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AND WILFRED PERKS, F.I.A. 
Joint Actuary, Pearl Assurance Company, Ltd. 

1. In J.S.S. Vol. VII, Pt. 1, pp. 23-8 (1947), one of the present writers 
(R.E.B.) discusses the standard deviation of the distribution of sickness. In 
Skandinavisk Aktuarietidskrift, 1947, Häft 1-2, pp. 18-43, H. L. Seal discusses 
the effect of duplicates on the distribution of deaths. The purpose of this note 
is to show the theoretical relation between the two problems, to bring out the 
need in theoretical problems of this kind to specify clearly the sampling process 
contemplated in the mathematical solution, to remove certain weaknesses in 
Seal’s analysis and to provide a critical analysis of the use of the Poisson law 
in the theory of actuarial statistics. 

2. In the problems of sickness and of duplicates it is assumed that we are 
concerned with sampling from a ‘large’ population distributed in the following 
forms: 

Sickness 
p = proportion of lives not claiming during the ‘risk period’, 
q = proportion claiming, proportion of those claiming who are sick for 

exactly duration t in the ‘risk period’. It is assumed that a person can make 
only one claim in the ‘risk period‘, i.e. that all attacks are linked up under 
an off-period rule. Sickness of some specified kind (e.g. ‘Second three 
months’) is contemplated and duration t is the period of sickness of this 
kind in the period of exposure. Thus, if in the period of exposure a man is 
sick from the 15th to the 19th weeks in the M.U. sense, t is 4 if the unit of 
time is taken as a week. 

If the ‘risk period’ is taken as the unit of time, the proportion of the ‘risk 
period’ during which there is sickness is on the average. 

Duplicates 
p = proportion of lives surviving the ‘risk period’, q = proportion dying, 
proportion of those living and of those dying (or of both together) who 

hold t policies, i.e. mortality is assumed to be independent of the number 
of policies. 

The proportion of policies becoming claims is 

Thus for both problems we have a probability distribution in the form 

where and the first moment of this distribution, viz. 
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represents the sickness experienced or policies becoming claims as the case may 
be. The second moment is and the variance is, therefore, 

3. Thus, for samples of N lives selected independently at random the 
expected sickness and the expected claims (i.e. policies becoming claims) are 
both represented by and the variances by 

because of the additive property of variances (and of higher cumulants) in the 
case of independent sampling. The variance can be put in the form 

(1) 

4. In the sickness problem the term represents the expected dura- 

tion of sickness claims, and the exact expression for the variance can be com- 
pared with the approximate expression given by R. E. Beard, .S.S. Vol. VII, 
p. 26, in which the second term inside the brackets, viz. is omitted. 

This term is clearly small in relation to the first term, and its omission would 
not greatly affect the variance. The chief merit of the approximate form is that, 
by the substitution of the actual sickness claims for the expected claims and the 
use of the ratio of the second moment to the first moment of the actual claims 
instead of an approximate variance can be calculated from the 

actual claims alone, without reference to the exposed to risk. The development 
of Beard’s analysis using the binomial law as indicated at the foot of p. 23 in 
.S.S. Vol. VII would, of course, lead to the expression (1) above. 

5. The basis of the foregoing formula is that the sampling is for a fixed 
number of lives, and that the sampling process is not otherwise restricted. 
This seems to be appropriate for the sickness problem and, if the data are sup- 
plied in the form contemplated, little more need be said. However, published 
sickness data are usually not in this form, and the more complicated problem 
arising when the data are in the form of sickness rates for each week of sickness 
has been treated by L. E. Coward ( .I.A. Vol. LXXV, p. 12). This variation 
of the problem which was touched upon by Beard does not, however, involve 
any difference so far as the sampling process is concerned. 

6. In the case of duplicate policies Seal clearly has doubts about the suitability 
of assuming a sampling process in which the number of lives is kept constant 
from sample to sample so that the number of policies fluctuates, and he has posed 
the problem from the point of view of keeping the number of policies constant, 
thus permitting the number of lives to fluctuate from sample to sample. In the 
former case the sampling process assumed is obvious. 

