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ABSTRACT 

 
This paper defines the ‘Case Deleted’ Deviance - a new objective function for 
evaluating Generalised Linear Models, and applies this to a number of practical 
examples in the pricing of general insurance.  The paper details practical 
approximations to enable the efficient calculation of the objective, and derives 
modifications to the standard Generalised Linear Modelling algorithm to allow the 
derivation of scaled parameters from this measure to reduce potential over fitting to 
historical data.  These scaled parameters improve the predictiveness of the model 
when applied to previously unseen data points, the most likely being related to future 
business written. The potential for over fitting has increased due to number of factors 
now used, particularly in pricing personal lines business and the advent of price 
comparison sites which has increased the penalties of mis-estimation. New material in 
this paper has been included in a UK patent application No. 1020091.3. 
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1. INTRODUCTION 

1.1 Current Statistical Techniques 

1.1.1 Current modelling techniques use the generalised linear modelling framework 
to estimate parameters for a given model structure based upon calculating the 
minimum deviance (maximum likelihood) estimates for the parameters from a given 
dataset. 
1.1.2 First the structure of the model to be produced (both appropriate link function 
and distribution) is established using an understanding of the data, and then 
considering residual plots and the results of the Tweedie distribution test (Box-Cox 
transformation). 
1.1.3 The significance of parameter estimates can then be judged according to the 
standard errors calculated from the information matrix, and various statistical tests for 
example the Chi Squared and F-Tests can be used to compare two competing models. 
1.1.4 A range of other statistics such as the Akaike Information Criteria ‘AIC’, and 
Bayesian Information Criteria ‘BIC’ can also be considered. 
1.1.5 These statistical approaches were originally utilised in the context of relatively 
few factors and levels and relatively few interactions. The range of factors, number of 
levels within factors and the number of interactions has increased significantly in UK 
personal lines insurance as insurers have sought competitive advantage and more 
recently to prevent anti-selection on price comparison sites (‘Winner’s Curse’). 
 

1.2 Short-comings of Statistical Techniques 

1.2.1 As discussed, over time the size of modelling datasets has increased (datasets 
up to 100m rows are becoming more common), and this has highlighted the 
differences between academic methods designed for a few thousand rows and actual 
insurance specific models deployed to determine prices.   
1.2.2 In particular the Degrees of Freedom is defined by the  
number of rows of data – number of parameters (unaliased).  This becomes effectively 
constant where the dataset is large, and the parameter list rarely exceeding 1000. 
1.2.3 The Deviance for a model decreases as new parameters are added.  Hence the 
ratio of residual deviance to number of degrees of freedom always improves when the 
degrees of freedom is effectively constant.  This causes Chi Squared tests on nested 
models and F-Tests to accept parameters which would be rejected from a business 
perspective as spurious and over-parameterised. 
1.2.4 For example Figure 1 shows a completely random factor which when added to 
the dataset, proves to be a significant factor using traditional methods.   Both the 
parameter values are accepted by the standard errors, and the Chi-Square test proves 
significant.  If a 95% significance test is used, then this would be expected to happen 
once in twenty times.  
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Figure 1: A Random Factor – the 18th attempt 
 
1.2.5 The likelihood of over-fitting clearly increases the more parameters that are 
added to the model, be it factors, levels or interactions. 
 

1.3 Current Business Techniques 

1.3.1 There is wide recognition that modelling is not a pure science and better 
results can be achieved using domain knowledge (by applying some ‘art’). The 
statistical techniques are usually supported by checking the models against business 
understanding of the factors, their usual significance and trends from past time 
periods and other datasets. 
1.3.2 Time consistency testing is used to ensure that a factor shape is both 
consistently present for given time periods, and to establish if there is trend for the 
shape to strengthen, weaken or change shape over time.  This is essential if the chosen 
values of the parameters are to be predictive for a future time period, which is 
normally the business objective. 
1.3.3 To mitigate the problems outlined in 1.2, extensive use is also often made of  
hold-out sample data.  This is where a model is built on a sample of the data, say 80% 
(modelling or training data) and then the performance is judged by comparing results 
scored against the remaining 20% (hold-out sample). 
 

