposition of ratio function. The product function represents the geometric 

mean of subpopulation death rates while the ratio function is the ratio of the death rates of a 

specific subpopulation to the geometric mean. Despite these similarities, the MFPCA model 

has several advantages over the Product-Ratio model in its nature. The core of the MFPCA 

method is to find the variations of multilevel functional data at different levels and then 

decompose them using KL expansion. There is no need to pre-processing the data as done in 

the Product-Ratio method (calculating the product functions and the ratio functions) so the 

functional data are allowed to speak more for themselves within the MFPCA framework. The 

Product-Ratio model assumes the subpopulations have equal variances, which is not needed 

in the MFPCA model. Moreover, within the MFPCA framework, the percentage of variance 

explained by each principal component at both levels can be calculated explicitly and easily, 

which cannot be achieved by the Product-Ratio model. Knowing these percentages of 

variance explained, we are able to explicitly evaluate the importance of every principal 

component at both levels.  

Coherence is another important issue to be discussed. Hyndman et al (2013) defines 

coherence as the convergence of the ratios of the forecast age-specific death rates from any 

two subpopulations to appropriate constants. In our model, coherence boils down to the 

convergence of the level-two functions of any two subpopulations to appropriate constants, 

which is ensured by applying stationary ARMA models to the level-two principal component 

scores. The convergence of the level-two principal component scores to certain constants 

under stationary ARMA model guarantees that the long-term forecasts of the level-two 

functions also converge to their age-specific constants. As the level-two functions converge 

to constants, they gradually lose ability to affect the change of mortality. The change of 
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mortality is then entirely dominated by level-one functions. Since level-one functions are 

commonly shared by different subpopulations, their impact on the changes of mortality of 

those subpopulations is equal. The forecasted mortality differences among subpopulations are 

thus constrained, leading to a similar constraint on the forecasted life expectancies as well.  
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Chapter 4                                                            
Clustering mortality (fertility) as functional data using 
principal curve method 
 

 

4.1 Clustering functional data 
 

Functional data is collection of data represented by curves rather than data points alone. The 

clustering of functional data, often used as a preliminary step for functional data exploration, 

involves extra complexity since the dimension of the data takes values into an infinite 

dimensional space. In this chapter, we propose an innovative clustering method for functional 

data, with the aid of the principal curves. The proposed method borrows the strength of 

nonparametric principal curves to effectively detect the potential features of the two-

dimensional scores extracted from the original functional data for clustering purpose. A 

probability model with Bayesian Information Criterion (BIC) for principal curves is 

constructed to automatically find the appropriate number of features and the optimal degree 

of smoothing. We make use of this approach for clustering human mortality and fertility as 

functional data.  

 

 

4.2 Principal curve method for clustering functional data 
 

4.2.1 Principal curves 
 

A principal curve is a smooth, one dimensional nonparametric curve that passes through the 

“middle” of a 𝑝𝑝-dimensional data set. Different from the principal component, which is linear 

summarization of data, a principal curve allows for nonlinearity in summarizing the data and 

it is actually an extension of the first principal component. The fundamental idea was 

introduced by Hastie and Stuetzle (1989) (hereafter HS), using the concept of self-
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consistency, which means that each point of the curve is the average over all points that 

project there. According to HS, the projection index 𝜆𝜆𝑓𝑓(𝑥𝑥): 𝑹𝑹𝑝𝑝 → 𝑹𝑹1 is defined as: 

𝜆𝜆𝑓𝑓(𝑥𝑥) =  𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆�𝜆𝜆: ‖𝑥𝑥 − 𝑓𝑓(𝜆𝜆)‖ = 𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇‖𝑥𝑥 − 𝑓𝑓(𝜇𝜇)‖�, 

where 𝑥𝑥 is a sample from a random vector 𝑋𝑋 in 𝑹𝑹𝑝𝑝 with density ℎ and 𝜆𝜆𝑓𝑓 is the function that 

projects points in 𝑹𝑹𝑝𝑝 orthogonally onto the curve 𝑓𝑓. The projection index is the value of 𝜆𝜆 for 

which 𝑓𝑓(𝜆𝜆) is closest to 𝑥𝑥. If there are multiple values of 𝜆𝜆, the largest one will be selected. 

Then, the curve is called principal curve of ℎ if it satisfies: 

𝐸𝐸�𝑋𝑋�𝜆𝜆𝑓𝑓(𝑋𝑋) = 𝜆𝜆� = 𝑓𝑓(𝜆𝜆), 

for almost all 𝜆𝜆. A principal curve is parameterized by 𝜆𝜆, the arc length along the curve.  

The algorithm for finding a principal curve involves starting with the first principal 

component as a smooth curve and then repeating the projection and conditional expectation 

from the above definitions until the convergence is achieved. And the conditional expectation 

is usually replaced by a scatterplot smoother, where the conditional expectation at 𝜆𝜆𝑖𝑖  is 

estimated by averaging all the observations 𝑥𝑥𝑘𝑘 in the sample for which the corresponding 𝜆𝜆𝑘𝑘 

is close to 𝜆𝜆𝑖𝑖. This algorithm, motivated by the definition of finding principal curves from 

sample, is considered to estimate a population quantity that minimizes a population criterion. 

On the other hand, HS also provides an alternative algorithm to fit the principal curves by 

using cubic smoothing splines, which minimizes data-dependent criterion. This spline-

smoothing algorithm will be discussed in more details in next sub-section. Besides this 

classical definition given by HS, there exist some other definitions, for example, by 

Tibshirani (1992) and Kégl et al (2000). These algorithms share something in common: they 

all start with a straight line (very often the first principal component) and then evolve the 

line(s) until it converges to the middle of data satisfactorily. This family of algorithms are 

called “top-down” strategies.  

