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Coherent mortality forecasting: the weighted multilevel
functional principal component approach

- Traditional independent mortality forecasting methods (Lee-Miller model,
FDA model) tend to result in divergent forecasts for subpopulations

« Under closely related social, economic and biological backgrounds,
mortality patterns of subpopulations within one large population are
expected to be non-divergent in long run

* Desirable to model their mortality rates simultaneously while taking into
account the heterogeneity among them
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In practice, sometimes a set of functional data comprise a number of
subsets with strong correlations

A two-way functional ANOVA model:
Y i(x) = ulx) +n;(x) + Z;(x) + W; j(x)

Using the Karhunen-Loeve (KL) expansion:

Z:(x) = X3 Bk O (0, Wi j () = Xy v 62 (x)

Model expressed as:

V() = k0 + 100 + ) e + D vip 6P
k l

{¢£1)(x): k=12,..}, {qﬁl(z)(x):l =1,2,..} orthonormal bases, {f;x:k =
1,2, ...} uncorrelated with {y; ; ;: 1 = 1,2, ... }
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Estimate the principal components

Kr(xs, %) = —Zl,{ j(xs) = fixs) — 7 (es) Yy, (o) — (o) — 7;(r) }

RB (xs:xr) Z Z]1<]2{ I,j1 (xs) .u(xs) 77]1 (xs)}{ L,j2 (xr) _ ﬁ(xr) _ ﬁjz (xr)}

1](] 1)

EW(xs:xr) = KT(xs: xr) - RB(xerr)

Decompose Kj(x;, x,) to obtain A", ¢ (x)

Decompose Ky, (x5, x,-) to obtain 1%, ¢ (x)
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Weighted MFPCA for coherent mortality forecasting

* Observed {xiJYt,j(xi)}1 assume a underlying function f; ;(x) with error:
Ve j(xi) = frj(x;) + o j(xi)ee

- Incorporate weight into MFPCA, w, = k(1 — k)™ ¢, a geometrically decaying
weightwith 0 < Kk <1

» The entire weighted MFPCA model:

Ny N
Ve () = G + ) BeadtV ) + ) ye b ) + o sGeide
k=1 =1

* Independent possibly non-stationary ARIMA models to extrapolate each of
{Bt1,-rBen,}; @ univariate ARMA model with stationary restriction to

extrapolate each of {y, 1, .. Vejn, bJj = 1,..m
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Weighted MFPCA for coherent mortality forecasting

o B(Hh),k denote the h-step ahead forecast of f;n)x and 7(t+p) j; denote the h-
step ahead forecast of ytyn) ;i

- The h-step ahead forecast of y, ;(x) is obtained as:
Ny N,
o () — B 5 (1) . 2@
Viern),j(x) = f;(x) + z Be+m) kP " (x) + z Vern), i@~ ()
k=1 =1

- The forecasting variance can be obtained by adding up the variance of each
component:
Nl NZ

var (Y, 09} = 63,00 + ) el @O QP + ) v @ WP + (e /P

k=1 =1
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Coherent forecasting for the male and female mortality in
the UK

- The smoothed log death rates for male and female in the UK from 1950 to
2010, viewed as functional data series

UK: male death rates (1950-2010) UK: female death rates (1950-2010)
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Level-one decomposition:

Overall mean

age
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Level-two decomposition:

Male deviation from overall mean level 2 PC 1 level 2 PC 2 level2PC 3
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The 30-year forecasts of the male and female life expectancies at birth by
weighted MFPCA model and the independent model

Forecasted Life Expectancy in UK
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Comparing accuracy with the Product-Ratio model and the
Independent model

+ Use the UK male and female mortality data from 1950 to 19734t as
observations and forecast the mortality rates for years 1973+t + 1, ...,
1973+t + 30,fort =0,...,9

» For a specific forecast horizon h (h = 1, ..., 30), the out-of-sample root mean
square forecast error (RMSFE) for the jt* subpopulation is defined as:

9 p
1
RMSFE]- (h) = @Z Z{y(1973+t+h),j(xi) - 3’(1973+t+h),j(xi)}2
\ t=0i=1
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MFPCA model vs Product-Ratio model
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Comparing accuracy with the Product-Ratio model and the
Independent model

 Compute the average RMSFE (over forecast horizon and sex) for 9
developed countries, including Australia, USA, UK, France, Japan, Spain,
Canada, Netherlands and Italy

I
ESP 0.2855
0.2512

0.2757
0.1247
0.2672
0.2188
0.3551
0.2766
0.2039
0.2383
0.2572

MFPCA Product-Ratio Independent

0.2806
0.1614
0.2685
0.2362
0.3614
0.3404
0.2451
0.2851
0.2694
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Comparing accuracy with the Product-Ratio model and the
Independent model

« Compute the short-term RMSFE (average RMSFE for 1 to 10-year horizon)

[
0.1543
0.0927
01065
01115
JPN 0.1262
0.1615
| CAN JEEEELE
0.1547
0.1182

0.1592
0.0886
0.1271
0.1116
0.1507
0.1618
0.1305
0.1586
0.1220

MFPCA Product-Ratio Independent

0.1617
0.0927
0.1243
0.1139
0.1522
0.1801
0.1425
0.1697
0.1243
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MFPCA: a group mean, a decomposition of level-one function and level-two
function

P-R model: a group mean, a decomposition of product function and ratio
function

Advantages:
No need to pre-processing the data as done in the Product-Ratio method

No need to assume the subpopulations have equal variances

The percentage of variance explained by each principal component at
both levels can be calculated explicitly and easily
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