1.4 Price Comparison Website Developments, Efficient Market, Winners Curse 

1.4.1 In recent years the rise of price comparison websites, particularly in the UK 
motor market, has created a near perfect market for consumers.  Which, coupled with 
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the fact that many view motor insurance as a commodity product, has resulted in 
observed new business elasticities ranging in magnitude from 10 to 100.  
1.4.2 The estimates from a pricing model are best estimates in the statistical sense 
and hence are subject to uncertainty.  In these circumstances the Winner’s Curse 
operates as a powerful anti-selection effect which imposes a heavy penalty where the 
uncertainty randomly results in an estimate which is below the true value. 
1.4.3 In this business context insurers have responded by increasing the range of 
factors, levels within factors and number of interactions as they have tried to minimise 
the level of anti-selection. But in doing so there is an increased likelihood of over-
fitting which does present a real business dilemma. When presented with a new factor 
to implement which makes sense from a business viewpoint and is significant, the 
view will, more often than not, be to introduce the factor. In fact it is very likely that 
when one systematically reviews the inclusion of each term in a sophisticated model 
that a business sense argument can be made for each and every one, but it is likely 
when taking together there will be an element of over-fitting. 
1.4.4 In addition to the parameter estimates, the modelling process makes available 
results which reveal the uncertainty attached to these expressed as a 
Variance/Covariance matrix.  Also the Hat matrix which displays the influence that 
each data point has had on its corresponding estimate. 
1.4.5 There are a number of elements which influence how this uncertainty varies 
from model to model, and by risk within the model.  Two elements of this uncertainty 
will be tackled by this paper; the remainder can only be properly treated in another 
paper. 
1.4.6 The first is the tendency for over-parameterised models to replicate noise 
within the data which will not be repeated in future observations.  This noise is one 
source of estimate uncertainty. 
1.4.7 The second is the tendency for models to be used over a heterogeneous 
domain.  Some areas of the domain are well populated and hence estimates are subject 
to less uncertainty.  The fringes of the domain which tend to be sparsely populated 
with observations resulting in greater levels of uncertainty.  Extrapolation to future 
time periods is a special case of this which is necessary for the deployment of most 
predictive models. 
1.4.8 The aim of this paper is to consider if the ‘best estimates’ produced by a 
model can be adjusted to make them more predictive. 
1.4.9 More formally the aim is to temper the model outputs by penalising uncertain 
parameters to the extent that they are only rewarded for improving the likelihood  
( reducing Deviance ) of the estimates as measured against hold-out sample data. 

1.5 Nirvana Method of Scaling Back Parameters 

1.5.1 A true mechanism for scaling back parameters will also help in another way.  
Simply allowing a model to become over-parameterised as it is developed, and 
reporting parameter errors which state they are not significant is not enough.  With 
this method we can go further, and scale back the poor parameters effectively 
neutralising them from the model.  Pruning processes can then operate to remove 
them altogether.  This will allow the user to focus upon finding potential factors in the 
knowledge that unsuccessful attempts will not damage the output. 
1.5.2 A company may choose to build the model on top of a market rates model, so 
that rather than scaling back towards the mean, parameters are scaled back towards 
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market rates instead.  Therefore a company would only differ from market structures 
where it had sufficient data to confirm a significant difference in experience. 
 
 

2. CASE DELETION 

2.1 Elimination of Outliers by Case Deletion 

2.1.1 Using a measure of residuals such as the Cook’s Statistic, Outlier points can 
be excluded from the model based on their undue influence on the parameter 
estimates. 
2.1.2 This technique is supported by leading statistical packages, but for datasets of 
the scale currently in use, deleting outliers is an onerous and unproductive task. 