Parallel to that, there is another family of algorithms called “bottom-up” strategies. Instead of 

starting with a global initial line, the “bottom-up” method constructs the principal curve by 

taking into account the data in a local neighbourhood of the current point considered in every 

step. Hence it is able to handle complex data structure such as spirals or branched curves 

which “top-down” method is often unable to handle. Delicado (2001) first introduces a 

principal curve approach that belongs to this family. Later on, Einbeck et al (2005) adopt 

Delicado’s concept and simplified his algorithm to be fast and efficient in computation. 
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Einbeck’s approach can be considered as a simple and fast approximation to Delicado’s 

algorithm and is called the local principal curve method.  

In this chapter, we adopt the classical HS algorithm as a stable method to construct principal 

curves for our functional clustering approach. 

 

4.2.2 The spline-smoothing algorithm by HS 
 

Assume 𝑋𝑋  is a random variable in 𝑹𝑹𝑝𝑝  and 𝑥𝑥𝑖𝑖 ∈ 𝑹𝑹𝑝𝑝, 𝑖𝑖 = 1, … ,𝑛𝑛  are samples from  𝑋𝑋 . 

According to HS, the criterion for defining principal curves in this context is: find 𝑓𝑓(𝜆𝜆) and 

𝜆𝜆𝑖𝑖 ∈ [0,1] (𝑖𝑖 = 1, … , 𝑛𝑛) so that the penalized least squares 

𝐷𝐷2(𝑓𝑓, 𝜆𝜆) =  �‖𝑥𝑥𝑖𝑖 − 𝑓𝑓(𝜆𝜆𝑖𝑖)‖2 + 𝜂𝜂� ‖𝑓𝑓′′(𝜆𝜆)‖2𝑑𝑑𝑑𝑑
1

0

𝑛𝑛

𝑖𝑖=1

 

is minimized over all 𝑓𝑓 with the penalty (smoothing parameter) 𝜂𝜂. And the spline-smoothing 

algorithm designed on this criterion is given as following: 

(1) Given 𝑓𝑓, minimizing 𝐷𝐷2(𝑓𝑓, 𝜆𝜆) over 𝜆𝜆𝑖𝑖 which only involves the squared distances part 

and this is the usual projection step. Then rescale 𝜆𝜆𝑖𝑖 to lie in [0,1].  

(2) Given 𝜆𝜆𝑖𝑖, split the penalized least squares into 𝑝𝑝 expressions, one for each coordinate 

function. Then smooth each coordinate separately against 𝜆𝜆𝑖𝑖 using a cubic spline smoother 

with parameter 𝜂𝜂.  

It is suggested by HS that if a minimum of the penalized least squares exists, it must be a 

cubic spline in each coordinate. It can be difficult to guess the smoothing parameter 𝜂𝜂 under 

some circumstances. We choose to use an alternative method which employs the degree of 

freedom (DF) to determine the amount of smoothing. And the DF of a cubic spline is given 

by the trace of the implicit smoother matrix.  

 

4.2.3 Principal curve clustering algorithm for functional data  
 

As mentioned in Chapter 3, based on Karhunen- Loève (KL) expansion, a stochastic process 

𝑌𝑌(𝑡𝑡) can be expanded as:  

𝑌𝑌(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) + ∑ 𝛽𝛽𝑘𝑘𝜙𝜙𝑘𝑘∞
𝑘𝑘=1 (𝑡𝑡),   𝑡𝑡 ∈ 𝒯𝒯.  
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Based on this expansion, we truncate the first 𝑁𝑁  terms of principal components which 

account for most part of the total variation to approximate 𝑌𝑌(𝑡𝑡): 

𝑌𝑌(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) + ∑ 𝛽𝛽𝑘𝑘𝜙𝜙𝑘𝑘𝑁𝑁
𝑘𝑘=1 (𝑡𝑡),   𝑡𝑡 ∈ 𝒯𝒯,  

where the cumulative percentage of the overall variation explained by the first 𝑁𝑁 components 

is given by the ratio ∑ 𝑙𝑙𝑘𝑘𝑁𝑁
𝑘𝑘=1 ∑ 𝑙𝑙𝑘𝑘∞

𝑘𝑘=1⁄ . To achieve a good approximation, we require the 

cumulative percentage of variation of the first 𝑁𝑁 terms to exceed 95%, in order to determine 

the appropriate number of components.  

In reality, the observations are very often with noise. Hence, the FPCA model of smoothed 

random curves 𝒀𝒀(𝑡𝑡) = �𝑌𝑌1(𝑡𝑡), … ,𝑌𝑌𝑞𝑞(𝑡𝑡)� can be expressed as: 

𝑌𝑌𝑠𝑠(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) + ∑ 𝛽𝛽𝑠𝑠,𝑘𝑘𝜙𝜙𝑘𝑘𝑁𝑁
𝑘𝑘=1 (𝑡𝑡) + 𝑒𝑒𝑠𝑠(𝑡𝑡),   𝑡𝑡 ∈ 𝒯𝒯, 𝑠𝑠 = 1,2, … , 𝑞𝑞,  

where 𝑒𝑒𝑠𝑠(𝑡𝑡) is normally distributed noise term.  

This decomposition enables us to collect the set of principal component scores 𝛽𝛽𝑠𝑠 =

(𝛽𝛽𝑠𝑠,1 , … ,𝛽𝛽𝑠𝑠,𝑁𝑁) to represent the features of the 𝑠𝑠𝑡𝑡ℎ random function, on which the principal 

curve clustering algorithm can be applied. However, since principal curve clustering is based 

on extracting and detecting the curvilinear features of point patterns on two-dimensional 

plane, we will require one more step to transform the principal component scores 𝛽𝛽𝑠𝑠 =

(𝛽𝛽𝑠𝑠,1 , … ,𝛽𝛽𝑠𝑠,𝑁𝑁) in 𝑹𝑹𝑁𝑁 into 𝛼𝛼𝑠𝑠 = (𝛼𝛼𝑠𝑠,1 ,𝛼𝛼𝑠𝑠,2) in 𝑹𝑹2  before the algorithm for clustering can be 

applied. To this end the multidimensional scaling (MDS) will be adopted to realize such 

transformation. Multidimensional scaling aims to find a projection of given original objects 

for which one has a distance matrix into 2 or 3 dimensional (Euclidean) space for best 

visualization (Peng and Müller, 2008). The projected points in 2 or 3 dimensional space 

represent the original objects in such a way that their distances match with the original 

distances or dissimilarities, according to some target criterion. With the aid of MDS 

projection, we are finally able to obtain the 2-dimensional scores  𝛼𝛼𝑠𝑠 = (𝛼𝛼𝑠𝑠,1 ,𝛼𝛼𝑠𝑠,2), 𝑠𝑠 =

1,2, … , 𝑞𝑞, which can approximately represent the features of the original functional data.  

