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ABSTRACT 

Calculating deterministic reserves is no longer sufficient in our times of enhanced Risk Management. 

Today, Insurers strive to have a complete view of the risk underlying reserves valuation: therefore 

stochastic projection methods become central to today’s actuaries. 

It is even more the case with the Solvency II European Regulation which requires a VaR99.5% 

valuation… and consequently a very robust stochastic model to obtain a credible tail valuation. 

This paper presents an innovative application of the Reversible Jump Markov Chain Monte Carlo 

(RJMCMC) new stochastic method. 

How reliable is this new approach? The paper will provide some checks based on actual insurers’ 

data, and compare with the results of other commonly used methodologies. 

It appears that the advantages of the method are many: in particular it does not require minimum 

Chain Ladder assumptions, and it is the first to enable automated definition of zones within the triangle 

where different models will be automatically defined to better adjust to the quantity of data available. 

Some new extensions to the original RJMCMC method will also be explored in the article: for example 

the use of other tail or “right triangle” distribution functions as well as different time horizons, along 

with a methodology to choose the most suitable ones; and the estimation of the one-year uncertainty 

to compare RJMCMC with traditional one-year horizon methods and in particular in the context of the 

Solvency II framework. 
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INTRODUCTION 

Insurers increasingly require highly robust stochastic models to obtain credible valuations of their 

outstanding claims reserves best estimate or Value at Risk.  This is particularly true for firms subject to 

the EU’s Solvency II regulations.  

Outstanding claims reserves represent most of insurers’ liabilities under Solvency II. For non-life 

companies, the valuation of these reserves is mostly based on the study of a run-off triangle which 

represents the evolution of insurers’ payments, depending on the development year and the 

occurrence year of the underlying claim. The actuary’s aim is to “complete” this triangle, i.e. evaluate 

the outstanding claims for future accounting years. 

Traditional methods, including the famous Chain Ladder approach, proceed by evaluating column by 

column each element of the lower triangle according to the upper triangle data. In the case of the 

Chain Ladder method, this evaluation is based on an estimated development factor which determines 

one column’s data from earlier ones.  Estimates for the columns on the left-hand side contain a lot of 

data used to project very few points. Conversely, the right-hand columns contain relatively little data 

which are used to project many points, which appears counter-intuitive and generally leads to a high 

estimate error. 

These observations prompt us to research the potential use of the RJMCMC method, proposed by 

Verrall and Wüthrich (2012). 

This method assumes that amounts follow an over dispersed Poisson distribution with parameters for 

each line and column. The triangle is split in two parts with a dedicated model in each part to estimate 

the column parameters: one for the left part of the triangle, based on more parameters, which allows a 

better fit to the data; and one for the right part of the triangle using only two parameters and reference 

statistical curves. This allows a more robust valuation of the tail, the last columns corresponding 

mainly to the development of the claims that have already occurred which can more easily fit a simple 

parametric model. 

One of the main issues therefore, is defining the column where the split from one methodology to the 

other will occur. Fortunately, the RJMCMC method addresses this issue with a solution that is both 

complex and pragmatic. 

The fundamental assumption of the method is that each incremental value of row i and column j, 

denoted              follows an over dispersed Poisson distribution with parameters: 

(
   

 
| )     

      

 
) where   is the over-dispersed parameter,    is a row parameter and    is a column 

parameter. Hereafter, we will consider that both the occurrence years of the underlying claim and the 

development years are numbered from   to  . 

In section 1 we present the different assumptions of the model and explain the functioning of the 

algorithm. Section 2 describes two methodologies which allow managing with negatives and 

incremental values equal to zero, which is required to apply RJMCMC to most real case triangles. 

Section 3 proposes some extensions of the model by applying different functions to model the right 

part (or “tail”) of the triangle. Finally in section 4, en estimation of the one-year uncertainty is proposed 

in order to apply RJMCMC in the context of the Solvency II European directive. It allows us to 

conclude by highlighting the advantages and utility of the method. 
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1. PROPOSED METHODOLOGY TO APPLY REVERSIBLE JUMP MARKOV 

CHAIN MONTE CARLO ALGORITHM TO INCREMENTAL TRIANGLES 

This section presents the different assumptions of the studied methodology stressing the Bayesian 

Over-Dispersed Poisson model on which RJMCMC is based. Then, step by step, the description of the 

algorithm will be given. 

 

 Model assumptions 

The aim of the RJMCMC methodology is to predict the lower part of the triangle, using the data 

provided by the upper part of the triangle. Let              be the values of the incremental 

amounts. As for any other reserving methodologies, the aim is the prediction of the lower triangle 

which will be noted   
  {                      }, based on the upper triangle, defined by 

   {                     }. 

 

 The first assumption of the model is that conditionally to the values of 

                    ) each incremental amount follows an over-dispersed Poisson 

distribution with the following parameters: 

(
   

 
| )    (

      

 
) 

Where    is the parameter for row   and    is the parameter for column  .   is a computed constant 

known as the over-dispersion parameter. 

                    ) is the vector of parameters that we need to estimate. 

Negative increments can lead to some issues in over-dispersed Poisson models, thus we will propose 

methodologies to manage with negatives in section 3. 

 

 The second assumption concerns the estimation of the row parameters. They are supposed to 

be independent random variables and gamma distributed with the following parameters: 

   {     }           
 

  

) 

Where   and    are positive prior estimates, computed in the way detailed in section 2.2. 

 

 The third main assumption is that two different models are used to estimate the vector of 

column parameters         ). Until a truncation column index the column parameters are 

independent and gamma distributed; and starting from this truncation index, an exponential 

decay is used to estimate the column parameters. Let   be the truncation index: 

o    {       }             
 

  
) 

o    {     }                ) 

The exponential decay implies the estimate of the two parameters   and  . In that aim we define prior 

distributions for these two parameters: 
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        ) and         ) 

Where        and   are positive prior estimates and   and   are real prior parameters. The choices of 

these estimates are described in section 2.2. 

As detailed in Section 4, we could instead of using an exponential decay decide to use any other two 

parameter curve that could fit better. 

 

Finally, the initial parameters vector                     ) can be replaced by a new vector to be 

estimated                          ). 

 

It is then possible to express the joint density of the data (    )    ) {     } 
 and the parameter vector   : 

  ((    )    ) {     } 
   )    ((    )    ) {     } 

|  )     ) 

Where 

  ((    )    ) {     } 
|  )  ∏  

 
      

 

(
      

 
)

   
 

(
   

 
)      ) {     } 

 

And 

     )  ∏  
    

 
 

  
   

 

   

   ∏  
    

 
 
  

   

   

   

      { 
 

   
    ) }      { 

 

   
    ) } 

 

The sign “ ” express the proportion, as the normalizing constants are not calculated. The term      ) 

corresponds to the product of the prior densities of the row parameters   , the column parameters    

and the prior densities of the parameters   and  . 