2.2 Effect of Case Deletion 

2.2.1 In essence each data point acts to pull the model towards itself, and the 
exclusion of that point and refitting the parameters will result in a new set of 
parameter values and hence new “Case Deleted” Estimate for that data point.  By 
definition that estimate will lie further from the observed data point than the estimate 
produced by the full model. 

 
Figure 2: Standard and ‘Case Deleted’ estimates 

2.3 “Case Deleted” Deviance 

2.3.1 The Standard Deviance is a measure of the distance from the observed values 
to the estimate.  For an identity link, Normal distribution error structured model, this 
equates to the sum of squared distances of each observed to estimate.  For more 
general model structures the parameters are found by maximising the likelihood 
function, and the deviance is defined from this.  However it can still be usefully 
thought of as a form if distance measure. 
2.3.2 In the extreme case where the model contains a parameter for every data point, 
the estimates and the observed values will be equal and the deviance will have a 
minimum value.  The model here is replicating both the Pattern in the data and the 
Noise.   
2.3.3 Taking the set of ‘Case Deleted’ Estimates, one for each data point, provides a 
means to calculate a new ‘Case Deleted’ Deviance.  This is in effect the limiting case 
of calculating the estimate for a hold-out sample of one row against a model based on 
‘n-1’ rows, as the new estimate is not influenced by the observed value itself.  The 
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deviance is then calculated in the normal way from the estimates, and summing over 
the dataset. 
 
2.3.4 Because the ‘Case Deleted’ Deviance is calculated from estimates which are 
independent of the observed values it represents the pattern but without the noise 
related to the observed data point in question.  An extreme model will still include 
noise generated by the other data points, but provided the data points are independent 
these should average to zero. 
2.3.5 A number of practical tests have been conducted comparing the Standard and 
‘Case Deleted’ Deviances.  From these it is helpful to define some terms. 
Let 1SD , 2SD be the Standard Deviances from a base model and an adjusted model. 
If the adjusted model is created by adding parameters to the base model, then we 
know that 21 SDSD  .  Similarly take 1CDD , 2CDD to be the ‘Case Deleted’ 

equivalents.  Interestingly it is possible for 2CDD to be larger than 1CDD in 
circumstances where the extra parameters are adding more noise to the model than 
pattern. 
2.3.6 To assist with the investigation of these intuitive concepts of ‘pattern’ and 
“noise”, we will now propose a more formal definition.  212,1 CDDCDDPattern   

and 2,1212,1 PatternSDSDNoise   

This allows us to consider the value of these measures and compare them to existing 
tests. 
 

2.4 Correlation with Standard Errors 

2.4.1 The first example involved a Log-Poisson model with an Accident Damage 
Frequency dataset containing 1m rows, with around 200 parameters covering a range 
of factors. 
2.4.2 For each parameter in the model a new sub-model was created with that single 
parameter deleted.  Then the Noise and Pattern measures were calculated between the 
full model and the sub-model. 
2.4.3 When testing a parameter with a normal distribution error structure, a 95% 
significance test would reject parameters where the standard error exceeds 50% of the 
parameter value itself.  For other error structures the 50% ratio is also used as an 
acceptance threshold. 
Pleasingly the two tests showed a strong correlation.  Defining 

2,12,12,1 *5 NoisePatternValue   (x-axis) shows a positive value when the Standard 

Error % (y-axis) is less than 50% and negative above, as the Figure 3 demonstrates.  
While 5 appears a sensible value to choose in this example, work remains to 
investigate whether this is a stable value, or changes for other model structures and 
datasets. 
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Figure 3: Correlation between the ‘Value’ Measure and Standard Errors 

 
 

3. APPLICATIONS TO MODEL COMPARISON 

 