Stanford and Raftery (2000) propose a clustering algorithm based on principal curves for 

multivariate data, which contains three main steps: denoising, initial clustering and 

hierarchical principal curve clustering (HPCC). The first step aims to separate the feature 

points from potential background or feature noise. In the second step, a model-based 

clustering is used to for initial clustering of the feature points. The third step, hierarchical 

principal curve clustering, aims to combine potential feature clusters and find the appropriate 
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number of clusters. Stanford and Raftery (2000) introduce a clustering criterion based on a 

weighted sum of the squared distances about the curve (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) and the squared distances 

along the curve (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), and also developed a probability model with Bayesian Information 

Criterion (BIC) for principal curves to overcome the overfitting problem.  

The issue with the above algorithm is that, in the final step, it relies on the BIC values for 

choosing the appropriate number of final clusters as well as the clustering criterion for step-

by-step merging, which makes the algorithm very complex. Also, for the clustering criterion, 

the choice of weights allocated between 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 arouses extra difficulty. In this 

sub-section we develop a different probability model for principal curves and refine the 

merging criterion to rely on BIC only. Our new algorithm for hierarchical principal curve 

clustering is described as follows. 

Suppose 𝑋𝑋 is a random variable in 𝑹𝑹𝑝𝑝 with a set of observations 𝑿𝑿 = {𝑥𝑥1 … 𝑥𝑥𝑛𝑛}, and 𝐷𝐷 is a 

partition consisting of clusters 𝐷𝐷1, …𝐷𝐷𝑀𝑀. It is assumed that the feature points are distributed 

normally about the true underlying feature. At the same time, it is also assumed that the 

projections of all the feature points spread uniformly along the summation of the lengths of 

all principal curves. That is, their projections onto the corresponding principal curves form a 

uniform distribution 𝑈𝑈�0,∑𝜈𝜈𝑗𝑗�, where 𝜈𝜈𝑗𝑗 is the length of the 𝑗𝑗𝑗𝑗ℎ curve. And the orthogonal 

distances from points to the curve form a normal distribution 𝑁𝑁(0,𝜎𝜎𝑗𝑗2). The 𝑀𝑀 clusters are 

then combined in a mixture model and the unconditional probability of a point belonging to 

the 𝑗𝑗𝑗𝑗ℎ feature is denoted by 𝜋𝜋𝑗𝑗(𝑗𝑗 = 1, …𝑀𝑀).  

Let 𝜃𝜃 denote the entire set of parameters, then the likelihood is 

𝐿𝐿(𝑿𝑿|𝜃𝜃) = �𝐿𝐿(𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

|𝜃𝜃), 

where 𝐿𝐿(𝑥𝑥𝑖𝑖|𝜃𝜃) = ∑ 𝜋𝜋𝑗𝑗𝑀𝑀
𝑗𝑗=1 𝐿𝐿(𝑥𝑥𝑖𝑖|𝜃𝜃, 𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷𝑗𝑗) and ∑ 𝜋𝜋𝑗𝑗𝑀𝑀

𝑗𝑗=1 = 1. For feature clusters, 

𝐿𝐿�𝑥𝑥𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷𝑗𝑗� = 1
∑𝜈𝜈𝑗𝑗

[ 1

�2𝜋𝜋𝜎𝜎𝑗𝑗
2
𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝑥𝑥𝑖𝑖−𝑓𝑓(𝜆𝜆𝑖𝑖𝑖𝑖)�
2

2𝜎𝜎𝑗𝑗
2 �], 

where �𝑥𝑥𝑖𝑖 − 𝑓𝑓(𝜆𝜆𝑖𝑖𝑖𝑖)� is the Euclidean distance from the point 𝑥𝑥𝑖𝑖 to its projection 𝑓𝑓(𝜆𝜆𝑖𝑖𝑖𝑖).  

Having defined the probability model for the principal curves, we utilize the BIC to 

determine the optimal number of features and the smoothness (DF) of the curves 

simultaneously. Under the BIC context, each combination of number of features and degree 

of freedom is considered as a specific model for the data. And two models compete with each 



   50 
 

other through comparing the BIC values. In our case, the BIC for a model with 𝑀𝑀 features is 

defined as: 

𝐵𝐵𝐵𝐵𝐵𝐵 = 2 log�𝐿𝐿(𝑿𝑿|𝜃𝜃)� − 𝑉𝑉 log(𝑁𝑁), 

where 𝑉𝑉 = 𝑀𝑀(𝐷𝐷𝐷𝐷 + 2) + 𝑀𝑀 − 1 is the number of parameters. There are totally 𝑀𝑀 features, 

each involving two parameters 𝜈𝜈𝑗𝑗  and 𝜎𝜎𝑗𝑗 , plus the degree of freedom (DF). The mixing 

proportions 𝜋𝜋𝑗𝑗  contribute to the other 𝑀𝑀 − 1 parameters. The larger the BIC is, the more the 

model is favoured by the data. Conventionally, differences of 2-6 in BIC values show 

positive evidence for one model, differences of 6-10 release strong signal for one model, 

while differences greater than 10 indicate very strong evidence (Kass and Raftery, 1995).  

