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Correlations Matrix Inversion Matrix Roots

Correlation Matrix

An n × n symmetric matrix A is a correlation matrix if
It has ones on the diagonal.
All its eigenvalues are nonnegative.

Is this a correlation matrix?1 1 0
1 1 1
0 1 1

 .

Spectrum: −0.4142, 1.0000, 2.4142.
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Question from London Fund Management Company (2000)
“Given a real symmetric matrix A which is almost a
correlation matrix . . .

What is the best approximating (in Frobenius norm?)
correlation matrix?
Is it unique?
Can we compute it?

Typically we are working with 1400× 1400 at the moment,
but this will probably grow to 6500× 6500.”



Correlations Matrix Inversion Matrix Roots

How to Proceed

× Make ad hoc modifications to matrix: e.g., shift
negative e’vals up to zero then diagonally scale.

√
Plug the gaps in the missing data, then compute an
exact correlation matrix.

√
Compute the nearest correlation matrix in the
weighted Frobenius norm (‖A‖2 =

∑
i,j wiwja2

ij ).
Given approx correlation matrix A find correlation
matrix C to minimize ‖A− C‖.

Constraint set is a closed, convex set, so unique
minimizer.
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Correlations Matrix Inversion Matrix Roots

Development

Derived theory and algorithm:
N. J. Higham, Computing the Nearest Correlation
Matrix—A Problem from Finance, IMA J. Numer.
Anal. 22, 329–343, 2002.

Extensions in:
Craig Lucas, Computing Nearest Covariance and
Correlation Matrices, M.Sc. Thesis, University of
Manchester, 2001.
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Correlations Matrix Inversion Matrix Roots

Alternating Projections Algorithm
von Neumann (1933): for subspaces.
Dykstra (1983): corrections for closed convex sets.

 

S
1
 

S
2
 

Easy to implement.
Guaranteed convergence, at a linear rate.
Can add further constraints/projections.
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Correlations Matrix Inversion Matrix Roots

Unexpected Applications

Some recent papers:

Applying stochastic small-scale damage functions
to German winter storms (2012)

Estimating variance components and predicting
breeding values for eventing disciplines and
grades in sport horses (2012)

Characterisation of tool marks on cartridge cases
by combining multiple images (2012)

Experiments in reconstructing twentieth-century
sea levels (2011)
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Newton Method

Qi & Sun (2006): Newton method based on theory of
strongly semismooth matrix functions.

Applies Newton to dual (unconstrained) of
min 1

2‖A− X‖2
F problem.

Globally and quadratically convergent.

H & Borsdorf (2010) improve efficiency and reliability:

use minres for Newton equation,
Jacobi preconditioner,
reliability improved by line search tweaks,
extra scaling step to ensure unit diagonal.
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Alternating Projections vs Newton

Matrix tol Code Time (s) Iters
1. Random (100) 1e-10 g02aa 0.023 4

nearcorr 0.052 15
2. Random (500) 1e-10 g02aa 0.48 4

nearcorr 3.01 26
3. Real-life (1399) 1e-4 g02aa 6.8 5

nearcorr 100.6 68
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Performance of NAG Codes
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Factor Model (1)

ξ = X︸︷︷︸
n×k

η︸︷︷︸
k×1

+ F︸︷︷︸
n×n

ε︸︷︷︸
n×1

, ηi , εi ∈ N(0,1),

where var(ξi) ≡ 1, F = diag(fii). Implies

k∑
j=1

x2
ij ≤ 1, i = 1 : n.

“Multifactor normal copula model”.
Collateralized debt obligations (CDOs).
Multivariate time series.
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Factor Model (2)

Yields correlation matrix of form

C(X ) = D + XX T = D +
k∑

j=1

xjxT
j ,

D = diag(I − XX T ), X = [x1, . . . , xk ].

C(X ) has k factor correlation matrix structure.

C(X ) =


1 yT

1 y2 . . . yT
1 yn

yT
1 y2 1 . . .

...
... . . . yT

n−1yn

yT
1 yn . . . yT

n−1yn 1

 , yi ∈ Rk .

University of Manchester Nick Higham Actuarial Matrix Computations 17 / 37
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Factor Structure

Nearest correlation matrix with factor structure.

Principal factors method (Andersen et al., 2003) has no
convergence theory and can converge to an incorrect
answer.

Algorithm based on spectral projected gradient
method (Borsdorf, H & Raydan, 2010).

Respects the constraints, exploits their convexity,
and converges to a feasible stationary point.
NAG routine g02aef (Mark 23, 2012).
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Variations

Specific rank or bound on correlations.

Block structure.

Bounds on individual correlations.

Other requirements?
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Correlations Matrix Inversion Matrix Roots

Avoiding Inversion

Fundamental Tenet of Numerical Analysis
Don’t invert matrices.

Ax = b : use Gaussian elimination (with pivoting), not
x = A−1b.
xT A−1y = xT (A−1y).