3.1 Random Factor Example 

3.1.1 Using the same random factor example mentioned in 1.2.4 
3.1.2 Deviance values calculate as 102421 CDD ,

 
102492 CDD

 
146311 SD ,

 
146052 SD  and this gives 7212,1  CDDCDDPattern  and 

332,1212,1  PatternSDSDNoise which would reject the random factor as 

detrimental 172*5 2,12,12,1  NoisePatternValue  

3.1.3 Hence the Case Deleted Deviance rejects the random factor where traditional 
tests would accept it. 

3.2 Optimal Knot Position Application for Factor Splines 

3.2.1 This example is a case study using the same dataset as 2.4.1, and using the 
‘Value’ measure from 2.4.3 above.   
3.2.2 For a number of factors Policyholder Age, Vehicle Group, Rating Area, NCD, 
Convictions,  Number of Years Licence Held, a number of different spline functions 
were compared.  In all cases a standard cubic, with x, x^2 and x^3 terms, is fitted to 
the data.  Then in addition, one or many corrections to the standard cubic were added 
corresponding to the different knot positions. 
3.2.3 The first line shows how the ‘Value’ measure varies as the knot position for 
the spline is varied.  The second line shows the effect when the first knot position is 
fixed and the position of a second knot is changed and so forth.  The charts below 
show the knot position on the x-axis, and the ‘Value’ measure on the y-axis. 
The best position for the knot was selected and then the process repeated adding 
another knot.  Continuing until an extra knot reduces ‘Value’.   
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3.2.4 This is not an efficient process since the smooth results obtained indicate the 
maximum ‘Value’ position could be obtained with fewer steps.  However the result 
graphs are more complete if every position is calculated for the result charts below. 
3.2.5 Once an extra knot has been added, this method did not recheck that the 
existing ones should remain in their current positions.  An efficient implementation 
would first derive the number of knots required, then find their approximate positions, 
and finally jiggle them to find the global optimum. 
3.2.6 Although the process of calculating the additional ‘Noise’ was performed at 
each step, this turned out to be quite stable, hence the knot position could be estimated 
from the unadjusted deviance alone.  The ‘Noise’ adjustment only being needed to 
define the absolute ‘Value’ of adding an extra knot. 
3.2.7 The method suggests two knots at ages 17 and 49, but rejects a third one at 53. 
 

 
Figure 4: The ‘Value’ Measure as the Number and Position of Knots are varied by Policyholder Age 
 
3.2.8 Standard Error values would also accept these two knots and reject the third, 
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3.2.9 Vehicle Group 
3.2.9.1This factor suggests two knots at 5 and 19. 

 
 
Figure 5: The ‘Value’ Measure as the Number and Position of Knots are varied by Vehicle Group 
 
3.2.9.2 The Standard Error test is confusing here.  Testing each of the knot definitions 
built up by the procedure,  ultimately it would accept knot positions 5 and 2, but only 
from a five knot spline. 
 
 
Spline Description Accepted knots Rejected Knots 
(5, 19 ) 5 19 
( 5, 19, 2 )  5, 19, 2 
( 5, 19, 2, 18 )  5, 19, 2, 18 
( 5, 19, 2, 18, 6 ) 5, 2 19, 18, 6 
 
 
3.2.9.3 The F-Test considers the splines (5) similar to (5, 19) , (5, 19, 2)  
and (5, 19, 2, 14),  
but claims the spline (5, 19, 2, 14, 6) is different from (5, 19, 2, 14)  
yet similar to (5, 19, 2). 
3.2.9.4 Hence the ‘Value’ measure appears useful as a global absolute statistic.   
The standard error only describes the certainty of an individual parameter, and 
becomes difficult when the SE values of several parameters vary from one model to 
the next. The F-Test only describes if two models are significantly different, not if one 
is better than the other.  Whilst assuming the simplest model from two similar models, 
and the complex model from two different models is standard practice, this does not 
ensure that the ultimate model is the most predictive.  
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3.2.10 Rating Area 
3.2.10.1This factor gives two knots at 1 and 29.  In agreement with SE and F-Tests. 