We start with the denoised and initially clustered FPC scores (with at least seven points in 

each cluster, recommended by Stanford and Raftery (2000)), and then look for every possible 

pair of clusters to check if they can be merged. The merging criterion is based on the BIC 

value: for each pair of clusters, we are actually facing the choices between a model with two 

features and one with a single feature. We fit principal curve(s) to the data in both situations, 

estimate the unknown parameters and finally calculate the BIC values within a reasonable 

range of DF for one-feature and two-feature models respectively. As has been mentioned 

above, if the maximum BIC value of one-feature model exceeds that of two-feature model by 

2 or more, within the chosen range of DF, there is positive evidence for merging these two 

clusters. We keep looking for pairs of clusters for all possible mergences until the algorithm 

stops with no more clusters can be merged. Compared with the original algorithm of Stanford 

and Raftery (2000), our modified clustering algorithm avoids the complexity of first 

determining the appropriate number of clusters and then performing step-by-step mergences 

according to a specific criterion until the desired number of clusters is reached. It can 

iteratively perform the mergence based on BIC values and automatically arrive at the 

appropriate number of clusters. 

 

The complete procedure of the functional data clustering algorithm is then summarized as 

follows. 

(1) Smooth the functional data observed at discrete points using appropriate smoothers.  

(2) Decompose the smoothed functional data using FPCA and collect the scores 𝛽𝛽𝑠𝑠 =

�𝛽𝛽𝑠𝑠,1 , … ,𝛽𝛽𝑠𝑠,𝑁𝑁�, 𝑠𝑠 = 1,2, … , 𝑞𝑞 of the first 𝑁𝑁 principal components which make up over 95% 

of the total variation. 
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(3) Use the multidimensional scaling (MDS) to transform N dimensional scores 𝛽𝛽𝑠𝑠 =

�𝛽𝛽𝑠𝑠,1 , … ,𝛽𝛽𝑠𝑠,𝑁𝑁� into 2-dimensional scores 𝛼𝛼𝑠𝑠 = (𝛼𝛼𝑠𝑠,1 ,𝛼𝛼𝑠𝑠,2), 𝑠𝑠 = 1,2, … , 𝑞𝑞. 

(4) Treat 𝛼𝛼1, … ,𝛼𝛼𝑞𝑞  as 𝑞𝑞 points in 𝑹𝑹2. Remove the estimated noise points and make an 

initial clustering of 𝛼𝛼𝑠𝑠 into several initial clusters. 

(5) Seek for all possible pairs of individual clusters. For each pair, based on the 

probability model, consider it as either one-feature model or two-feature model and calculate 

the BIC values within a selected range of DF respectively.  

(6) Check if the maximum BIC of one-feature model exceeds that of two-feature model 

by 2 or more. If so, conduct the mergence. Otherwise, leave them as two individual clusters.  

(7) Repeat (5) and (6) until no more pair of individual clusters can be merged.  

(8) Obtain the finalized clusters of 𝛼𝛼𝑠𝑠  and then convert them to the clusters of the 

functional data accordingly.  

 

 

 

4.3 Simulation study 
 

4.3.1 Case one: Semicircle scores 
 

We simulate the functional data 𝑌𝑌(𝑡𝑡) using the mean function 𝜇𝜇(𝑡𝑡) = 4 sin(𝜋𝜋𝜋𝜋
5

), the first 

eigenfunction 𝜙𝜙1(𝑡𝑡) = − cos(𝜋𝜋𝜋𝜋
10

) , and the second eigenfunction 𝜙𝜙2(𝑡𝑡) = − sin(𝜋𝜋𝜋𝜋
10

)  within 

the interval 0 ≤ 𝑡𝑡 ≤ 10. The FPC scores (𝛽𝛽𝑠𝑠,1,𝛽𝛽𝑠𝑠,2) on 2D plane form two offset semicircles 

with random Gaussian noise added (the underlying two semicircles follow 𝛽𝛽𝑠𝑠,1 =

�1 − (𝛽𝛽𝑠𝑠,2 + 0.5)2 − 0.15 + 0.1𝜀𝜀, 𝛽𝛽𝑠𝑠,1 = −�1 − (𝛽𝛽𝑠𝑠,2 − 0.5)2 + 0.15 + 0.1𝜀𝜀, 𝜀𝜀~𝑁𝑁(0,1)  

respectively).   
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Figure 4.1: Bivariate plot of simulated principal component scores, with x-axis representing 
the first principal component scores and y-axis representing the second principal 
component scores.  

 

200 FPC scores are generated (see Figure 4.1) and the trajectories are simulated from 𝑌𝑌𝑠𝑠(𝑡𝑡) =

𝜇𝜇(𝑡𝑡) + ∑ 𝛽𝛽𝑠𝑠,𝑘𝑘𝜙𝜙𝑘𝑘2
𝑘𝑘=1 (𝑡𝑡), 𝑠𝑠 = 1,2, … ,200, with equally spaced 𝑡𝑡, as is shown in Figure 4.2.  

 

Figure 4.2: 200 random functions simulated from the designated mean function, 
eigenfunctions and semicircle scores. 

 



   53 
 

The FPCA is then performed and the corresponding principal component scores are obtained, 

as shown in Figure 4.3. It is noticed that through FPCA, the scale of the original simulated 

scores are reduced and the axes are rotated to the directions which maximum variance occurs. 

However, the basic shape of the pattern (two offset semicircles) remains unchanged. As the 

first two principal components have already explained 100%  of the total variance, the 

multidimensional scaling step is not needed. 

 

Figure 4.3: Bivariate plot of the first two principal component scores after applying FPCA on 
the simulated functional data. 

 

The denoising and initial clustering are conducted using 𝐾𝐾𝑡𝑡ℎ  nearest neighbour clutter 

removal (KNN) or robust covariance estimation by the nearest neighbour variance estimation 

(NNVE) and model-based clustering (mclust) and the set of principal component scores is 

divided into seven initial clusters as illustrated by Figure 4.4. The R package “Prabclus”, 

“covRobust” and “mclust” contain the implementations of the KNN, NNVE and model-based 

clustering algorithms and they are available to download from website. 



