

Reconciling Risk Measures

Risk measure defined in terms of

- Time horizon
- Net assets definition
- Statistical measure
- Confidence level
- Reconciling risk measures of interest to
- Management, for expressing risk appetite
- Modellers, for validating model output
- Analysts, for interpreting ERM claims

© 2010 The Actuarial Profession • www.actuaries

n	this present success (ie	tation α,β al 99.5%) and	ways refer to probabilities of not probability of failure	
	Success Criterion	Symbol	Definition of Success	
	Value at Risk	$\alpha_{VaR} {=} \Phi(z_{VaR})$	Assets exceed technical provisions in one year.	
	Rip van Winkle	$\alpha_{RvW}{=}\Phi(z_{RvW})$	Assets, with investment returns, are sufficient to meet liabilities as they fall due.	
	Solvent Runoff	$\alpha_{\rm SRO} {=} \Phi(z_{\rm SRO})$	Assets, with investment returns, exceed	

portance of Key Assumptions							
this present success (ie	his presentation α,β always refer to probabilities of uccess (ie 99.5%) and not probability of failure						
Success Criterion	Required assets depends on expected asset	Required assets depends on valuation discount rate?					
	return?						
Value at Risk	return? No	Yes					
Value at Risk Rip van Winkle	return? No Yes	Yes					

Success Probability: The Rip van Winkle Case

Geometric Brownian assets against fixed liabilities

- Initial liabilities Ce^{-δt}
 - Represents a future cash flow C at time t discounted at δ
- Now replace stress test with explicit projection
 - Assets at time *t* are $A_0 \exp{\{\mu t + \sigma B_t\}}$; $B_t =$ Brownian motion

- Note explicit use of (geometric) expected return $\boldsymbol{\mu}$
- Probability of sufficiency

$$\alpha_{RvW} = \Phi(z_{RvW}) = \Phi\left(\frac{\ln(A_0/c) + \mu t}{\sigma\sqrt{t}}\right)$$

What about Jumps?

- · Brownian motion models assume continuous paths
- Many insurance and market risks produce jumps, fat tails and other aspects of non-normality
- At the extreme of many small jumps, over moderate time horizons the central limit theorem kicks in
- At the other extreme, ruinous catastrophe losses occur as a Poisson process and the geometric probability rule applies:

- 1-year probability α of survival
- Equivalent to α^t for horizon t

Multiple Cash Flows: Effective time horizon is shorter than you think

	Discount at 5% pa		Discount at 6% pa	
	Exact	Normal	Exact	Normal
Annuity liability	1 pa, decreasir	ng at 10% pa	1 pa, decreas	ing at 10% pa
Expenses, taxes, dividends, new business	none		none	
Liability value	6.67		6.25	
Initial assets	7.29		7.29	
Volatility o	5%		5%	
α _{VaR}	96.4% 6%		99.9% 6%	
Geometric mean return				
α _{RvW}	95.3%		95.3%	
Implied horizon t		1.6		3.4
α _{sro}	80.74%	89.39%	90.81%	90.59%
0 2010 The Actuarial Profession • were actuaries orguic				

Conclusions

Stated survival probabilities have to be seen in the context of the underlying assumption strength

- · Expected asset return
- Liability discount rate
- Simple but approximate rules exist for converting between different sets of assumptions
- Effective time horizon and Sharpe ratios are key inputs These can help management to understand directional
- relationships between formulations of risk appetite
- Not a substitute for heavy models (which are also wrong!)