 
Figure 6: The ‘Value’ Measure as the Number and Position of Knots are varied by Rating Area 
 
3.2.11 NCD 
3.2.11.1 This factor gives one knot at 4.  In agreement with SE and F-Tests. 

 
 
Figure 7: The ‘Value’ Measure as the Number and Position of Knots are varied by NCD 
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3.2.12 Conclusion 
3.2.12.1 The “Value” measure has therefore proved consistent with existing test 
results where small changes are being made from one model to the next, lending to its 
credibility for use as a single global measure by which to compare the results of any 
two models.  

 

4. CALCULATION OF ‘CASE DELETED’ ESTIMATES 

 

4.1 Formula for Case Deleted Parameters 

4.1.1 McCullagh & Nelder (1989) suggest two methods for calculating ‘Case 
Deleted’ parameters.   
4.1.2 McCullagh & Nelder (1989:396) discusses the idea of Case Deletion in the 
standard sense, as a means to identify whether to exclude individual outlier points 
from an analysis.  They talk about the impact on the model fit of removing the point.  
Also that this is slow if the model needs to be refitted, and suggest that a first step 
approximation is used.  For our purposes even if a single iteration was accurate 
enough a set of ‘Case Deleted’ Parameters is still required for every data point which 
as noted in Berry would be impractically slow. 
 
4.1.3 On p406 they quote a result from Atkinson for the linear case 
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4.1.4 For the linear case this can be used to generate the estimate directly 
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4.2 Formula for Generalised Linear “Case Deleted” Estimates 

4.2.1 This same formula was also tested in the generalised linear case of a Log-
Poisson model and found to be 99.8% accurate, albeit with a slight bias.  Figure 8 
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Figure 8: ‘Case Deleted’ Estimate approximation for Log-Poisson 

4.2.2 Likewise the second formula  
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and rejected. 
4.2.3 The formula from 4.1.4 has also been checked on a Logit-Binomial model, 
giving the results illustrated in Figure 9. 

 
Figure 9: ‘Case Deleted’ Estimate approximation for Logit-Binomial 
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4.2.4 Armed with this new method we now have the ability to generate  i directly 

from a single model fit. 
 

4.3 Bayesian Understanding of the ‘Case Deleted’ Estimates 

 
4.3.1 The Hat matrix provides the influence of each data point on the parameters.  
The total of each row adding to one, and hence can be thought of as a credibility in a 
Bayesian context. 
4.3.2 For a linear model the estimate will be formed as follows: 
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4.3.3 For the Generalised Linear Model a first order approximation would be 
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For Log-Poisson and Logit-Binomial models it can be  shown that     1 ii Vg  , 

giving 4.1.4  
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4.3.4 We undertook a numerical checking of a Log-Gamma model as for this 
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5. NOISE REDUCED PARAMETERS 

 

5.1 Desire for an Amended Set of Parameters 

5.1.1 The realisation that the ‘Case Deleted’ Estimate  i is a useful noise 

independent measure, and easily calculated, led to a couple of initial attempts to use it 
directly to influence the model output estimates. 
 

5.2 First and Second Attempts, Mean Adjustors 

5.2.1 The first thought was that the noise in the model output could be reduced by 
artificially offsetting each data point to remove an equivalent amount, 

  iiii yy  * .  These can then be refitted to obtain a new set of estimates, *
i . 

5.2.2 The second attempt applied a second tier model to the ‘Case Deleted’ 
Estimates from the first  iiy * to try to produce some new estimates *

i with less 

noise. 
5.2.3 Neither of these produces results which are significantly different from the 
original estimates.  This can be understood by reflecting on the way that GLM models 
select their parameters by placing them at the ‘mean’ position of the sub-domain for 
each parameter.  Hence the data has a symmetry about this mean, and the noise 

 ii    reflects this too.  So both methods above represent symmetrical adjustments 

to the data which have little effect on the new estimates. 
5.2.4 Consider the example illustrated in figure 10. 
Here we have a well populated domain with data points on the left defining a value of 

i shown as the lower green dashed line.  Then a new parameter based solely upon 

two data points 21, yy is considered, this will move the ordinary estimates to the mid-

point of the two points shown as *

i
 the red dashed line.  With this parameter included 

the Case Deleted model for 1y  will produce 
  2
*

1
y  and similarly the Case Deleted 

model for 2y  will produce 
  1
*

2
y .  