 

We can define a Markov Chain, for which each state   is characterized by the truncation index and the 

parameter vector    )  (   )  
   )
  ) ). 

 

 Application of the RJMCMC algorithm 

Starting from the paper of Verrall and Wüthrich (2012), we summarize below the main steps of the 

RJMCMC algorithm. 

First of all, the algorithm has to be initialized. We compute the maximum likelihood estimators of the 

row and column parameters normalized such that the sum of the column parameters is equal to 1. 

This is a convention which has no impact on the future calculations. This choice is quite convenient as 

the column could be, in this way, associated to development patterns and the row parameters could 

be seen as the expected ultimate amounts. 
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From these estimators, we can compute different prior parameters with Maximum Likelihood (an 

acceptable but less accurate alternative could be to use mean square approach): 

     
    

     
    

These prior estimates are used in the distributions of the row and the column parameters: 

   {     }           
 

  

) 

   {       }             
 

  
) 

Parameters s and v reflect the prior uncertainties associated with the estimate of row and column 

parameters. 

They have to be chosen such that they reflect the best the uncertainty linked with the prior 

estimations. For instance the following coefficients of variation can be allocated: 10% to row 

parameters and 100% to column parameters. Indeed, it seems more coherent to choose the priors of 

the column parameters to be rather non-informative because the smoothing effect is not taken into 

account in the prior estimate of the   . 

 

While the initialization has been performed, we can go through the recursive algorithm. 

Let’s suppose we have finished calculating estimators for step  . Starting from this, and based on the 

Markov Chain principal, we want to produce the calculations for step    . 

 

 Step A: the choice of a new truncation index 

We choose a new truncation index    from the previous one    ). The following discrete probability 

distribution is defined: 

    )  {       }      (      )   |   ))   (      )   |   ))   (      )|   ))  
 

 
 

 (    |   )   )  
 

 
     (    |   )   )  

 

 
     

 (    |   )   )  
 

 
     (      |   )   )  

 

 
 

This distribution implies that it is possible to jump to next neighbor models, which means that the 

parameters vector dimension may change by one unit (plus or minus) or remain unchanged.  

 

 Step B: updating all parameters when       ) 

If       ) then we can directly set      )     ). And we apply the Metropolis Hastings block sampler 

to update each parameter, which is decomposed in three steps: 
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- The updating of    
  )

     
  )) using the Gibbs sampler. Conditionally to the other 

parameters, they are mutually independent and follow gamma distributions with 

parameters: 

  
    )

  (  
    

 (
 

  

)
 

    

) 

Where  

  
    

    
 

 
∑    

   
       and     (

 

  
)
 

    

 
 

  
 

 

 
∑   

  )   
    

Note that the updating of the row parameters    uses the values of the column parameters but at the 

previous state,   
  )

, as they have not been yet updated.  

This concludes the updating of the row parameters. 

 

- The updating of    
  )

    
   )  

  ) ) using the Gibbs sampler. Conditionally to the other 

parameters, they are mutually independent and follow gamma distributions with 

parameters: 

  
    )

  (  
    

 (
 

  
)

 

    

) 

Where 

  
    

   
 

 
∑    

   
       and    (

 

  
)
 

    

 
 

  
 

 

 
∑   

    )   
    

Note that the updating of the column parameters    uses the values of the row parameters but at the 

current state,   
    )

, as they have been previously updated. 

This concludes the updating of the column parameters. 

 

- The updating of     )    )) using the Metropolis Hastings algorithm. 

We propose new values for this vector by generating a two-dimensional Gaussian distribution with 

parameters: 

      )  ((
   )

   ))   ) 

Where   represents the covariance matrix. For more simplicity, we consider that   and   are 

independent: 

  (
     

     
) 

We then need to calculate an acceptance probability which uses the following general formula, as 

described by Green (1995): 
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     )     (  
       )   ((   )    ))|      ))

     )    ))   (      )|    )    )))
) 

 

The last terms correspond to the proposal distribution. In our case this is equal to the density function 

of the two-dimensional Gaussian distribution previously written, which is an even function. 

Thus, we have  ((   )    ))|      ))   (      )|(   )    ))) 

 

So the acceptance probability can be written as: 

     )     (  
       )

     )    ))
) 

Where the density f is proportional to: 

     )  ∏ [ 
         )∑

  
    )

 
   
            ))

∑
   

 
   
   ]

 

     )

    { 
 

   
    ) }     { 

 

   
    ) } 

 

Finally, two cases are possible: 

- If the proposal values are accepted we set (     )      ))        ) 

- If the proposal values are rejected we set (     )      ))  (   )    )) 

This concludes the updating of the tail factors. 

 

These three steps provide the updated parameters: 

     )  (     )  
     )
    )

)  (     ) (     )      )   
    )

     
    )

   
    )

    
     )  

    )
)) 

 

 Step C: cases corresponding to       ) 

These are the cases when the dimension of the parameter vector changes. The only parameter to 

consider is the column parameter that is supposed to jump from one model to the other. 

 

Case 1:    )      and         )    

This means that the column parameter  
   )
  )

 will leave the tail distribution and join the left part of the 

column parameters vector. 

All the other parameters will not be updated and are equal to the ones of the previous state. 

We propose a new value for the column parameter that jumps from one model to the other: 

 
   )
   (   

  

   {   )    )   )}
) 
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The following acceptance probability is then computed:  

     )     
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Thus, two cases are possible: 

- If the proposal value is accepted we set  
   )
    )

  
   )
  

- If the proposal value is rejected we set  
   )
    )

  
   )
  )

, which means that we keep the value 

of the previous state of the Markov Chain 

 

Case 2:    )      and         )    

This means that the column parameter    
  )

 will leave the left part of the column parameters vector and 

join the tail distribution. 

All the other parameters will not be updated and remain equal to their values of the previous state. 

We propose a new value for the column parameter that jumps from one model to the other:    
  

   (   )       )) 

The following acceptance probability is then computed:  

     )     
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Thus, two cases are possible: 

- If the proposal value is accepted we set    
    )

    
  

- If the proposal value is rejected we set    
    )

    
  )

, which means that we keep the value 

of the previous state of the Markov Chain. 

 

Finally, we get a new parameter vector      )        )  
     )
    )

). 

The graph below summarizes the steps from the state   to the state     of the Markov Chain: 
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Figure 1: Functioning of the core of the RJMCMC algorithm 
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It is then possible at each iteration to estimate the lower part of the triangle. We generate random 

over-dispersed Poisson values with the estimated parameters to take into account the process error: 

                    (
 ̂   

  )

 
| )    (

 ̂ 
  )  ̂ 

  )

 
) 

Thus, it is easy to obtain an estimation of the total reserve  ̂  ) by summing the estimated increments 

of the lower part of the triangle. 