(A−1)ii = eT
i A−1ei .

trace(A−1) ≈ m−1∑m
k=1 vT

k A−1vk ,
vk ∼ uniform{−1,1}. (Bekas et al., 2007)
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Correlations Matrix Inversion Matrix Roots

How to Invert (1)

Use a condition estimator to warn when A is nearly
singular.

>> A = hilb(16);
>> X = inv(A);
Warning: Matrix is close to singular or
badly scaled. Results may be inaccurate.
RCOND = 9.721674e-19.
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Correlations Matrix Inversion Matrix Roots

How to Invert (2)

To compute variance–covariance matrix (X T X )−1 of
least squares estimator, use QR factorization X = QR
((X T X )−1 = R−1R−T ) and do not explicitly form X T X .

Quality of computed inverse Ŷ ≈ A−1 measured by

‖ŶA− I‖
‖Ŷ‖‖A‖

or
‖AŶ − I‖
‖Ŷ‖‖A‖

but not both.

University of Manchester Nick Higham Actuarial Matrix Computations 23 / 37



Correlations Matrix Inversion Matrix Roots

Computing the Sample Variance

Sample variance of x1, . . . , xn:

s2
n =

1
n − 1

n∑
i=1

(xi − x̄)2, where x̄ =
1
n

n∑
i=1

xi . (1)

Can compute using one-pass formula:

s2
n =

1
n − 1

( n∑
i=1

x2
i −

1
n

( n∑
i=1

xi

)2)
. (2)

For x = (10000,10001,10002) using 8-digit arithmetic,
(1) gives: 1.0, (2) gives 0.0.

(2) can even give negative results in floating point
arithmetic!
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Casio fx-992VB
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Spreadsheets in the Cloud
Standard deviation of x = [n, n + 1, n + 2]T .

n Exact Google Sheet
107 1 1
108 1 0

McCullough & Yalta (2013)
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Correlations Matrix Inversion Matrix Roots

Cayley and Sylvester

Term “matrix” coined in 1850
by James Joseph Sylvester,
FRS (1814–1897).

Matrix algebra developed by
Arthur Cayley, FRS (1821–
1895).
Memoir on the Theory of Ma-
trices (1858).
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Cayley and Sylvester on Matrix Functions

Cayley considered matrix square
roots in his 1858 memoir.

Tony Crilly, Arthur Cayley: Mathemati-
cian Laureate of the Victorian Age,
2006.

Sylvester (1883) gave first defini-
tion of f (A) for general f .

Karen Hunger Parshall, James Joseph
Sylvester. Jewish Mathematician in a
Victorian World, 2006.

.
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Matrix Roots in Markov Models

Let vectors v2011, v2010 represent risks, credit ratings or
stock prices in 2011 and 2010.
Assume a Markov model v2011 = Pv2010, where P is a
transition probability matrix.
P1/2 enables predictions to be made at 6-monthly
intervals.

P1/2 is matrix X such that X 2 = P. What are P2/3, P0.9?

Ps = exp(s log P) .

Problem: log P, P1/k may have wrong sign patterns⇒
“regularize”.
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Correlations Matrix Inversion Matrix Roots

Chronic Disease Example

Estimated 6-month transition matrix.
Four AIDS-free states and 1 AIDS state.
2077 observations (Charitos et al., 2008).

P =


0.8149 0.0738 0.0586 0.0407 0.0120
0.5622 0.1752 0.1314 0.1169 0.0143
0.3606 0.1860 0.1521 0.2198 0.0815
0.1676 0.0636 0.1444 0.4652 0.1592

0 0 0 0 1

 .
Want to estimate the 1-month transition matrix.

Λ(P) = {1,0.9644,0.4980,0.1493,−0.0043}.

H & Lin (2011).
Lin (2011, for survey of regularization methods.
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MATLAB: Arbitrary Powers

>> A = [1 1e-8; 0 1]
A =
1.0000e+000 1.0000e-008

0 1.0000e+000

>> A^0.1
ans =

1 0
0 1

>> expm(0.1*logm(A))
ans =

1.0000e+000 1.0000e-009
0 1.0000e+000
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MATLAB Arbitrary Power

New Schur algorithm (H & Lin, 2011, 2013) reliably
computes Ap for any real p.
New backward-error based inverse scaling and
squaring alg for matrix logarithm (Al-Mohy, H &
Relton, 2012)—faster and more accurate.
Alternative Newton-based algorithms available for A1/q

with q an integer, e.g., for

Xk+1 =
1
q
[
(q + 1)Xk − X q+1

k A
]
, X0 = A,

Xk → A−1/q.
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Knowledge Transfer Partnership

University of Manchester and NAG (2010–2013)
funded by EPSRC, NAG and TSB.

Developing suite of NAG Library codes for matrix
functions.

Extensive set of new codes included in Mark 23 (2012),
Mark 24 (2013).

Improvements to existing state of the art: faster and
more accurate.

My work also supported by ¤2M ERC Advanced Grant.
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Final Remarks

Fast moving developments in numerical linear algebra
algorithms.

Numerical reliability is essential.

Partnership with NAG enables rapid inclusion of our
algorithms in the NAG Library.

Keen to hear about your matrix problems.
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