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INTRODUCTION 

IN the market for fixed-interest securities, several variants of the yield to 
redemption (YTR) concept are used. The YTR of a stock is simply the internal 
rate of return which the holder can expect to receive if he she holds the stock until 
maturity. Since income tax has to be paid by some. if not all investors on the 
interest received, and in some cases on the capital gain as well, a distinction is 
made between the gross YTR and the net YTR. 

In practice. surrogates for the gross YTR and net YTR are used by investors 
and analysts. An estimate of net YTR is often calculated by adjusting the gross 
YTR for taxation. This method is attractive as the one calculation of gross YTR 
can be made and subsequently adjusted for investors in different taxation 
situations. Another estimation is sometimes used when the net YTR for an 
investor on a particular tax rate is grossed-up to give an estimate for gross YTR. 
The objective of this work is to explore the efficacy of these surrogate 
calculations. 

Gross YTR 
If we assume for simplicity that the bonds are purchased on issue, thus 

eliminating the problem of accrued interest, the gross YTR is defined as rG in the 
equation: 

(1) 

u-here P is the purchase price of the security (issue price), Q is the capital gain 
(Q > 0) or capital loss (Q < 0), I is the interest per period and n the number of 
periods to maturity. In most cases the periods of interest will be annual but it is 
not necessary to assume this. Note that P + Q corresponds to the maturity value, 
so that P + Q > 0. Equation (1) reduces to: 

(2) 
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A necessary and sufficient condition for the existence and uniqueness of a 
positive rG is provided by nI + P + Q > P. or nI > – Q, which requires that the 
total dividend payments exceed the capital loss. This condition emanates from 
the requirement that total receipts exceed purchase price, given that there is, of 
necessity, only one sign change in the cash flow sequence. 

Net YTR 
We shall now make a number of additional simplifying assumptions. First, 

assume that the rate of personal income tax is the same as the rate of capital gains 
tax. Second, assume that both taxes are payable without delay. Third, assume 
that capital losses earn a rebate at the capital gains tax rate, also without delay. 
Under the above assumptions the net YTR is defined as rN in the equation: 

(3) 

where t is the investor’s marginal tax rate. Equation (3) reduces to: 

(4) 

As in the case of rG, a necessary and sufficient condition for the existence of a 
unique positive rN is provided by nI > – Q. This means that whenever a unique 
positive rG. exists then a unique positive rN exists, and vice-versa. 

Surrogates 
As outlined in the introduction, surrogates for gross and net YTR are created 

by applying the tax rate to each. An approximate net YTR, RN, is created by 
multiplying the gross YTR by the factor (1 – t), and an approximate gross YTR, 
RG, is created by dividing the net YTR by the factor (1 – t). That is: 

and 
(5a) 

(5b) 

RG is commonly called grossed-up net YTR and RN could be called netted-down 
gross YTR. 

The approximations in (5a) and (5b) can be rewritten as: 

rG (1 – )= RN 
and 

RG (1 – t) = rN. 

These can be more conveniently expressed as: 

(6) 
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which emphasises that an over-estimated RG for rG corresponds to an 
under-estimated RN for rN, and obviously vice-versa. 

Grossed-up Net YTR 
In circumstances where capital gains are not taxed at the same rate as the 

investor’s income (or capital losses are not rebated at the same rate) one should 
not expect the grossed-up net YTR to equal the gross YTR. Thus RG ≠ rG. seems 
reasonable since the grossing up process implicitly treats capital gains or losses as 
income for tax purposes. Consequently where there is a tax-free capital gain, 
RG > rG, and where there is a capital loss which earns no tax rebate, RG < rG. 

However, where capital gains are taxed at the same rate as the investor’s 
income (or capital losses are rebated at the same rate), it might appear plausible 
to expect that RG = rG. Yet it turns out that even in this case RG ≠ rG when t > 0 
and n > 1. The situation here is the same as in the tax-free case, that is where there 
is a capital gain RG > rG, and where there is a capital loss RG < rG. 