Figure 10: ‘Case Deleted’ Deviance – Increasing with Model Complexity 
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5.2.5 The Deviances calculated for this parameter will show 
   ** ,,

iiii ySDySD    but here the “Case Deleted” Deviance will be substantially 

worse     iiii ySDyCDD  ,, **  .  The symmetry of the adjustments can be seen 

easily here, and hence despite the failure of the extra parameter to add value, we can 
see why its value remains unchanged. 
 

5.3 The need for a variance penalty function to drive the adjustor 

5.3.1 Looking again at the formulation of the ‘Case Deleted’ Estimates  i , notice 

that they involve terms representing the mean i and through the Hat diagonal ih the 

variance.  Instead therefore we need to develop a penalty function to reward the 
model for good mean values and penalise by increasing variance. 
5.3.2 However we cannot simply replace i with  i in the likelihood and refit, since 

the extra deviance introduced already possesses the symmetry above, and hence there 
is little impact on the parameters values by the method. 
5.3.3 Now let’s focus instead on a more direct penalty function.  Take the results of 
the free fit i with corresponding  i .  Now consider that the variance introduced by a 

parameter, as expressed by the Variance/Covariance matrix, will be scaled if the 
parameter itself is artificially scaled.  Specifically the impact on the covariances will 
allow the model to rebalance in the presence of correlated parameters. 
5.3.4 The Variance/Covariance matrix itself will adjust simply according to the 
normal result for scaled variances.     ii YVarYVar 2  .  In this case the elements of 

the Variance/Covariance matrix need to be replaced with 

   
   









kjCovCov

kjVarVar
C

kjkjkkjj

jjjj
jk ,,,

,2
*




where 
j

j
j 




*

  

5.3.5 From this a scaled version of the Hat diagonal can be calculated. 

 
jk kj

ikikjkjij

jk
iikjkiji

WXCX
WXCXh


 **

** which produces  

new Linear Predictors     iii
i

i
ii yg

h

h
 











*

*
**

1
 and  

“Case Deleted” Estimates     *1*
ii g    
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5.4 Idea of a Model Depreciation Index 

5.4.1 To draw an analogy, the value of a model is like that of a used car.  The instant 
it rolls off the forecourt it loses a chunk of its predictive power simply by virtue of the 
fact that it is now being used on new data rather than measured in a circular fashion 
against the data used to define it. 
5.4.2 As time passes, the value decreases further, as was illustrated by the Model 
Validation working party last year.  Figure 11 is an extract from page 10 of their 
report. 

 
Figure 11.  Source: Model Validation Working Party 
 
5.4.3 The Noise Reduction technique provides an indication of that initial 
depreciation, by reference to the scale factors which have been derived. 
5.4.4 Without applying the scale factors, deploying the full model, would result in a 
worse model than the scaled one. 
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6. CALCULATION OF NOISE REDUCED MODEL 

 

6.1 Specification of penalty function and two tier modelling process 

6.1.1 First obtain the results of the normal Generalised Linear Model fit, as outlined 
in A.1.10.  Next calculate the ‘Case Deleted’ Linear Predictors 

    iii
i

i
ii yg

h

h
 











1

, and Estimates      ii g  1
.
 