At the end of all the simulations we obtain a distribution of the total reserve. This makes possible the 

computation of the mean and several risk measures. However, it is important to exclude the first 

simulations from final calculations as they correspond to the research of stability of the RJMCMC 

algorithm; this phase is called the Burn-in. The computations of the mean and of other risk measures 

will be done on the latest simulations and they will not be polluted by the Burn-in phase. 

 

 Impact of the number of simulations 

We used professional software  which allowed us to easily test the method with different random 

seeds and strong random generators. 

For the following results we used the Real Data example presented in the paper of Verrall and 

Wüthrich (2012). 

We launched the algorithm ten times with different random seeds for several number of iterations: 

10,000 ; 100,000 ; 500,000 ; 1,000,000 ; 2,000,000. 

For the series of 10,000 simulations the burn-in was fixed to 2,000 but for all the other series it was 

fixed to 20,000. 

We summed up the results that we get for the means of the reserves, the coefficients of reserves 

variations and the VaR 99.5%. We summarize the results in the following figures: 

 

Figure 2: Mean of the reserves (Y-axis) obtained for different numbers of simulations (X-axis) 
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Figure 3: Coefficients of reserves variations (Y-axis) obtained for different numbers of simulations (X-

axis) 

 

On the figures 1 and 2, two points have been plotted: V&W 1 which corresponds to the values 

provided by Verrall and Wüthrich (2012) in their first paper about RJMCMC and V&W 2 which 

corresponds to the values provided by the previous authors in their second paper about RJMCMC. 

The first results have been computed by using 1,000,000 simulations and the second results have 

been computed over 500,000 simulations. 

Figure 4: VaR 99.5% of the reserves (Y-axis) obtained for different numbers of simulations (X-axis) 
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We can observe a quick convergence of the results. This is especially true when the number of 

iterations grows from 10,000 to 500,000. After 500,000 simulations, increasing the number of 

simulations has a lesser impact on the convergence. 

This trend was also observed for the other market triangles we studied. It seems that 500,000 

simulations are a good compromise between speed and precision. 

 

  



 

14  

2. MODELING EXCLUSIONS AND NEGATIVE VALUES 

Negative incremental amounts or increments equal to zero are typical issues when using over-

dispersed Poisson models. Unfortunately, this often happens especially with incurred triangles. 

In this section we propose some solutions to these problems for being able to apply the RJMCMC 

algorithm on nearly any kinds of real case input triangles. 

 

 Excluding values 

The aim of this part is to propose a methodology which allows the expert to exclude some values of 

the initial data. Indeed, it is sometimes useful to have the ability to exclude cells of the input loss data 

triangle from the model. For that purpose, we define an indicator function for each amount of the input 

triangle. 

We build a triangle which represents the indicator function of each amount: 

          … …      

          …         

… … …   

…           

         

  Table 1: Triangle of the indicator functions for each cell of the input triangle 

 

The values of terms      can be 1 if the corresponding amount is not excluded or 0 if the 

corresponding amount is excluded. 

These indicator functions are then applied in each formula where the initial amounts      are involved; 

each      is replaced by the product         . Thus, if the indicator is equal to 1 there will be no changes 

in the formulas. Conversely, if it is equal to 0 the corresponding amount will have no impact in all the 

formulas of the algorithm. 

 

We then compute the indicator functions for each row and each column. If all the cells of a row or a 

column are excluded then the indicator function of the corresponding row or column will be equal to 0. 

Let     be the indicator function for the column  . If all the cells of the column   are excluded then the 

column   will be excluded. If            then      , otherwise the column   is included and      . 

Let     be the indicator function for the row  . If all the cells of the row   are excluded then the row   will 

be excluded. If            then      , otherwise the row   is included and      . 

 

Thus, each time we compute a sum on rows we multiply the term of the sum by    . 

For instance the following sums are transformed: 
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∑   
  ) 

    becomes ∑      
  ) 

    

 

Each time we do a product on rows we put an exponent equal to    . 

For instance the following products are transformed: 

∏
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 ( 
   )
  )

)

 
     )     )

 
]
 
 
 
 
   

  
    

Similar changes are made for the columns exclusions. 

Thus, for computations of sums or products on columns, the indicator functions     are used as 

multiplicative terms or as exponents depending on the case. 

 

 Case of null sums of columns and rows amount: 

One of the main limitations of over dispersed Poisson distributions is that the sums of the incremental 

amounts in every column and in every row of the input triangle have to be different from zero.  

We can generalize the exclusion methodology presented before to a complete column or row to solve 

this issue. Thus, if a column or a row contains only incremental amounts equal to zero we can exclude 

it from calculations and automatically set its weight to zero. 

 

 Modeling negative values 

Not only, increments equal to zero can lead to some problem in over-dispersed Poisson models but 

negative incremental amounts also represent an issue in such models. Indeed, it is assumed that the 

sums of the incremental values in every development periods and origin periods of the loss data 

triangle need to be greater than zero. 

We could think of excluding these points from the model. However, we would misestimate the claims 

because we would model it as being equal to 0 for these points. This is obviously not the case; 

therefore we have to find another way to deal with it. 

The methodology we propose to use is based on the paper of Kunkler (2006). 

 

For each column (development year) we split the values into two sets: 

 The first set contains the strictly negative incremental values of the column  :   
  )

 

{     |                   }. Let   
  )

 be the number of values contained in the set   
  )

. 

 The second set contains the positive incremental values of the column  : 

  
  )

 {     |                   }. Let   
  )

 be the number of values contained in the set 

  
  )

. 

For each column it is then possible to compute what we call the probability of being negative. This 

probability corresponds to the number of negative values divided by the total number of values: 
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  )

 
  

  )

 
 
  )

  
 
  ) stands for the probability of being negative for the column  . 

The probability of being negative is then computed for each column. 

 

From the input data triangle, it is possible to compute the pseudo data triangle which is composed of the 

absolute values of the incremental claims. 

Let    {|    |                   } be this triangle. 

We can then apply the RJMCMC algorithm on the pseudo data triangle as each incremental value is 

positive in this triangle. 

Let  ̂   
  ,                  , represent the expected amounts for the lower triangle after 

applying the algorithm on the pseudo data triangle   . 

 

At each iteration, in order to take into account the negatives contained in the input data triangle, we apply 

the probability of being negative computed by the formula above. 

In that aim we use Bernoulli distributions with parameters   
  )

. For each amount of the lower triangle we 

generate a random number equal to 1 with probability   
  )

 and equal to 0 with probability     
  )

. Let  

     represent the random number that we generate for the cell row   and column  . 

 

We then apply the following formula: 

 ̂       )      ̂   
   for                   

 

This methodology allows taking into account all the information of the upper triangle and reproducing 

negatives in the estimated triangle. 