This inequality is basically due to the fact that the internal rate of return is a 
type of average and the grossing up process ‘spreads’ the capital gain/loss over 
the component periods involved in a manner which does not coincide with the 
actual timing of the gain loss. 

Illustration 
To illustrate the point. assume an investor buys a $100 bond for $95 with a 

coupon of 16% and redemption at par three years hence. The gross YTR is rG in 
the equation: 

which is 18·311% p.a. 
If the investor’s marginal income tax rate is 32% p.a. and if the capital gain of 

$5 (i.e. $100–$95) is also taxed at this rate, the net YTR is rN in the equation 

which is 12·508% p.a. 
The grossed-up net YTR, RG, is 12·508/(1 – ·32) = 18·394% p.a. which is 

slightly higher than the gross YTR of 18·311%. The reason for this inequality is 
that the capital gain features only at the end of the period and is not distributed 
across the three years in a manner which would result in RG = rG. (Notice that the 
netted-down gross YTR, RN, is 18·311 (1 – ·32) = 12·451% p.a. which is slightly 
lower than the net YTR, rN, of 12·508% p.a.) 

When n = 1 the equations defining rG and rN, namely (2) and (4) reduce to: 
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respectively. It follows immediately that: 

and 
rN = rG(1 – t) = RN when n = 1. 

In other words, the gross YTR is the same as the grossed-up net YTR and the 
net YTR is the same as the netted-down gross YTR when the life of the 
instrument is equal to the interest period. 

Again, for illustration, suppose the debenture in the previous example had 
only one year to run to maturity (P = 95, I = 16, Q = 5, t = ·32). It readily 
follows that rG = RG = 22·105% and rN = RN = 15·032%. 

Both the gross and the net YTR are internal rates of return, and the internal 
rate of return is just one of several possible averages. Grossing up the net YTR by 
dividing by (1 – t) does not give the gross YTR except where t = 0 or n = 1 
because the capital gain component is, as stated earlier, spread over the 
component interest periods in a manner which does not coincide with the actual 
timing of the capital gain. 

In an analogous manner, one could demonstrate the difference between the net 
YTR, rN, and its approximation RN. 

The Efficacy of RN 
In this section we wish to examine the circumstances under which the net YTR, 

i.e. rN, and its approximation used by practitioners, i.e. RN, are approximately 
equal. Recall that, as shown in equation (5a): 

RN = (1 – t)rG. 

To discuss rN or rG, it is convenient to introduce the function f(t, r) given by: 

(7) 

Then rG is the solution of: 

(8) 

and rN is the solution of: 

f(t, rN) = 0. (9) 
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It is then relatively easy to demonstrate (see Appendix for further details) that 
given nI + Q > 0 and 0 < t < 1. the following relationships hold 

(a) Q > 0, RN < rN (10a) 

(b) Q < 0, RN > rN (10b) 

(c) Q = 0, RN = rN. (10c) 

Thus for the not uncommon case of the bond price being below the redemption 
price (implying a capital gain), the netted-down gross YTR (RN) is always a 
biased-low estimate of rN. Conversely, in a capital loss situation, this estimate of 
the net YTR is always biased-high. 

From the point of view of estimation, it is unsatisfactory to have an estimator 
that always has an inbuilt bias. The question then arises as to whether an estimate 

can be developed that does not have this inbuilt bias property. To this end, it is 
convenient to develop rN as an expression in rG as follows: 

rN = (1 – t)rG [1 + α (rG)]. (11) 

Clearly, using the approximation formula (5a) is equivalent to asserting that 
the term α (rG) is identically zero. Using the fact that rG and rN are solutions to 
equations (2) and (4) respectively, an asymptotic expansion (see for example, 
Copson, Erdélyi or Sirovich) was developed for α (rG) in terms of powers of rG. 
that is: 

(12) 

It can then be shown (see Appendix for further details) that: 

(13) 
and 

(14) 

provided nI ≠ – Q. The latter was ruled out in order to guarantee a unique 
positive rG and rN. 