Now using the superscript * to denote new parameters and estimates *
j , *

i , *
i  

which we will estimate from the new penalty function.   
6.1.2 The Hat diagonal ih is a measure of the influence attaching to the data point 

iy with  ih1 the influence of the remaining points.  This includes the effect of the 

Variance of parameter j ,  jVar  and the Covariance of this with the other 

parameters  kjCov  , .  Now suppose that j is scaled back to a value *
j , this will 

reduce the variance to    j
j

j
j VarVar 





2*

*











  and the Covariances to 

   kj
k

k

j

j
kjjk CovCovC 







 ,,
**

***











 .  These are not the same as the variance 

results that would occur from a model which had generated these parameter values 
directly.  Using these values we can scale back the ‘Case Deleted’ Estimates that 

would apply to the new parameters.      iii
i

i
ii yg

h

h
 











*

*
**

1
 where 


jk kj

ikikjkjij
i

WXCX
h


 **

* .  The superscript * quantities are then derived using a 

similar method to original parameters, described in Appendix A, with non-linear 
adjustments to allow for the more complex definition of  i . 
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7. WORKED EXAMPLE 

 

7.1 Log Poisson Frequency Model 

7.1.1 This example is taken from a Motor Third Party Bodily Injury example 
dataset.  This model has a large sample size of 500,000 with around 30,000 responses. 
7.1.2 A full complexity model was built upon the data, using 31 factors with 54 
parameters, of which 8 were interactions. 
7.1.3 Figure 12 shows the relationship between the Standard Error ( x-axis ) 
reported by the GLM and the Scale Factor ( y-axis ) recommended by the Noise 
Reduction technique. 
7.1.4 A few parameters were retained beyond the normal acceptance threshold, to 
show the fall-off between higher errors and the scale factor. 

Figure 12: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Log-Poisson 
Frequency Model 
 
7.1.5 Figure 13 shows the ratio of the two models ( x-axis ), and the average 
observed response and model prediction values ( y-axis ), plus the exposure as bars  
( 2nd y-axis ).  Models here have been fitted on the training dataset, and then rescored 
against the hold-out dataset, the chart then measures their value against observed data 
from the hold-out dataset. 
7.1.6 The models show varying predictions with a ratio substantially between  
+/- 5%.  The noise reduced model produces predictions which are scaled towards the 
mean, which temper the predictions made by the GLM at the extremes of the 
distribution. 
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Figure 13: Out of Sample Model Comparison Chart for a Log-Poisson Frequency Model 
 
7.1.7 Using a simple business model with a price comparison website level of 
elasticity fixed at 10 shows a profit margin improvement in this example of 0.57% at 
constant volumes. 

7.2 Log Gamma Severity Model 

7.2.1 This example is taken from a Motor Accidental Damage Severity example 
dataset.  To contrast with the previous frequency model, a sample size of 12,000 was 
used with an average response of 1,450. 
7.2.2 A full complexity model was built upon the data, using 18 factors with 59 
parameters, of which 17 were interactions.  
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Figure 14: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Log-Gamma 
Severity 

 
Figure 15: Out of Sample Model Comparison Chart for a Log-Gamma Severity Model 
 
7.2.3 Using a simple business model with a price comparison website level of 
elasticity fixed at 10 shows a profit margin improvement in this example of 0.69% at 
constant volumes. 

7.3 Logit Binomial Proportion of Collisions with Bodily Injury Model 

7.3.1 This example is a propensity model built on a Motor dataset using collision as 
the exposure measure, and proportion of Bodily Injuries on the claim as the response.  
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Such an approach is sometimes used to increase the patterns detected in sparse Bodily 
Injury data. The sample size was 22,000. 
7.3.2 The model is using 19 factors with 108 parameters with no interactions. 
  

 
Figure 16: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Logit-Binomial 
Propensity Model 

 
Figure 17: Out of Sample Model Comparison Chart for a Logit-Binomial Propensity Model 
 
7.3.3 Using a simple business model with a price comparison website level of 
elasticity fixed at 10 shows a large profit margin improvement in this example of 
3.4% at constant volumes. 
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7.4 Poor Model 

7.4.1 In this example a particularly poor set of parameters were retained to find out 
how effectively the technique was at removing ones that are not significant.  The chart 
below shows that scale factors quite close to zero are achieved.  The resultant model 
however was still very poor, as the technique does nothing to add significant factors 
which are missing from the original model.    