 

These two extensions presented in section 3 allow the application of RJMCMC on most triangles, 

including the ones which present negative and incremental amounts equal to zero. We will then be 

able to apply the methodology to a whole range of market triangles as shown in the Examples section. 

 

 Applications 

We have applied RJMCMC with these extensions to a whole set of market anonymous triangles kindly 

provided by the Belgian supervisor (Banque Nationale Belge). Indeed, we have run RJMCMC on 17 

paid triangles for different lines of business: motor liability, general liability, legal protection and fire. 

We have launched RJMCMC for each of these triangles; we have summarized the means and the 

standard deviations in the following graphs. Results obtained with the RJMCMC algorithm are then 

compared with the traditional methods of Chain Ladder / Mack and Bootstrap. 

The triangles are numbered from A to Q. 
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Figure 5: Means of the reserves 

 

To draw a comparison between methods we have compared the results with the mean of the three 

methods for each triangle. 

We can observe that the results of the mean valuation are quite similar, but the mean obtained with 

the RJMCMC method is often lower than the one estimated with the Bootstrap. For triangle 13 the 

Chain Ladder method seems quite optimistic compared to the two other methods. 

 

Let’s now consider the coefficients of reserves variations obtained with the different methods. 
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Figure 6: Coefficients of reserves variations 

 

We can observe that for most triangles, the coefficients of reserves variations estimated by the 

RJMCMC algorithm are lower than the ones computed with the Bootstrap. It is also most of the time 

true for the Chain Ladder / Mack method. 

This seems quite logical because RJMCMC uses two different models: one for the right part and one 

for the left part of the triangle, these models being adapted to the number of data available. Thus, the 

volatility is reduced compared to the other methods for which a unique model is applied on the whole 

triangle, which increases the risk of uncertainty especially for the tail distribution. 

For triangle 13, the coefficient of variations obtained with the Bootstrap method is not represented as 

the methodology could not be applied to this specific triangle. 

 

As a conclusion, without any required manual adjustment: 

- RJMCMC method leads to quite similar means in comparison with the other traditional 

methods; 

- However, its coefficient of variation is often lower than the Mack and the Bootstrap 

methodologies. 
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3. EXTENSIONS OF THE TAIL DISTRIBUTION 

One of the main commonly admitted advantages of the RJMCMC method is that it does not require 

any manual procedure from the expert because the algorithm will find by itself the best model to apply.  

However, limiting it to an exponential decay for the right part of the triangle might seem a little bit 

restrictive; several other functions could be more adapted in some cases. 

This is what we propose to study here with a measure which enables to get an idea of the goodness of 

fit for each other used function. 

 

 Application of RJMCMC to other tail distribution functions 

This section is dedicated to test other tail distribution functions than the exponential decay. Indeed, we 

propose to compare it against the power, inverse power and Weibull functions. 

We propose to base our work on the classical curve fitting used to estimate the Loss Development 

Factors in the Chain Ladder methodology. Actually, it is possible to build a parallel between the 

formulas of the Loss Development Factors in Chain Ladder and the column parameters in RJMCMC. 

The main difference is that Chain Ladder deals with cumulative amounts whereas RJMCMC is based 

on incremental amounts. 

 

To illustrate it, some notations could be introduced: 

Let    be the ultimate amount for the origin year   

Let      be the cumulative amount for the origin year   and the development year   

Let    be the loss development factor of the development year  , with      

 

We now build a comparison between the estimation of the cumulative amounts with the two methods. 

With the Chain Ladder method the cumulative amount of row   and column   is estimated by: 

 ̂                 

With the RJMCMC assumptions the incremental amount of row   and column   is estimated by: 

 ̂          

Thus, the estimation of the cumulative amount of row   and column   is: 

 ̂       ∑  

 

   

 

We can make equality between these two estimations so we get: 

                ∑   

 

   

 

As               so we can simplify and delete the term   . Then, the formula above becomes: 
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           ∑   

 

   

 

This can be written: 

   ∑  

   

   

 ∑  

 

   

 

 

We can conclude that    (    )  ∑   
   
    for j>0. 

Therefore,    is proportional to  (    ) according to a factor    ),   being a discrete increasing 

function from            to       ,      . For high values of   (in the right part of the triangle)    ) is 

generally near 1 and therefore    is not far from (    ).  

Starting from this conclusion, we propose to use the curve fitting formulas commonly used in Chain 

Ladder with the following transformations: 

- Exponential function:    {     }              ), which is the one chosen by Verrall and 

Wüthrich (2012) 

- Power function:     {     }        
   

- Inverse power function:    {     }     
 

    

- Weibull function:    {     }     
 

        
     

 

These functions share a desired behavior in consideration of the assumptions of the model. They are 

decreasing in  , they are convex and their limit when      is equal to zero. 

For each function we have to choose prior values for the two parameters   and  . The values 

themselves have no real impact on the final results as the aim of the algorithm is to converge to real 

estimates but a good choice may help a faster convergence. 

The chosen values are: 

- Exponential function:      and       

- Power function:       and       

- Inverse power function:       and        

- Weibull function:     and        

 

 Computing the adjusted coefficient of determination for the different tail distribution 

functions 

The aim is to run the algorithm with each function. In our case, we launch the algorithm four times 

changing the tail distribution function each time. For each function it is possible to compute the 

corresponding adjusted coefficient of determination. It is first necessary to estimate the coefficient of 

determination for which we compute two different terms. 

The first one can be computed from the beginning because it only uses the input triangle. This is 

called the Total Sum of Squares and it consists in evaluating the variability of the initial data triangle. It 

is equal to the sum of the squared differences between each amount and the mean of all amounts: 
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Where  ̅ represents the mean of all the incremental amounts contained in the input triangle. This last 

is computed with the formula: 

 ̅  
∑ ∑     

   
   

 
   

     )
 

 

The second term needed for the calculation of the coefficient of determination is called the Residual 

Sum of Squares. It consists in evaluating the variability of the residuals estimation. It is equal to the 

sum of the squared differences between each residual and the initial amount. Thus, it must be 

computed for each iteration: 
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 ∑∑( ̂   
  )

     )
 

   

   

 

   

 

Where  ̂   
  )

 correspond to the expected amounts of the upper triangle. For the coefficient of 

determination, we only need to compute the mean of the expected amounts. Thus, the following 

formula is used to estimate the upper triangle: 

 ̂   
  )

   
  )   

  )
 

Finally, we calculate the coefficient of determination which uses the ratio between the total sum of 

squares and the residual sum of squares. 

    )
   

          
  )

       

 

 

This coefficient has to be adjusted in order to take into account the number of estimated parameters: 

    
   )

   (      )
)  

   

     )   
 

Where   is the sample size:   
    )    )

 
  

The term    ) is the number of parameters; this value changes at each simulation as the truncation 

index can move,    )     )     . 