This approximation has been evaluated over a range of prices, capital gains, 
dividend payments, period lengths and marginal tax rates. The first term 
approximation 

is always better than RN = (1 – t)rG, though the error is of the opposite sign to 
that of RN and the improvement sometimes is only marginal. However the two 
term approximation 
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is always much better than RN = (1 – t)rG. In the great majority of cases 
computed, the two term estimate of rN and the actual rN differed by no more than 
the second decimal place, considering rates as percentages (or the fourth decimal 
place considering rates as decimals). 

The Efficacy of RG 
Due to the inverse nature of the over- and under-estimation of RN and RG, the 

following result is clear. 
If nI + Q > 0 and 0 < t < l, then 

(a) Q > 0, RG > rG 

(b) Q < 0, RG < rG 

(c) Q = 0, RG = rG. 

Thus for the not uncommon case of a (positive) capital gain, the grossed-up net 
YTR is always optimistic with respect to the actual gross YTR. Conversely, in a 
capital loss situation, this estimate of gross YTR is always pessimistic. 

Again, this implies that it is a poor estimator. A more accurate one is given by 
the expansion (see Appendix for further details): 

(15) 

where 

and 

with 

The two term expansion has been computed to give much more accurate 
estimates than the grossed-up net YTR, as given by equation (5b), namely: 

The estimation qualities of the asymptotic expansions for rN and rG given in 
equations (11)–(14) and (15) are best illustrated by means of several examples. 
Table 1 gives the successive approximations RN = (1 – t)rG, RN(1 + α 1rG) and 
RN(1 + α 1rG + α 2r²G) to rN for a range of values of P (and hence Q), I, n (which, 
together, determine rG) and also t. The relative percentage error at each level of 
approximation is also given. Any apparent discrepancies in the error calculations 
are due solely to the rounding-off to two decimal places of those values reported 
in the tables. 

Similarly, Table 2 gives the three successive approximations RG = (1 – t)–1 rN, 
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RG(1 + γ 1rN) and RG(1 + γ 1rN + γ 2r²N) to rG for a range of values of P, I, n and t 
(which, together. determine rN). 

The computer program used to produce the results in this paper is available 
from the authors upon request. 

CONCLUDING REMARKS 

The approach taken by practitioners when adjusting bond yields to either 
include or exclude the effect of taxation rates, always produces a biased 
estimation, except when the life of the bond is equal to the interest period. This is 
borne out by the tabulated results. The nature of the bias depends on whether a 
capital loss or capital gain is involved. This error in estimation always increases 
with increasing rates of taxation. In times of reasonably stable interest rates, this 
error will consistently appear in the yield estimates calculated by practitioners. 
While the relevant yield estimate will be consistently biased, it will nevertheless be 
a reasonable guide to the behaviour of actual yields. However in periods of 
fluctuating interest rates, the prices of bonds will correspondingly fluctuate and 
capital gains/losses will commensurately fluctuate. The error in the calculation of 
estimated yield will then itself fluctuate. This calculation error will confound the 
fluctuating behaviour of reported yields. 

The approximation developed by way of expansions in this work serve two 
purposes. Firstly they include the practitioners approximation as the leading 
term. The remaining terms thus serve the purpose of explaining most of the 
difference between the actual yields and those used by practitioners. Secondly, 
they can be used as more accurate estimators of actual yields. When calculating 
the adjusted yields. one needs to be aware of the nature of the bias in their simple 
estimation process. As this will vary with circumstances, one needs to be wary of 
the presence of such biased results. 
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Table 1. Approximations to NYR given GYR and various bond parameters (price, 
coupon rate and duration) for various marginal tax rates 

(i) P=80, Q=20, I= 10, n=4: rG= 17·34% 

Netted-down First Second 
Tax rate NYR GYR% approximation approximation 

i rN% RN=(1—i)rG % Error RN(1 + α 1rG) % Error % Error 
·32 12·05 11·79 –2·18 12·12 ·53 12·05 –·05 
·46 9·67 9·36 –3·20 9·74 ·66 9·67 –·05 
·60 7·24 6·94 –4·26 7·30 ·72 7·24 –·02 