7. In the case posed by Seal, however, the sampling process assumed is by 
no means so obvious or so realistic. It is of no use to take direct samples of 
E policies. If this were contemplated, the samples would be quite unrepresenta- 
tive of the universe of policies; indeed, it would be an unusual event for such 
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a sample of moderate size to contain any duplicates at all. The essential unit for 
sampling is the life. The sampling process might be assumed to take the form of 
the random selection of lives until the associated policies equal or exceed E;* 
only those samples in which the number of associated policies is exactly E would 
be retained, the rest being discarded. Or we might select a number of lives at 
random and then observe whether they hold exactly E-policies. For our part we 
cannot see that such processes represent realistic positions to take in relation to 
the practical problems of the distribution of claims by death when duplicate 
policies are included in the experience. It is significant that in obtaining his own 
sample Seal selected 2000 lives and recorded the distribution of policies amongst 
them. He rounded off the number of lives and not the number of policies! 
(We have to bear in mind that a life office obtains its business by its representa- 
tives selecting lives). Incidentally, Seal does not tell us whether the sample 
includes all duplicates or whether the rules for elimination of concurrent 
duplicates applicable to the data of the A 1924-29 table were used. Further, the 
duplicate distributions applicable to a particular office may be quite unrepre- 
sentative of that either of the offices as a whole or of the particular mixture of 
offices included in the A 1924-29 experience. 

8. Perhaps the most suitable sampling process to contemplate in relation to 
the problem of duplicates is a process of stratified sampling, i.e. the random 
selection of N lives with only one policy, N lives with exactly two policies 
and so on. In this process , is no longer treated as a source of random variation; 
we ask ourselves how the variance is affected by weighting the deaths by the 
number of policies held. The variance on this basis is given by Seal in an 
appendix to his paper on Graduation Tests, .I.A.Vol. LXXI, p. 40, and
may be written in our notation as where the are now the actual 
proportions of the lives with 1, 2, 3, . . . policies respectively. This variance has 
long been appreciated in the form where S is the sum assured on the life, 
i.e. the ‘weight’. 

9. Incidentally, in deriving this result Seal assumes, in addition to the 
essential condition of independence in the sampling, that the lives are homo- 
geneous. This latter condition is more restrictive than is necessary; all that is 
necessary, in addition to independent sampling, is that the mortality should be 
independent of the number of policies on the life. Even this restriction can be 
removed from (1). 

10. If we write nt as the number of lives who die with t policies on their lives 
and lt as the number who survive with t policies on their lives the following 
cases arise: 

(a) For simple sampling of lives, without stratification, the relation 

must hold and the variance given earlier may be written in the form 

(2) 

where mr is the rth moment about zero. 

* A full discussion of similar practical problems is given in Yates’s paper in J.R.S.S. 
Vol. CIX, p. 12. The remarks by Kendall and by Anscombe and Quenouille should be 
noted, particularly the difficulty arising when the population is J-shaped. 
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(b) For stratified sampling the relations all hold 
separately, and hence also holds. In this case the variance may 

be written in the form 

(3) 
where is the rth moment about the mean. 

*(c) In the case considered by Seal the relation 

holds, and the variance for large E in this case, based on a binomial distribution, 
is 

(see appendix A). 

Noting that and that E = Nm1, this may be written 

(4) 

*(d) A sampling process can be defined in which by considering 
a set of samples of N lives and selecting the group from the first sample, the 

group from the second and so on. The variance in this case is 

(5) 

If each of the groups is treated as a Poisson variable and the sampling is 
independent, the variance (see R. E. Beard, J.S.S. Vol. VII, p. 25) is Nqm2. It
will be seen that, if the number of groups is large and each value of tends to 
zero, the second and third expressions in (5) tend to counterbalance. 

Case (d) represents the variation with no constraints, and the other cases 
reflect the reduction in variance due to the imposition of different constraints. 
Thus, in case (a) the constraint is imposed and the variance is 
reduced by the last term in (5). 

The last term in (3) shows the further reduction in variance occasioned by the 
additional constraints of stratified sampling. This term is quite small for the 
values of q that arise in practice. 