The adjusted coefficient of determination is then computed at each iteration so, we get a distribution 

for this indicator. It is then possible to compute the mean and standard deviation of the adjusted 

coefficients of determination and several risk measures. 

 

The aim of this methodology is to help the expert choose the function that fits the best the input data. 

This could be done following some simple rules as for instance: the more the adjusted coefficient of 

determination is closed to 1, the better the function is. Therefore it can be useful to build comparison 

between the mean of the adjusted coefficients of determination computed for each tail distribution 

function and choose the one which is the closest to 1. 
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 Applications 

The aim is to run the algorithm with each function. In our case, we launch the algorithm four times 

changing the tail. 

 

 R. Verrall and M. Wüthrich Real Data example 

For the first example, we choose to use the real data example provided by Verrall and Wüthrich 

(2012). 

The use of different tail distribution functions implies that in some cases the truncation index will not 

converge to the same value. 

We observe that the exponential and the power tail distributions have a similar behavior concerning 

the choice of the truncation index, whereas the inverse power and the Weibull tail distributions are 

similar to each other but different from the two first ones. 

  

Exponential function Power function 

  

Inverse Power function Weibull function 

Figure 7: Example 1: Distribution of the truncation index for the different tail distribution functions 

 

Concerning the exponential and the power functions the truncation index seems to become stable for 

the value    , whereas for the inverse power and Weibull functions the highest probability is 

obtained for the truncation index     . 

It is then possible to compute the mean and the standard deviations of the reserves for each function. 

The comparison between the coefficients of reserves variations is the following: 

 Mean Standard deviation Coefficient of 

variations 

Exponential 1 476 794 54 840 3,71% 

Power 1 470 727 55 889 3,80% 

Inverse Power 1 485 757 52 608 3,54% 

Weibull 1 460 584 55 260 3,78% 

Table 2: Example 1: Means, standards deviations and coefficients of variations of the reserves 

obtained with the different tail distribution functions 
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The results are quite similar, even if we can observe that the inverse power function gives the highest 

mean whereas the Weibull gives the lowest which is often the case due to the structure of the 

functions. Regarding standard deviation it is more the goodness of fit which seems to impact the 

results. 

 

To illustrate the behavior of the functions, we have estimated the means of parameters   and   for 

each function. Then, we have drawn the evolution of each function depending on the index of the 

column  . 

 

Figure 8: Example 1: Graph which represents the evolutions of each function for different values of   

 

The graph has been drawn for different values of   from   to    as the lowest observed truncation 

index is    . The inverse power and the Weibull have a similar behavior which confirms the trend 

observed above concerning the choice of the truncation index. Conversely, the power and exponential 

functions are close to each other, especially for        . The inverse power function presents is the 

highest, it explains why the highest mean of reserves is obtained with this function. 

 

In order to choose the best function to fit the right part of the data, let’s build a comparison between: 

the coefficient of reserves variations, which is equal to the ratio between the standard deviation and 
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the mean; and the mean of       
 . We then can analyze whether there exists a correlation between 

these values. 

 

 

Figure 9: Example 1: Graph which represents the coefficient of reserves variations and       
  for 

each function 

 

The means of the adjusted coefficients of determination are very close, which is normal as the 

calculation is performed on the whole triangle and not only on the right part. Therefore, we should not 

consider the     
  absolutely but relatively. Hence, the     

  computed when the tail distribution is the 

exponential or power functions are a little bit greater than those computed with the inverse power or 

the Weibull functions of about 0.02%. In this example this means that the exponential is the function 

that fits best the data as the corresponding adjusted coefficient of determination is the highest. 

Regarding the coefficient of determination, we can see two groups of fit: the inverse power and 

Weibull functions on one side, and the exponential and power functions on the other side. This follows 

logically, as the mean of   is different for these two groups and therefore, the adjusted coefficient of 

determination, being dependent on the number of parameters, is different. 

This graph helps the user choose the best function to fit the right part of the column parameters. The 

function which has the best adjusted coefficient of determination (the closest to 1) and the lowest 

coefficient of reserves variations is the best function to be used.   

For example 1 it is quite difficult to make differences between all the functions because they are very 

close to each other especially regarding the value of     
 . Therefore, we can focus on the coefficient 

of determination which is the lowest for the Inverse Power; this could be the logical choice. 

 

 BNB Real Data example 

For the second example, we choose to use the “real data portfolio” which has kindly been provided by 

the Belgian supervisor Banque Nationale Belge (BNB). This triangle has been taken from real data 

(multiplied by a factor for remaining anonymous) of the Motor Liability line of business based on 14 

years of history. 
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Once again we observe that the exponential and the power tail distributions have a similar behavior 

concerning the choice of the truncation index. Conversely, the inverse power and the Weibull tail 

distributions are similar to each other but different from the two first ones. 

  

Exponential function Power function 

  

Inverse Power function Weibull function 

Figure 10: Example 2: Distribution of the truncation index for the different tail distribution functions 

 

The behavior observed here is quite different from the previous case. Indeed, regarding the 

exponential or power functions the truncation index that presents the higher probability is    , 

whereas with the inverse power or Weibull functions the truncation index that appears most of the time 

is    .  

 

Let’s now consider the means, standard deviations and coefficients of variations of the reserves 

obtained with each function. 

 Mean Standard 

deviation 

Coefficient of 

variations 

Exponential 17 735 033 1 534 723 8,65% 

Power 17 620 910 1 528 349 8,67% 

Inverse Power 18 342 090 1 479 051 8,06% 

Weibull 18 169 488 1 515 304 8,34% 

Table 3: Example 2: Means, standards deviations and coefficients of variations of the reserves 

obtained with the different tail distribution functions 

 

The lowest coefficient of variation is obtained with the inverse power function, whereas the highest 

corresponds to the use of the exponential function. As to the means of the reserves they are quite 

close even though the mean of the reserves computed with the inverse power function is higher than 

the other ones. In particular, it presents about 4% more than the mean of the reserves computed with 

the power function. 
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For example 2, we have estimated the means of parameters   and   for each function. We then have 

drawn the following curves. 

 

Figure 11: Example 2: Graph which represents the evolutions of each function for different values of   

 

For this example, the lowest truncation index that we observed is    , so in this graph   goes from   

to   . Once again, the differences of behavior between the group composed by the inverse power and 

Weibull functions, and the group composed by the power and exponential functions explains the two 

different truncation indexes obtained above. The inverse power is the most prudent curve as it 

presents the highest values. Thus, it justifies that the highest mean is obtained with this function. 