(ii) P=80, Q=20, I=10, n=10: rG=13·81% 

Netted-down First Second 
Tax rate NYR GYR% approximation approximation 

i rN% RN=(1 –i)rG % Error RN(1 + α 1rG) % Error % Error 
·32 9·59 9·39 –2·09 9·70 1·15 9·58 –·12 
·46 7·70 7·45 –3·13 7·81 1·49 7·69 –·09 
·60 5·77 5·52 –4·25 5·87 1·70 5·76 –·04 

(iii) P=80, Q=20, I=20, n=4: rG=29·09% 

Netted-down First Second 
Tax rate NYR GYR% approximation approximation 

i rN% RN = (1 – i)rG % Error RN(1 + α 1rG) % Error 
·32 20·16 19·78 –1·87 20·34 ·87 20·13 –·17 
·46 16·16 15·71 –2·78 16·34 1·13 16·13 –·17 
·60 12·09 11·64 –3·74 12·25 1·30 12·07 –·15 

(iv) P=80, Q=20, I=20, n=10: rG=25·73% 

Netted-down First Second 
Tax rate NYR GYR% approximation approximation 

i rN% RN=(1–i)rG % Error RN(1 + α 1rG) % Error % Error 
·32 17·73 17·49 –1·35 18·08 1·97 17·64 –·55 
·46 14·19 13·89 –2·11 14·56 2·62 14·11 –·59 
·60 10·61 10·29 –3·01 10·94 3·12 10·55 –·54 

(v) P=120, Q=–20, I=10, n=4: rG=4·43% 

Netted-down First Second 
Tax rate NYR GYR% approximation approximation 

i rN% RN = (1 – i)rG % Error RN(1 + α 1rG) % Error % Error 
·32 2·96 3·01 2·00 2·95 –·17 2·96 ·01 
·46 2·33 2·39 2·89 2·32 –·26 2·33 ·02 
·60 1·71 1·77 3·79 1·70 –·35 1·71 ·03 
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Table 1 (continued) 

(vi) P=120, Q=–20, I=10, n=10: rG=7·13% 

Netted-down First Second 
Tax rate NYR GYR% approximation approximation 

i % Error % Error % Error 
·32 4·76 4·85 2·03 4·73 –·59 4·76 ·05 
·46 3·74 3·85 2·98 3·71 –·82 3·74 ·08 
·60 2·74 2·85 3·97 2·72 –1·04 2·75 ·12 

(vii) P=120, Q=–20, I=20, n=4: rG=13·24% 

Netted-down First Second 
Tax rate NYR GYR%, approximation approximation 

i % Error % Error % Error 
·32 8·85 9·00 1·75 8·81 –·40 8·85 ·04 
·46 6·97 7·15 2·56 6·93 –·56 6·98 ·07 
·60 5·12 5·30 3·40 5·09 –·71 5·13 ·09 

(viii) P=120, Q=–20, I=20, n=10: rG=15·88% 

Netted-down First Second 
Tax rate NYR GYR% approximation approximation 

i % Error % Error % Error 
·32 10·64 10·80 1·45 10·52 –1.12 10·67 ·20 
·46 8·39 8·58 2·21 8·26 –1·53 8·41 ·29 
·60 6·16 6·35 3·04 6·05 –1·87 6·19 ·37 

Table 2. Approximations to GYR given various bond parameters (price, coupon rate 
and duration) and marginal tax rates 

(i) P=80, Q=20, I=10, n=4: rG=17·34% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i % Error % Error % Error 
·32 12·05 17·73 2·23 17·22 –·67 17·36 ·14 
·46 9·67 17·91 3·31 17·17 –·95 17·37 ·20 
·60 7·24 18·11 4·45 17·13 –1·23 17·39 ·28 