   54 
 

 

Figure 4.4: Initial clustering of the scores after the removal of potential noise. 

Starting with these seven initial clusters, the merging process is performed iteratively for each 

possible pair of clusters and the BIC values are compared repeatedly to check if that pair of 

clusters can be merged. Finally, the algorithm stops automatically when two clusters (two 

semicircles) are recognized, as shown in Figure 4.5(a). And the clustering of the functional 

data is demonstrated in Figure 4.5(b).  

                    

      (a)                                                                      (b) 

Figure 4.5: Final clustering of the scores and the functional data. Cluster-one feature is in 
red and cluster-two feature is in blue. The black stands for noise. 
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Another issue to be discussed is the range of DF selected for the probability model. We 

choose the range of DF based on the following rules: the lower bound of DF is always 2; for 

one-feature model, we set the upper bound of DF as 2 3⁄  of the total number of points in the 

single cluster; for two-feature model, we set the upper bound of DF as 2 3⁄  of the total 

number of points in the smaller cluster of two. And DF is always capped by 20.  

We now compare the performance of our principal curve clustering method with some other 

functional clustering methods. We choose functional k-means (Peng and Müller 2008) of 

filtering method and FunHDDC (Bouveyron and Jacques 2011) of adaptive method as our 

benchmarks. The functional k-means clustering algorithm is to apply the k-means algorithm 

to FPCA scores. The appropriate number of clusters is determined by the “elbow” in the sum 

of squared distances scree plot which is shown in Figure 4.6.  

 

Figure 4.6: The scree plot of the sum of squared distances for different number of clusters 
by k-means method. 

 

The plot indicates 4 as the appropriate number of clusters. In this way, it fails to recognize the 

inherent semicircle features, which can be accurately recognized by our principal curve 

clustering method.  

The FunHDDC algorithm is based on a functional latent mixture model and the appropriate 

number of clusters for a dataset can be determined by the BIC criterion. Figure 4.7 shows the 
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BIC values by FunHDDC on the simulated functional data set with respect to the total 

number of clusters. It can be observed that the BIC value increases until 𝑘𝑘 = 6 and then 

stabilizes, which suggests 6 as the optimal number of clusters. However, this betrays the 

inherent feature of semicircles.  

 

Figure 4.7: The plot of BIC values for different number of clusters by FunHDDC method. 

 

We further investigate the performances of these alternative functional clustering methods by 

specifying the total number of clusters as 2. Given such condition, k-means method and 

FunHDDC method are applied to the same set of the simulated functional data and the 

clustering results are reflected from the corresponding 2D FPCA scores, which are displayed 

in Figure 4.8. It can be observed that, even given the correct number of clusters, these two 

methods still cannot produce accurate classification (with the points at the end of semicircles 

misclassified) while the principal curve clustering method can.  

We also consider the curve clustering method developed by Gaffney (2004) using the Curve 

Clustering Toolbox for MATLAB. This method does not provide a means to determine the 

number of clusters, so we specify as 2. The clustering result appears to be the same as that by 

FunHDDC.  
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Figure 4.8: Final clustering results reflected by the FPCA scores. The left panel shows the 
clustering result produced by FunHDDC and the Curve Clustering Toolbox. The right panel 
shows the clustering result produced by the k-means method.  

 

4.3.2 Case two: Sinusoidal scores 
 

Same as in case one, we specify the mean function 𝜇𝜇(𝑡𝑡) = 4 sin(𝜋𝜋𝜋𝜋
5

), the first eigenfunction 

𝜙𝜙1(𝑡𝑡) = − cos(𝜋𝜋𝜋𝜋
10

),  and the second eigenfunction 𝜙𝜙2(𝑡𝑡) = − sin(𝜋𝜋𝜋𝜋
10

) within the interval 0 ≤

𝑡𝑡 ≤ 10. However, this time the FPC scores (𝛽𝛽𝑠𝑠,1,𝛽𝛽𝑠𝑠,2) on 2D plane are designed to form a 

sinusoidal pattern with random Gaussian noise added (the underlying sine curve follows 

𝛽𝛽𝑠𝑠,1 = sin�𝛽𝛽𝑠𝑠,2� + 0.15𝜀𝜀, 𝜀𝜀~𝑁𝑁(0,1) ).   
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Figure 4.9: Bivariate plot of simulated principal component scores, with x-axis representing 
the first principal component scores and y-axis representing the second principal 
component scores.  

 

200 FPC scores are generated (see Figure 4.9) and the trajectories are simulated from 𝑌𝑌𝑠𝑠(𝑡𝑡) =

𝜇𝜇(𝑡𝑡) + ∑ 𝛽𝛽𝑠𝑠,𝑘𝑘𝜙𝜙𝑘𝑘2
𝑘𝑘=1 (𝑡𝑡), 𝑠𝑠 = 1,2, … ,200, with equally spaced 𝑡𝑡. See Figure 4.10.  

 

Figure 4.10: 200 random functions simulated from the designated mean function, 
eigenfunctions and sinusoidal scores. 
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The FPCA is then performed on the simulated functional data and the corresponding 

principal component scores are obtained, as shown in Figure 4.11. It is noticed that through 

FPCA, the scale of the original simulated scores are reduced and the axes are rotated to the 

directions which maximum variance occurs. However, the basic shape of the pattern (one 

sinusoidal curve) remains unchanged. As the first two principal components have already 

explained 100% of the total variance, the multidimensional scaling step is not needed. 

 

 

Figure 4.11: Bivariate plot of the first two principal component scores after applying FPCA 
on the simulated functional data.  