 

Let’s now consider the adjusted coefficient of determination and the coefficient of reserves variations. 
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Figure 12: Example 2: Graph which represents the coefficient of reserves variations and        
  for 

each function 

 

In this example the inverse power function is the one that presents the adjusted coefficient of 

determination closest to 1. Even though, the mean of     
  computed with the Weibull function is quite 

close with just 0.01% less. The power function seems to be the one that fits the worst the data as it 

has the lowest mean for the adjusted coefficient of determination.  

For this example a negative correlation between the adjusted coefficient of determination and the 

coefficient of reserves variations can be observed.  

Hence, the best choice seems quite obvious as the inverse power function presents at the same time 

the highest     
  and the lowest coefficient of reserves variation. 

 

 Applications on 17 real data triangles 

To make a wide test on a full set of market data, we applied these methodologies on the 17 triangles 

provided by the Belgian supervisor. The aim was to see which function with the highest adjusted 

coefficient of determination appears most of the time. We have therefore counted how many times 

each function was the best choice for each triangle. 

 

The occurrences that we obtained are the following: 

Tail distribution function Occurrences on the 17 triangles 

Exponential 7 

Power 0 

Inverse Power 8 
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Weibull 2 

Table 4: Number of occurrences for which each function presented the best adjusted coefficient of 

determination 

 

To conclude, we can say that for most triangles the function that has the highest adjusted coefficient of 

determination is the inverse power function. Then, comes the exponential function and over 17 

triangles the Weibull function appears two times as the best tail distribution function. Finally, it seems 

that the power function does not fit very well the tail distribution as it never appears as the best fitting 

curve. 
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4. TOWARDS ONE-YEAR UNCERTAINTY 

The capital calculation required by the Solvency II European directive is based on the one-year 

uncertainty valuation. However, at this stage RJMCMC is a methodology which allows the ultimate 

volatility. Thus, an extension of the algorithm is proposed in this section. 

 

 Traditional “Actuary in the Box” method 

This methodology is the one commonly used to estimate the one-year uncertainty, in particular in the 

stochastic Bootstrap method. We propose to apply the same methodology to the RJMCMC algorithm. 

The underlying idea of the “Actuary in the box” methodology consists in evaluating for each iteration 

the first diagonal of the lower triangle with one stochastic reserving method in order to get a new 

triangle with     diagonals. Then, for each of these iterations the mean of the rest of the diagonals is 

estimated by applying again the same stochastic reserving method. 

More precisely, starting from an input triangle with   diagonals, the methodology can be described by 

the following methodology, simulation by simulation: 

 Estimation of the first diagonal of the lower triangle by applying one simulation of the 

underlying stochastic method; 

 Construction of the triangle which contains     diagonals: adding the diagonal that has just 

been estimated to the input triangle; 

 On the triangle with     diagonals: apply the underlying stochastic method with all required 

simulations to estimate the rest of the diagonals. At each iteration, of the stochastic method, 

compute the corresponding reserves; 

 Store the mean of the obtained reserves. 

 

These steps should be repeated for the chosen number of iterations. At the end of the entire method, 

we get a full distribution of the “means of the year+1 reserves” which correspond to the one-year 

uncertainty. From this we can derive the one-year mean, VaR, TVaR, confidence intervals or any 

other risk measure. 

 

 “Actuary in the box” applied to RJMCMC 

In this section, the application of the “Actuary in the box” method to the specific case of RJMCMC is 

proposed. 

The original functioning would consist in applying a new RJMCMC algorithm at each simulation, when 

a new triangle with     diagonals has been previously estimated by one simulation of RJMCMC. 

The scheme below describes the different steps of the method “Actuary in the box” applied to 

RJMCMC: 
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Figure 13: Scheme describing the functioning of the method « Actuary in the box » applied to the 

algorithm RJMCMC 

 

In theory, the original method would require an important number of simulations (e.g. 1 million * 1 

million which is over 10
12

). The calculation times required would be huge in the context of the 

computers of today. This is why, for the practical application of the method in the next section, we 

made the same assumption as the one that is currently used when the “Actuary in the box” is applied 

to the Bootstrap. Thus, the estimation of the first diagonal is done by the RJMCMC algorithm whereas 

the estimate of the mean of the rest of the diagonals is estimated by applying Chain Ladder instead of 

applying a whole RJMCMC. As Chain Ladder is a deterministic method, it does not require any 

simulation, so instead of requiring    simulations, we just need   simulations. As the means between 

RJMCMC and Chain Ladder are quite similar (<1% difference in general), this assumption allowed us 

to value a proxy based on a large panel of triangles, without calculation time issues. 

 

 Applications 

In this section, we compare the estimation of the reserves volatility obtained with different 

methodologies for the 17 triangles of the Belgian market: the Merz & Wüthrich (“Mack one-year”), the 

one-year bootstrapping, and the Solvency II standard formula. 

 

 Particular case of the Solvency II standard formula 

We will use the coefficients provided by the European Insurance and Occupational Pensions Authority 

(EIOPA) to compute an estimation of the standard deviation and the Value at Risk 99.5% of the 

reserves under Solvency II requirements. 

Depending on the considered Line of Business (LoB), the QIS 5 of the EIOPA gives directly 

coefficients to apply on the Best Estimate to get the standard deviation and the VaR 99.5%. 

For the calculation of the standard deviation, the EIOPA gives the following rates, different for each 

LoB: 
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Table 5: Table provided by the EIOPA in relation to the standard deviations for each LoB 

 

The Best Estimate of each LoB is then multiplied by the corresponding rate in order to get the 

standard deviation. 

For the calculation of the VaR 99.5%, the EIOPA gives a formula which allows the deduction of new 

coefficients. These coefficients simulate the use of a log normal distribution based on the standard 

deviation values: 

             

    (       √  (           
   ))

√  (           
   )

   

 

            being the corresponding coefficient given by the EIOPA in the table 5. 

       being the 99.5% quintile of the standard normal distribution. 

In the following table, the values of the standard deviation and the VaR 99.5% are summarized by 

LoB: 

 Standard deviation for the 

reserve risk 

VaR 99,5% for the reserve risk 

Motor vehicle liability 9,5 % 27 % 

Motor, other classes 10,0 % 29 % 

Marine, aviation, transport 

(MAT) 

14,0 % 42 % 

Fire and other property damage 11,0 % 32 % 

Third-party liability 11,0 % 32 % 

Credit and suretyship 19,0 % 60 % 

Legal expenses 9,0 % 26 % 

Assistance 11,0 % 32 % 

Miscellaneous 15,0 % 45 % 

Standard  deviation calculation per lob Standard deviation for reserve risk

Reserve risk sres Market USP

Motor vehicle liability 9,5% 9,5%

Motor, other classes 10,0% 10,0%

Marine, aviation, transport (MAT) 14,0% 14,0%

Fire and other property damage 11,0% 11,0%

Third-party liability 11,0% 11,0%

Credit and suretyship 19,0% 19,0%

Legal expenses 9,0% 9,0%

Assistance 11,0% 11,0%

Miscellaneous 15,0% 15,0%

Non-proportional reinsurance - property 20,0% 20,0%

Non-proportional reinsurance - casualty 20,0% 20,0%

Non-proportional reinsurance - MAT 20,0% 20,0%
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Non-proportional reinsurance – 

property 

20,0 % 63 % 

Non-proportional reinsurance – 

casualty 

20,0 % 63 % 

Non-proportional reinsurance – 

MAT 

20,0 % 63 % 

Table 6: Table summarizing the coefficients provided by the EIOPA to compute standard deviations 

and VaR 99.5% of the reserves 

Therefore the EIOPA provides rates directly applicable on the estimation of the reserves in order to 

compute the standard deviation and the VaR 99.5% of the reserves. These coefficients are based on 

the estimation of the one-year uncertainty. 