(ii) P=80, Q=20, I=10, n=10: rG=13·81% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i % Error % Error % Error 
·32 9·59 14·10 2·13 13·62 –1·32 13·85 ·30 
·46 7·70 14·25 3·23 13·55 –1·85 13·87 ·44 
·60 5·77 14·42 4·44 13·48 –2·34 13·89 ·61 
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Table 2 (continued) 

(iii) P=80, Q=20, I=20, n=4: rG=29·09% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i rN% RG=(l–i)–1rN % Error % Error I Error 

·32 20·16 29·65 1·90 28·80 –1·00 29·18 ·29 
·46 16·16 29·92 2·85 28·69 –1·39 29·21 ·41 
·60 12·09 30·22 3·89 28·58 –1·76 29·25 ·54 

(iv) P=80, Q=20, I=20, n=10: rG=25·73% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i rN% RG=(1–i)–1rN % Error % Error % Error 

·32 17·73 26·08 1·37 25·19 –2·09 25·93 ·80 
·46 14·19 26·28 2·16 24·98 –2·89 26·01 1·11 
·60 10·61 26·52 3·10 24·80 –3·61 26·08 1·40 

(v) P=120, Q=–20, I=10, n=4: rG=4·43% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i rN% RG = (1 – i) 1rN % Error % Error % Error 

·32 2·96 4·35 –1·96 4·44 ·09 4·43 
·46 2·33 4·31 –2·81 4·44 ·08 4·43 
·60 1·71 4·27 –3·65 4·44 ·05 4·43 

(vi) P=120, Q=–20, I=10, n=10: rG=7·13% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i rN% RG=(1 – i)–1rN % Error % Error 

·32 4·76 6·99 – 1·99 7·17 ·48 7·14 
·46 3·74 6·93 – 2·89 7·18 ·59 7·14 
·60 2·74 6·86 – 3·82 7·18 ·64 7·14 

(vii) P=120, Q=–20, I=20, n=4: rG=13·24% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i rN% RG=(1 – i)–1rN % Error % Error 

·32 8·85 13·01 – 1·72 13·29 ·32 13·24 
·46 6·97 12·91 – 2·50 13·29 ·40 13·24 
·60 5·12 12·81 – 3·29 13·30 ·43 13·24 

·01 
·01 
·01 

% Error 

·01 
·03 
·06 

% Error 

– ·01 
·00 
·02 

(viii) P=120, Q=–20, I=20, n=10: rG=15·88% 

Grossed-up First Second 
Tax rate NYR NYR% approximation approximation 

i rN% RG = (1–i)–1rN % Error % Error % Error 

·32 10·64 15·65 – 1·43 16·04 1·03 15·87 – ·09 
·46 8·39 15·54 – 2·16 16·09 1·34 15·87 – ·07 
·60 6·16 15·41 – 2·95 16·12 1·54 15·88 – ·03 
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Lemma A 

Suppose I > 0, 0 t < 1 and nI + Q > 0. Then 

(i) Q > 0 implies RN < rN 

(ii) Q < 0 implies RN > rN 

(iii) Q = 0 implies RN = rN. 

Proof 

It follows from equations (2) and (5a) that 

P = (1 – t)IRN–1 + Q((1 + RN(1 – t) –1n –1)–1. 

By expanding (1 + RN(1 – t)–1)n it is readily established that 

(1 + RN(l – t)–1)n –1 (l – t)–1 ((1 + RN)n –1). 

(Al) 

(A2) 

The result now follows from equations (4) and (Al) after using (A2) and 

observing that r–1 and ((1 + r)n –1)–1 are both decreasing functions of r. 

Lemma B 

If rN is expressed in the form 

then 

and 

with 

Proof 

It follows from equations (2) and (4) that 

which implies that 

where 

(A3) 

(A4) 

Expressing rN in the form (A3). carrying out the formal expansion of the power 

series in equation (A4) and comparing coefficients yields the result. 
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Lemma C 
If rG is expressed in the form 

then 

and 

with 

provided 

Proof 
Proceeding in a similar manner to the proof of Lemma B or by inverting the 

power-series obtained therein, the result is readily established. 