11. It is interesting that the case studied by Seal shows a variance slightly 
less than that of the stratified sampling case, although only one constraint 

is imposed. The last term in (4) becomes less and less 

important as E increases, until, in the limit, Seal’s case becomes identical with 
the ‘stratified’ case. The expression (4) is, of course, appropriate only for large 
E. The reason why Seal’s case approximates to the stratified case with its m 
constraints appears to be that the condition though apparently 

a single constraint, is closely associated with the problem of selection of integers 
from the set 1, 2, . . ., n, repetitions being allowed, such that their sum = E. It 
seems that each integer gives rise, in effect, to an element of constraint, so that 
the result approximates to that obtained by stratified sampling. For small values 
of E only very restricted combinations may be possible to obtain a sample 

* The derivation of the variances in cases (c) and (d) is given in the Appendix by 
R. E. Beard. 
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complying with Seal’s condition because of the restriction to integers. In the 
stratified case this point does not arise because it is implicitly assumed that the 
sample proportions are, in fact, those of the universe. 

12. It is worth noting that a sampling process could be defined in which both 
of the conditions and apply. If no restriction is 

placed on the relative values of N and E some light is thrown upon the nature of 
the relationship of Seal’s case to the others. Thus if N = E all the cases must be 
from the group (i.e. single lives with one policy only) and the variance 
becomes pqE. At the other extreme, N could be made equal to E/m, where m is 
the maximum number of policies per life, so that all cases have to be selected 
from the group. In this case the variance becomes For values 
of N between these limits the variance will lie between the extremes pqE and 
pqEm, but a smooth progression would appear to be unlikely. For the samples 
to be representative some restriction would have to be placed on N, leading to 
what has been called ‘balanced sampling’ (see Yates, loc. cit.), and some such 
relationship as would appear to be necessary. 

13. A general solution of this last case has not yet been found (see Appendix) 
but the variance in the particular case when m = 2 has been found and is given 
below (case (e)) with the corresponding values in the other cases. 

Distribution: with 1 policy, with 2 policies, mean = Eq in all cases. 

Case Variance 

(d) 

(a) 

(b) 

(c) 
(e) when 

It will be noted that, with the condition case (e) for m = 2 is 
identical with the stratified sampling case (b). 

14. In all the above it will be noted that the probability distribution of deaths 
has been assumed to follow the binomial law. In our opinion the binomial or 
multinomial law is the appropriate law for most actuarial statistics. The Poisson 
law is only appropriate as an approximation to the binomial or multi-nomial 
law and we now propose to examine the basis of the Poisson law. 

15. It arises as a limiting form of the binomial law when N tends to infinity 
while q tends to zero and Nq remains finite. Implicit in the mathematical model 
underlying the Poisson law is the possibility of an infinity of events arising in the 
‘risk period’ from the finite number N. To achieve this the sample must 
remain the same after the happening of each event or, if the event concerned 
means the destruction of a unit of the sample, the units destroyed must be 
replaced. 

16. These conditions do not apply to a mortality experience if the data are in 
the usual form of an initial exposed to risk. After each death the population is 
decreased and obviously no more deaths can arise than the number exposed to 
risk. Sickness rates similarly do not provide a suitable application (though the 
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approximation is closer than for mortality rates) because a subsequent attack of 
sickness cannot arise while the member concerned is suffering from a previous 
attack. Fire insurance might be thought to provide a suitable case for the 
application of the Poisson law because the subject-matter of the insurance 
remains, provided that the claim does not totally destroy the property; but even 
in this case the fact that total destruction can arise shows that the theoretical 
conditions for Poisson variation are not fulfilled, though the practical error will 
be negligible. Reference may be made to the problem of counting -particles 
from radioactive material; the practical conditions here are such that the 
Poisson law may reasonably be used though the number of items in the sample 
is finite. 