 

 Results 

We will use the coefficients provided by the European Insurance and Occupational Pensions Authority 

Each of the methods previously mentioned has an extension which allows us to estimate the one-year 

uncertainty: 

- Mack: the extension brought by Merz & Wüthrich allows the estimation of the one-year 

uncertainty starting from Chain Ladder; 

- Bootstrap: the application of the “Actuary in the box” allows the estimation of this volatility. For 

the practical application of this method in this part we made the assumption of Chain Ladder 

instead of using simulations inside simulations, as proposed in the reference papers; 

- RJMCMC: we also applied the “Actuary in the box” method. As for the Bootstrap the 

assumption of Chain Ladder is made. 

The graph below enables comparison of the capital calculated with these methodologies for the one-

year uncertainty estimation: 
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Figure 14: Graph representing capital as a percentage of the reserves for the different triangles 

 

There are only three triangles over the seventeen for which the capital estimation by Solvency II is 

lower than the RJMCMC estimation. The RJMCMC results also lead to lower estimations than the 

Bootstrap results. It is also the case in comparison to the Merz & Wüthrich results, except for one 

triangle. 

 

The table below represents the capital (as percentage of the mean of the reserves) obtained over the 

seventeen triangles and for each method. On the second row, a comparison is done with the results 

obtained with Solvency II. 

 Mack Bootstrap RJMCMC Solvency II 

       

                
 

23 % 20 % 16 % 28 % 

Differences with 

Solvency II 

- 20 % - 29 % - 42 % _ 

Table 7: Table summarizing the mean of capital obtained over the 17 triangles for the different 

methods 

When these capitals including the one-year uncertainty are compared, it is possible to observe that the 

capital economy realized with the RJMCMC method is quite significant: 42% capital save in mean in 

comparison to the application of the Solvency II standard calibration. The capitals calculated with the 

Bootstrap come in the second place with a 29% capital save and the Merz & Wüthrich method 

represents a capital save of 20%. 
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CONCLUSION 

In this paper, we presented several enhancements to the RJMCMC method originally presented by 

Verrall and Wüthrich (2012) to use it on a wide set of real case triangles. This enables us to test the 

method against the reality faced by insurers.  The results we obtained have been extremely 

encouraging. We get very plausible means without having to make any manual additional setup, and 

the standard deviation is lower than traditional methods. This follows logically, as the methodology 

uses two different models for the left and right parts of the triangle, instead of using one model which 

could lead to more uncertainty, especially in the tail. 

Obviously, this methodology has drawbacks. We make the assumption of an Over-Dispersed Poisson 

(ODP) distribution, however, our improvements regarding the treatment of negative increments and 

increments equal to zero solve one of the biggest issues of the ODP. 

This paper also describes the use of other parametric curves for the right part of the triangle; here we 

have often observed that the inverse power function gives better results than the exponential decay 

used in the original paper. 

The final extension that we brought concerns the estimation of the one-year uncertainty and its 

comparison with calculations resulting from Solvency II European directive standard formula. When 

setting this methodology, we realized that RJMCMC leads to a substantial capital save, which can be 

explained in an intuitive way by the nature of the method applying adapted models on the right and on 

the left parts of the triangle. 

Obviously, it is too early to say that this methodology is a genuine alternative to Chain Ladder. At this 

point, as it is quite new, it has not yet been tested intensively by insurance companies. 

However, the results we achieved applying the methodology to the set of triangles kindly provided by 

the Belgian regulator appeared quite promising to us. We hope it will encourage the readers of this 

paper to try this methodology on their own triangles, and we will obviously be more than happy to 

discuss their findings with them.  
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APPENDIX 1: Example of Verrall and Wüthrich 

 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

0 136 367 59 390 18 031 13 757 12 591 9 511 10 613 10 947 14 640 4 967 9 221 5 953 6 942 3 594 3 464 3 280 2 530 433 1 491 894 2 108 1 413 

1 143 135 69 523 21 331 18 166 15 104 13 410 15 194 14 721 12 354 9 083 9 649 8 254 6 984 4 218 6 669 2 753 2 503 3 891 1 372 1 402 1 672  

2 146 469 73 290 22 224 15 080 15 785 12 589 27 961 16 505 10 320 12 852 8 940 9 027 4 052 4 336 2 955 6 672 2 411 4 356 1 707 2 193   

3 158 518 73 610 24 624 19 841 16 214 17 950 12 080 16 914 12 862 14 094 12 028 6 659 9 111 8 113 6 426 3 378 3 202 5 785 2 708    

4 158 633 65 824 25 340 17 879 17 779 18 093 16 734 20 694 11 511 8 813 13 200 13 949 9 399 5 141 5 162 5 865 2 082 3 430     

5 153 215 71 859 24 614 18 065 17 541 21 822 17 675 16 447 12 182 16 129 12 467 8 285 4 905 8 428 2 668 1 517 3 263      

6 153 185 62 514 19 910 19 775 17 365 18 239 13 093 15 636 14 740 18 535 19 887 10 766 10 989 6 560 6 183 3 010       

7 150 974 66 571 24 855 18 073 18 963 20 361 18 194 18 688 16 250 20 410 24 203 9 603 8 991 13 309 6 535        

8 141 432 63 586 20 321 15 976 18 783 16 963 19 225 16 359 17 893 8 091 10 392 8 754 8 693 6 045         

9 141 554 65 956 23 087 19 796 22 145 21 470 27 245 25 583 20 029 14 840 9 973 12 614 7 478          

10 141 899 64 258 23 353 17 200 16 025 17 436 23 785 20 398 18 687 13 833 11 289 12 459           