 
Figure 18: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Poor Model 
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8. CONCLUSIONS 

 

8.1 Summary of results  

8.1.1 Larger datasets and increased competition spurred by price comparison 
websites have created a natural environment for the development of models at the 
limit of complexity.  In this situation over-fitting is an increasing problem that cannot 
simply be avoided by the rejection of borderline parameters, as this would risk the 
penalty of anti-selection. 
8.1.2 The Case Deleted Deviance measure discussed in this paper provides an 
objective method to compare two models that is consistent with the standard error 
when the two models only differ by a single parameter.  It can also be used to 
compare more complex differences between nested models, and also where the two 
models are not nested.  This is an improvement on the current deviance measure.  
8.1.3 The Noise Reduction technique then makes use of this measure to produce 
scaled back parameters for a model.  This is a novel alternative to the standard 
approach of accepting or rejecting a parameter completely.  It also represents a 
mechanism to select parameters which will be most predictive on a hold-out dataset, 
rather than simply optimising the parameter values based on the training dataset. 
8.1.4 Given the real business risks of anti-selection from using a model which is too 
simple, another alternative using this technique would be to deliberately over-fit the 
model including some borderline parameters, and then use this method to scale them 
back.  Further research could be conducted to investigate the relative benefits of this 
new process compared to the standard method. 
8.1.5 This technique clearly will not directly solve the issue of identifying patterns 
not in the data due to insufficient exposure in the ‘corners’ of risk segments. Currently 
this issue is dealt with by underwriting overlays either through additional loadings or 
acceptance/referral criteria and this process will still need to be applied after the 
"pure" modelling process. 
8.1.6 Beyond the demonstration of this technique to GLM modelling, this concept 
can be applied to any model forms where parameters are derived from a dataset.  
Classification techniques for postcode smoothing and vehicle grouping may benefit 
from this, as could other methods such as decision trees and neural networks. 
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APPENDIX A 
 

GENERALISED LINEAR MODELS 
 

A.1 Derivation and Notation 
A.1.1 The following derivation is drawn from Anderson et al. (2007)and Dobson 
(2001)and although well known is included so that the non-linear variant can be 
derived using the same notation in the main body of the text. 
A.1.2 Let iY be a series of random variables belonging to the exponential family of 

distributions, expressed in canonical form with natural parameter i  by the pdf. 

      








 


 ,exp, iiii

i
ii ybayyf  where i is a constant related to iY  

representing the weight which is commonly the exposure for insurance applications, 
and   is the scale parameter 

A.1.3 Given   1,  iii dyyf  we have  
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A.1.4 The first of these gives    ii aYE   and substituting this into the second 

gives        ii
ii

i
i YVarYEYEa





  2  

we define    iii aYE    and         ii
iii YVaraaaV


  1  

A.1.5 Let the log likelihood function be denoted by 

       
i

iiii
i

ii ybayyl 

 ,,  

A.1.6 Further define the linear predictor and the link function for the model 
 ii g   , where the linear predictor is a linear combination of the parameters 


j

jiji X  . 

A.1.7 First we define the score statistic 
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 and obtain the result by deriving 

each of the following terms in order:  
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  for reasons that will become clearer below. 

Note also that            0
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A.1.8 Next, Dobson (2001) derives an approximation by first defining  the 
information matrix  kjjk UUCovJ , , and using   0jUE  
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A.1.9 To solve for the parameters in the general case we use an extension of the 

Newton Raphson formula    
k
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At the stationary point we are seeking   
i

iiiji yX   will be close to zero. 

For the structures noted in 4.3.3 this will be exactly zero, and     1 ii Vg  , giving 
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Hence the first term is normally ignored. 
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A.1.10 Then we obtain the usual formula for iteration m , where 
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A.1.11 From these results the Variance-Covariance matrix is available 
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the Hat diagonal iii Hh   
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