 

The denoising and initial clustering are conducted using 𝐾𝐾𝑡𝑡ℎ  nearest neighbour clutter 

removal (KNN) or robust covariance estimation by the nearest neighbour variance estimation 

(NNVE) and model-based clustering (mclust) and the set of principal component scores is 

divided into five initial clusters as illustrated by Figure 4.12. 
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Figure 4.12: Initial clustering of the scores after the removal of potential noise. 

 

Starting with five initial clusters, the merging process is performed iteratively for each 

possible pair of clusters and the BIC values are compared repeatedly to see if that pair of 

clusters can be merged. Finally, the algorithm stops automatically when a single cluster (one 

complete sine pattern) is achieved, as shown in Figure 4.13(a). And the clustering of the 

functional data is demonstrated in Figure 4.13(b).  
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       (a)                                                                        (b) 

Figure 4.13: Final clustering of the scores and the functional data. One sinusoidal feature (in 
red) with noise (in black) is identified. 

 

Alternatively, we apply the functional k-means method and the FunHDDC method to the 

simulated functional data for clustering. For the k-means method, the “elbow” in the sum of 

squared distances scree plot suggests that 3 clusters is optimal (refer to Figure 4.14). For the 

FunHDDC method, the BIC value stabilizes at 𝑘𝑘 = 6, indicating that 6 clusters is optimal 

(see Figure 4.15). Obviously, neither the k-means method nor the FunHDDC method can 

figure out the potential sinusoidal feature while our principal curve clustering method can. 

This case further illustrates the superiority of our method in finding curvilinear features for 

clustering purposes.  
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Figure 4.14: The scree plot of the sum of squared distances for different number of clusters 
by k-means. 

 

 

Figure 4.15: The plot of BIC values for different number of clusters by FunHDDC method. 
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4.4 Empirical study 
 

In this section, we demonstrate the capability of our principal curve clustering approach by 

applying it to two sets of real functional data. We consider the age-specific mortality data and 

age-specific fertility data of our interest due to their importance in actuarial science study.  

 

4.4.1 French mortality 
 

We first consider the French total mortality data from 1899 to 2012. The data are obtained 

from the Human Mortality Database (2012). The age-specific mortality rates are represented 

in log scale and smoothed data are shown in Figure 4.16.  

 

Figure 4.16: Smoothed French log total mortality rates (1899-2012). 

 

We now apply FPCA and decompose the curves into a mean function and a set of functional 

principal components 𝜙𝜙𝑘𝑘(𝑥𝑥) with their corresponding principal component scores 𝛽𝛽𝑠𝑠,𝑘𝑘. The 

first and second principal components has explained 97.9% and 1.2% of the total variation 

respectively, which sum up to 99.1% of the total variation. Hence, we consider it to be 

strongly adequate to take the scores of the first two principal components to represent the 
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features of the smoothed mortality curves. The components of FPCA decomposition on the 

French total mortality data are displayed in Figure 4.17. 

 

 

                          

Figure 4.17: Components from FPCA decomposition on the French total mortality data 
(1899-2012). The mean function, first two functional principal components and their 
associated scores are displayed. 

 

The bivariate plot of the scores 𝛽𝛽𝑠𝑠 = �𝛽𝛽𝑠𝑠,1 , 𝛽𝛽𝑠𝑠,2� is shown in Figure 4.18, with the potential 

noise identified by the Robust Covariance Estimation (NNVE) method. 
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Figure 4.18: Bivariate plot of the first two principal component scores. Red circles indicate 
feature points while blue circles indicate potential noise. 

 

The initial clustering of the feature points by the model-based clustering mclust suggests that 

these feature points can be divided into four clusters, as shown in Figure 4.19 below.  

 

Figure 4.19: Initial clustering of the feature points after removal of potential noise. Four 
initial clusters are recognized. 

 

Finally, we implement our clustering algorithm on the initial clusters and look for all possible 

mergences of clusters whenever the merging criterion is met for each iteration. The final 
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result indicates that the left three clusters can be merged as one, while leaving rightmost 

cluster as an individual one. It is obvious that the rightmost cluster of scores should be 

identified as a single cluster. As for the leftmost cluster, we notice that there is a sharp elbow 

in between it and its neighbouring cluster. Despite the elbow, the maximum BIC value of 

one-feature model still exceeds that of two-feature model by more than two, within the 

selected range of DF. However, this is a very marginal situation in deciding whether two 

clusters should be merged since the difference in BIC values by the two models is very small, 

and our algorithm can quite sensitively detect it. Hence we are inclined to identify the 

leftmost cluster as the continuation of the previous feature, rather than considering it as the 

start of a new feature. The final result generated from the principal curve clustering method is 

shown in Figure 4.20.  

 

 

Figure 4.20: Final clustering of the scores. Red and blue circles represent two clusters of 
feature points. Black circles stand for the noise. 

 

Based on the clustering of the scores 𝛽𝛽𝑠𝑠 = (𝛽𝛽𝑠𝑠,1 , 𝛽𝛽𝑠𝑠,2), we are able to convert it to the 

clustering of the original mortality curves which is shown in Figure 4.21.  
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Figure 4.21: Final clustering result of the French total mortality curves from 1899 to 2012. 
Blue and green curves belong to cluster 1 & 2. Red curves belong to the noise cluster.  

 

In the above figure, the blue curves, referring to the French total mortality curves from 1899 

to 1913, 1920 to 1939 and 1941, are classified as cluster one. The green curves, 

corresponding to those from 1949 to 2012, are classified as cluster two. Looking deeper into 

the principal components of the mortality curves, there is something interesting to remark. 