17. There is a tendency to regard the Poisson law as more appropriate than 
the binomial when dealing with time rates. This idea seems to arise from the fact 
that the arbitrary time interval can be indefinitely reduced so that the rate for 
a finite time interval can be regarded as a composite rate made up of those for 
a large number of small time intervals. In symbols we may express the position 
as follows: l0, is the number starting our finite interval; d0, d1, d2, . . . , etc., are 
the numbers of successes in the successive small intervals comprising the 
complete interval. These symbols are regarded as representatives of the universe 
so that may be regarded as the probabilities 
corresponding to the successive small intervals. Thus, if we take a large sample N 
exposed to all the probabilities, each individual can be regarded as a Poisson 
variable and, by the reproductive property of the Poisson law, their sums will 
also be a Poisson variable provided that the variates summed are independent. 
It is precisely this last assumption that is not correct because, if d0 is exceptionally 
large, all the other values of d are potentially affected. 

18. Thus, taking mortality as an example, assuming a time interval of k small 
intervals and adopting the Poisson law, we can regard the survivors lk in our 
universe as made up of with probabilities 

etc. It is equally appropriate to regard each of these as Poissonian and 
hence, subject to independence, we can regard the sum as Poissonian. 

Writing as q and as p we have the following distributions: 

for the deaths 

for the survivors. and 

The joint probability of m deaths and n survivors is, therefore, 

If we now introduce the condition that m + n = N, remembering that p + q is 
necessarily equal to unity, we confine attention to those cases where 

m = 0, 1, 2, . . . , N and n=N-m. 

The above joint probability becomes 

and the total value of this expression for all values of m from 0 to N is 
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Thus the probability of m deaths becomes 

and we return full circle to the binomial distribution. The other problems can 
be formulated in a similar way and it is, therefore, claimed that unless the linear 
condition corresponding to does not apply the Poisson law can be 
adopted only as an approximation to the true binomial or multinomial law. We 
recognize, of course, that in suitable conditions the Poisson law is often a 
suitable practical assumption. 

19. In view of the foregoing we cannot accept as theoretically appropriate 
Seal’s approach to the problem of duplicates by way of a Poisson distribution. 
We also consider that the formulation of the problem in a form in which the 
number of policies on a life is a random variable serves little purpose, but there 
is no doubt room for difference of opinion on this aspect of the matter. 

20. We also regard as extraordinary the result found by Seal in which the 
Central Limit Theorem does not apply even when the distribution of is 
such that its moments are finite. This analysis has, therefore, been reworked by 
R. E. Beard on the basis (i) of binomial distribution of deaths and (ii) of a more 
critical approach to the asymptotic approximations. The following expressions 
represent the first four cumulants: 

where has been used to conform with Seal’s notation and 
used earlier in this note. 

These results are obviously related to the binomial cumulants and like them 
have the properties that and as thus removing the 
anomaly found by Seal. 

21. In the Appendix the expressions for the cumulants on the basis of the 
Poisson law are also given; it will be found that the numerical differences between 
these and Seal’s values are quite small. 

22. Finally, consideration is given to Seal’s ‘fit’ of the Pareto law to the 
data of his sample of policies on 2000 lives. He has found the parameter in the 
Pareto law for each age by a rough graduation of the ratios of the actual numbers 
of lives with 1 and 2 policies. The remaining lives with 3 or more policies repre- 
sent small numbers in all cases, ranging from nil to 23. It is perhaps not 
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surprising, therefore, that there is an apparently good ‘fit’ for each age, although 
at some ages the long tail of his theoretical distribution, as he admits, is not 
representative of the data. It is, however, worth noting that the deviations 
(A - T) for j = 1 are positive in every case and, since there are twelve of them and 
the vast bulk of the cases are included in these groups, the ‘fit’ is clearly faulty. 

23. It is of interest to cross-total the figures and so obtain a distribution for 
all ages combined. Some such grouping is essential in view of the small numbers 
for lives with 3 or more policies. The results and the application of the x2 test 
in this form are as follows: 

j A T x2 

1 1695 
2 207 
3 46 
4 22 

9 
5 
6 
7 
8 

8 
4 
3 

1649.7 
210.2 

64.8 
28.7 
15.4 

6.8 
4.1 

1.2 
.0 

5.6 
1.7 
2.3 

.1 

.7 

.2 

j A 

9 1 
10 1 
11 2 
12 
13 1 
14 
15 
16 
17 
18 1 

Total 2000 2000.0 14.8 

The degrees of freedom may be taken as 9 — 2 = 7. 