11 145 037 70 090 25 843 19 487 20 067 23 594 18 213 23 298 11 452 13 592 13 327            

12 135 739 68 260 28 177 17 838 27 486 21 476 24 579 16 298 12 245 12 785             

13 135 350 74 195 26 675 20 490 19 866 16 891 11 969 14 893 15 814              

14 132 847 70 745 24 310 22 012 20 563 15 652 15 218 16 454               

15 135 951 69 499 24 412 20 762 15 747 13 831 20 672                

16 131 151 62 484 21 730 18 837 13 123 14 709                 

17 130 188 60 074 23 324 12 529 16 653                  

18 118 505 56 117 18 230 13 956                   

19 118 842 58 829 22 201                    

20 121 011 64 845                     

21 132 116                      

 

Table representing the example of incremental paid used by Verrall & Wüthrich in their paper 
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APPENDIX 2: Example of the BNB 

 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 136 367 59 390 18 031 13 757 12 591 9 511 10 613 10 947 14 640 4 967 9 221 5 953 6 942 3 594 

1 143 135 69 523 21 331 18 166 15 104 13 410 15 194 14 721 12 354 9 083 9 649 8 254 6 984 4 218 

2 146 469 73 290 22 224 15 080 15 785 12 589 27 961 16 505 10 320 12 852 8 940 9 027 4 052 4 336 

3 158 518 73 610 24 624 19 841 16 214 17 950 12 080 16 914 12 862 14 094 12 028 6 659 9 111 8 113 

4 158 633 65 824 25 340 17 879 17 779 18 093 16 734 20 694 11 511 8 813 13 200 13 949 9 399 5 141 

5 153 215 71 859 24 614 18 065 17 541 21 822 17 675 16 447 12 182 16 129 12 467 8 285 4 905 8 428 

6 153 185 62 514 19 910 19 775 17 365 18 239 13 093 15 636 14 740 18 535 19 887 10 766 10 989 6 560 

7 150 974 66 571 24 855 18 073 18 963 20 361 18 194 18 688 16 250 20 410 24 203 9 603 8 991 13 309 

8 141 432 63 586 20 321 15 976 18 783 16 963 19 225 16 359 17 893 8 091 10 392 8 754 8 693 6 045 

9 141 554 65 956 23 087 19 796 22 145 21 470 27 245 25 583 20 029 14 840 9 973 12 614 7 478  

10 141 899 64 258 23 353 17 200 16 025 17 436 23 785 20 398 18 687 13 833 11 289 12 459   

11 145 037 70 090 25 843 19 487 20 067 23 594 18 213 23 298 11 452 13 592 13 327    

12 135 739 68 260 28 177 17 838 27 486 21 476 24 579 16 298 12 245 12 785     

13 135 350 74 195 26 675 20 490 19 866 16 891 11 969 14 893 15 814      

 

Table representing the example of incremental paid provided by the Belgian supervisor 

  



 

APPENDIX 3: Results for the One-Year Uncertainty 

In this appendix results obtained with the one-year uncertainty methods are summarized. The first 

table represents the means of the reserves, the second one represents the standard deviations and 

the last one represents the VaR 99.5. 

 Chain Ladder Bootstrap RJMCMC 

Triangle A 46 677 750 46 629 152 46 082 741 

Triangle B 69 488 720 69 502 203 69 289 621 

Triangle C 8 435 595 8 365 587 8 469 599 

Triangle D 52 278 371 52 363 022 52 291 539 

Triangle E 27 215 361 27 148 614 26 717 321 

Triangle F 42 633 969 42 686 650 42 675 117 

Triangle G 187 591 858 188 714 693 188 882 525 

Triangle H 104 805 800 105 286 522 105 177 118 

Triangle I 51 763 419 52 048 314 52 272 128 

Triangle J 78 522 047 79 321 792 78 325 814 

Triangle K 46 650 469 47 117 006 47 152 121 

Triangle L 94 646 432 97 000 069 92 917 671 

Triangle M 53 464 121 51 488 884 53 459 240 

Triangle N 72 192 202 70 326 763 71 284 456 

Triangle O 16 013 584 16 210 741 16 115 407 

Triangle P 131 316 376 131 281 424 131 959 642 

Triangle Q 279 760 282 279 887 079 279 777 766 

 

Means of the reserves obtained with each method for the different triangles 
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Mack Bootstrap RJMCMC Solvabilité II 

Triangle A 3 145 094 2 548 666 2 200 515 4 434 386 

Triangle B 1 851 689 1 833 886 1 733 466 6 601 428 

Triangle C 601 003 741 632 655 701 801 382 

Triangle D 1 671 128 2 058 864 1 933 899 4 966 445 

Triangle E 2 366 635 2 507 209 2 229 090 2 993 690 

Triangle F 4 394 071 3 431 226 3 195 210 4 689 737 

Triangle G 4 447 290 3 740 742 4 076 851 16 883 267 

Triangle H 4 305 528 3 226 802 2 896 710 9 432 522 

Triangle I 2 253 451 2 027 613 1 763 594 4 658 708 

Triangle J 8 059 430 4 192 639 3 261 785 7 066 984 

Triangle K 3 182 903 3 560 671 2 888 241 5 131 552 

Triangle L 17 019 894 12 983 125 10 578 773 10 411 108 

Triangle M 9 432 211 7 562 764 7 082 669 5 881 053 

Triangle N 13 605 261 9 957 920 9 173 599 7 941 142 

Triangle O 1 295 623 1 230 938 1 057 743 1 521 290 

Triangle P 12 115 836 7 170 189 6 908 454 12 475 056 

Triangle Q 6 508 081 7 712 321 7 453 576 26 577 227 

 

Standard deviation of the reserves obtained with each method for the different triangles 
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Mack Bootstrap RJMCMC Solvabilité II 

Triangle A 55 387 989 54 858 738 52 110 258 59 342 458 

Triangle B 74 398 539 74 598 622 73 840 548 88 342 549 

Triangle C 10 106 859 10 970 306 10 298 154 10 724 359 

Triangle D 60 119 012 58 388 826 57 398 386 66 462 651 

Triangle E 33 905 797 34 262 619 33 116 223 35 899 198 

Triangle F 55 265 293 53 483 906 51 119 572 56 237 553 

Triangle G 199 346 593 198 792 371 199 691 274 235 560 268 

Triangle H 116 400 761 114 090 728 112 885 117 131 605 298 

Triangle I 57 848 018 57 737 438 56 945 883 64 999 649 

Triangle J 101 679 730 91 167 557 87 112 984 98 600 624 

Triangle K 55 473 330 58 486 501 55 273 223 61 535 631 

Triangle L 147 489 373 141 330 189 127 014 660 124 846 075 

Triangle M 82 652 036 80 889 595 75 127 535 70 523 373 

Triangle N 114 788 386 103 963 730 99 704 383 95 227 182 

Triangle O 19 653 190 20 153 540 19 176 375 20 358 423 

Triangle P 165 757 390 153 022 830 152 029 608 166 945 417 

Triangle Q 296 953 678 301 776 673 300 093 439 355 665 443 

 

VaR 99.5% of the reserves obtained with each method for the different triangles 

 