The first principal component actually models the degree of variation of mortality among 

different age groups. The elder the age group is, the milder the variation in mortality against 

time it tends to have (see Figure 8). And the decreasing trend of first principal component 

scores indicates that the mortality rates are evolving lower against time. Meanwhile, the 

second principal component scores models the differences of mortality between middle age 

groups and young & old age groups. Apart from these two clusters, the red curves are 

recognized as anomalies. From observation, we can further distinguish the anomaly curves 

into two subgroups: the upper group whose mortality rates are extremely high for the middle 

aged population corresponds to mortality curves of 1914-1919, 1940 and 1942-1945; the 

lower group situated between cluster one and cluster two refers to mortality curves of 1946-

1948. As we know, 1914-1919 is the period of WW1 while 1940-1945 is the period of WW2. 

And France’s participation in both wars explains the extremely high mortality rates of its 

middle-aged population during those two periods. And the years 1946-1948 is the period 

right after the ending of WW2 and can be considered as a transition to the after-war booming 
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period. From historical point of view, the clustering result generated by our functional data 

clustering method is quite sensible. 

 

4.4.2 Australian fertility 
 

The second example is related to the age-specific Australian fertility data from 1921 to 2002. 

The data are defined as the number of live births during a calendar year, according to the age 

of the mother, per 1,000 of the female resident population of the same age at 30 June. The 

observed Australian fertility rates are smoothed and the result is shown in Figure 4.22.  

 

 

Figure 4.22: Smoothed Australian fertility rates (1921-2002). 

 

The decomposition of the curves by FPCA is shown in Figure 4.23, where the first and 

second principal components have explained 67.9% and 28.5% of the total variation 

respectively.  
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Figure 4.23: Components from FPCA decomposition on the Australian fertility data (1921-
2002). The mean function, first two functional principal components and their associated 
scores are displayed. 

 

The bivariate plot of the associated scores 𝛽𝛽𝑠𝑠 = �𝛽𝛽𝑠𝑠,1 , 𝛽𝛽𝑠𝑠,2� is displayed in Figure 4.24.  
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Figure 4.24: Bivariate plot of the first two principal component scores. Red circles indicate 
feature points. No noise has been detected. 

 

In this example, no noise is detected and all of these 2D points are recognized as feature 

points. The initial clustering of these feature points is shown in Figure 4.25 below, and the 

final clustering by our method is shown in Figure 4.26.  

 

 

Figure 4.25: Initial clustering of the feature points after removal of potential noise. Seven 
initial clusters are recognized. 
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The algorithm suggests that the seven initial clusters can be finally merged into three clusters.  

 

Figure 4.26: Final clustering of the scores. Red, blue and green circles represent three 
clusters of feature points respectively. 

 

The clustering result of the Australian fertility curves from 1921 to 2002 is displayed in 

Figure 4.27.  

 

Figure 4.27: Final clustering result of the Australian fertility curves from 1921 to 2002. Red, 
blue and green curves belong to cluster 1, 2 & 3 respectively.  
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It is interesting to find that the clustering of the Australian fertility curves actually implies a 

chronological order: the red curves represent cluster-one Australian fertility curves from 1921 

to 1930; the blue curves represent cluster-two curves from 1931 to 1963; the green curves 

represent the remaining cluster-three curves from 1964 to 2002. The result shows some 

interesting trends of how the Australian fertility was evolving during the past century. 

Cluster-one (red) curves demonstrate a generally decreasing trend of fertility over almost all 

age groups of women from 1921 to 1930. During that period, the peak value of fertility rate is 

relatively low while the fertility rate at higher ages is quite high. From 1931 to 1963, cluster-

two (blue) curves show a rapid increasing trend of fertility over almost all age groups of 

women. Meanwhile, the age groups that give highest birth rate become younger. From 1964 

on to 2002, the overall fertility rate suddenly began to drop drastically with the peak value of 

fertility rate shifting to higher age groups. And these features are clearly reflected from the 

cluster-three curves (green). Overall, our principal curve clustering method is able to 

sensitively detect different patterns of Australian fertility curves and then categorize them 

into proper clusters.  

 

 

4.5 Conclusion 
 

In this chapter, we introduced a new method for clustering functional data by principal curves. 

Our clustering algorithm starts with smoothing the observed discrete data and applying 

functional principal component analysis to the smoothed functional data for dimension 

reduction. The scores of the corresponding functional principal components which account 

for over 95% of the total variation are then collected. If the dimension of the scores exceeds 

two, the multidimensional scaling is applied to project the high dimensional scores onto 2D 

plane and the projected scores are used as input for principal curve clustering in the next 

stage. The algorithm of principal curve clustering consists of three steps: based on the set of 

2D scores obtained, potential noise is first removed. Then, an initial clustering is carried out 

by model-based clustering (mclust). Afterwards, a modified hierarchical principal curve 

clustering (HPCC) algorithm is applied to construct a principal curve going through each 

cluster, in order to look for all possible mergences of the initial clusters. We improved 
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Stanford and Raftery’s algorithm by modifying the probability model and designing an 

iterative method to compare the maximum BIC values of one-feature and two-feature models 

for all possible mergences of clusters. Finally, the optimal number of clusters is automatically 

determined and the clustering result of the scores can be converted to the clustering result of 

the corresponding functional data. In the simulation study, we demonstrated that our principal 

curve clustering method is capable of identifying the features of functional curves whose 

associated 2D scores are either semicircle-shaped or sine-shaped. In the empirical study, we 

found that our principal curve clustering algorithm generated very sensible results in 

clustering both the French total mortality data and the Australian fertility data.  
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Chapter 5                                                                                                                                                                                       
Discussions and future work 
 

5.1 Weight chosen for historical data of mean function in GPR 
model 

 

In chapter 2, we have introduced a new Gaussian process regression (GPR) method and apply 

it to the modelling and forecasting of age-specific human mortality rates for a single 

population. The proposed method incorporates a weighted mean function to accurately 

capture the long-term trend, as well as the spectral mixture covariance function to 

automatically discover potential patterns, of the mortality rates for specific age groups over 

time. After forecasts are made for some selected age groups, the mortality rates at other ages 

for a particular future year can be obtained by interpolating the forecasted mortality rates to 

all age groups. Compared with Lee-Miller model and the functional data model, our method 

have presented a more stable and accurate performance in the context of forecasting the 

French total mortality rates.   