T x2 

3.0 
2.2 
1.7 
1.4 
1.0 

.9 
.9 3.0 

.7 

.3 

.1 

24. In this form it is clear that the theoretical distribution understates the 
number of lives with only one policy, the balance being spread over the rest of 
the table with a considerable relative over-statement of the tail of the distribu- 
tion. The x2 test does not produce such a favourable result as given by Seal. 
It is clear from the form of the cumulants that the final mortality distribution 
would be materially affected by a ‘refitting’ of the data to provide a distribution 
with a less pronounced tail. For this reason and having regard to the various 
points commented upon earlier we consider the numerical examples shown by 
Seal to be open to serious objections. 

–

–
–
–
–
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APPENDIX 

BY R. E. BEARD 

(A) The problem when E is fixed [see para. 10(C)]. In developing the expressions 
for the cumulants in the binomial case certain inconsistences were found in the 
application of the asymptotic formula. A study of the analysis suggested that 
the trouble arose when finding the moments about the mean from those about 
zero, some of the terms neglected in the asymptotic formula being of the same 
order as those of the required moments. Since the method found provides some 
insight into the nature of Darboux’s approximation, the general outline is now 
provided. 

The central problem is to determine the coefficient of uE in the expansion of 
when E is large. The expression can be split into 

partial fractions and, noting that (1 - ) is a factor, it takes the form 

where the A1, Bi,..., Mi are independent of . Now consider the coefficient of 
uE in the first column of terms. It is 

Now it can be shown that (or their moduli) are all less than unity 
(since of Seal’s paper) and hence if E is taken large enough the terms 
in B1, C1, . . . , M1 can be made as small as we please compared with that in A1. 
Hence the coefficient required is the coefficient of uE in 

provided E is large. To find the consider the expression 

whence By suc- 
cessive differentiation with respect to and putting u = 1, equations for the A, 

6-2 
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in terms of A1 and differential coefficients of can be found. Also noting 
that etc., where r, and 

the Ar can be found in terms of ,.... Finally, by combining 

these with the coefficients in the expansion of 

following expressions for the coefficient of uE in 
result : 

k Coeff. of uE 

1 

2 

3 

4 

5 

The required cumulants can then be found along lines similar to those followed 
by Seal and finally emerge as follows: 

Binomial Poisson 

K1 Eq Eq 

It will be noticed that these expressions are closely related to the cumulants of 
the binomial and Poisson distributions respectively and that and also 

as and the peculiarity noted by Seal is due to the wrong forms 
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found for the cumulants. Furthermore, if these expres- 
sions reduce to the binomial and Poisson cumulants respectively. 

Numerically the difference between these expressions and those found by 
Seal are small for the range of q and E involved, but it may be noted that 

etc., 

so that Seal’s values are in excess of the true values. 
(B) On the development using a binomial instead of Poisson form. By assuming 

that the probability distribution of deaths follows a binomial instead of the 
Poisson law a similar method of analysis can be followed, and it will be found 
that the moment generating function emerges as follows: 

Coeff. of uE in 

Coeff. of uE in 

(C) Distribution subject to conditions [see paras. 12 
and 13]. 

Coeff.of hN uE in 
M.G.F. is 

Coeff. of hN uE in 

Coeff. of uE in 

Coeff. of uE in 

i.e., the result of dividing the Coeff. of uE in 

by the Coeff. of uE in 
When m = 2 it will be found that the coefficient of k is Eq and the second moment 
about the mean is pq(3E - 2N). 

(D) On the variance with no restraints —binomial basis [see para. 10(d)]. Using 
Seal’s notation we have 

hence 

and 

= Coeff. of 

Now with m groups the joint probability of the set is 
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and the total probability of y deaths from the set is 

Summing over all N, we find 

Putting a = ek and expanding in powers of k we find for the M.G.F. 

whence 