One important issue to be discussed is the weight chosen for the historical data in the mean 

function. When forecasts are made for long horizons, the correlations between the future 

points and the historical points become very low and the forecast by Gaussian process will 

converge to the mean function in long term. The weight for the historical data determines the 

mean function and therefore can also impact the accuracy of forecast. In chapter 2, we used 

the inverse of the time distance as the common weight for all the age groups assigned to 

historical data. It is of course possible to use other weights, and if the weights involve tuning 

parameters, they can be determined by cross validation. An alternative is the geometrically 

decaying weight raised by Hyndman and Shang (2009) (also mentioned in chapter 3), which 

is defined as 𝑤𝑤𝑡𝑡 = 𝜅𝜅(1 − 𝜅𝜅)𝑛𝑛−𝑡𝑡 with 0 <  𝜅𝜅 < 1. We can regard 𝜅𝜅 as a tuning parameter and 

use this weight to calculate the mean function of GPR model. The optimized value of 𝜅𝜅 for a 

particular age group can be determined by cross validation. Compared with a fixed common 

weight for all age groups, this weight with a tuning parameter 𝜅𝜅 allows flexibility among 

different age groups, which may lead to an improved performance of the GPR model in 

forecasting. And this can be the future direction of research on this topic.  
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5.2 Multivariate time series for modelling level-two scores in the 
weighted MFPCA model  

 

In chapter 3, we have proposed a new model for coherent forecasting of mortality rates 

among multiple subpopulations. The model is developed on the basis of multilevel functional 

principal component analysis (MFPCA) framework and is further modified by incorporating 

weights to allow more recent data to affect forecasting result more. The mortality curves of 

different subpopulations are treated as a set of multilevel functional data, and the principal 

components and their corresponding scores are obtained at two levels and forecasts are made 

by extrapolating the scores using time series models. Fitting this model to the sex-specific 

mortality data of nine developed countries, we have demonstrated the effectiveness of the 

proposed model and the forecasting results suggest that the model outperforms the 

independent model and is comparable to the Product-Ratio model, in terms of minimizing 

forecasting errors.  

We have discussed several advantages of the weighted MFPCA model in the conclusion part 

of chapter 3, including a simple and explicit form of the model, flexibility in modelling the 

age pattern of change, no need to pre-processing the data and explicit calculation of the 

percentage of variance explained by each principal component. It is also worth noting that, 

since the level-two scores of different subpopulations all share the same basis functions 

(principal components), these scores between subpopulations may not be independent. 

Currently we model the level-two scores using univariate time series in order to reduce model 

and computation complexity. However, analysing and modelling these level-two scores as 

joint series over time may better reflect their dynamic relationships and improve the accuracy 

of forecasts. There have been developed theories and representations for the class of 

multivariate (vector) time series. It can be more suitable for us to consider applying 

multivariate time series models such as vector autoregressive (VAR) model or vector 

autoregressive moving average (VARMA) model with stationary restriction to forecast the 

level-two scores. And this is left for our future work.  
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5.3 Improving the functional clustering method by reclassifying 
the noise and introducing new probability models 

 

In chapter 4, we have developed an innovative clustering method for functional data, based 

on the principal curves. Our method makes use of nonparametric principal curves to model 

the curvilinear features of the two-dimensional scores extracted from the original functional 

data for clustering purpose. Incorporated in this clustering method is a probability model with 

Bayesian Information Criterion (BIC) for open principal curves which can automatically 

detect the appropriate number of features and the optimal degree of smoothing. We have also 

applied our method to the age-specific French mortality and Australian fertility as functional 

data for clustering analysis and the results have proved the effectiveness of our method.  

It is noted that in our principal curve clustering algorithm, we conduct denoising step at the 

beginning to remove potential noises from the true underlying features. And the algorithm 

will continue without considering these noises any more. However, it should be more 

appropriate to double-check if these noises can possibly belong to any one of the identified 

feature clusters. That is to add one more step, at the end of the clustering algorithm, to 

reclassify these noises and then refine the final clustering results.  

Moreover, our principal curve clustering algorithm actually utilizes open principal curves to 

identify curvilinear features from two-dimensional principal component scores in order to 

cluster functional data. However, after decomposing functional data and using 

multidimensional scaling to obtain two-dimensional scores, the scores may not always 

present curvilinear features on a 2D plane. Sometimes, these scores may scatter on the plane 

and display circular features, which open principal curves are unable to capture. In that sense, 

closed principal curves can be more capable of finding two-dimensional circular features.  

New probability models and algorithms are needed to tackle such issue.  
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Appendix 
 

Figure A.1: Figures showing the forecasting results of the 20 age groups using GPR model 

with and without weighted mean function.  All figures displayed on the left are from GPR 

model with unweighted mean function while those displayed on the right are from GPR 

model with weighted mean function. The training data are displayed in blue X-mark while 

the testing data are displayed in red stars. The blue solid line is the predictive mean, with 95% 

confidence interval indicated by grey shade. The black dashed line represents the mean 

function of the GP models. 
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Table A.1: Record of RMSEs using GPR model with SM kernel and unweighted mean 

function, and GPR model with SM kernel and weighted mean function 

 

Age group 
GPR with SM kernel and 

unweighted mean function 

GPR with SM kernel and 

weighted mean function 

0 0.1558 0.1324 

1 0.2014 0.0927 

2 0.0909 0.0977 

5 0.4385 0.1366 

10 0.4301 0.3648 

12 0.3118 0.2264 

15 0.3385 0.2754 

18 0.5818 0.2942 

20 0.5261 0.3878 

22 0.4872 0.4213 

25 0.2839 0.3558 

28 0.1753 0.3046 

30 0.1610 0.3217 

40 0.1059 0.1003 

50 0.0559 0.0386 

60 0.0794 0.0418 

70 0.1044 0.0497 

80 0.0882 0.0680 

90 0.0789 0.0575 

100 0.1200 0.0808 
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