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Executive Summary

The main points coming out of this research study, taking the point of view of the ERM
provider, are the following:

• All models are wrong but some are useful as George Box said, so we prefer selecting
as the data generating model for house prices a model that can forecast accurately
house prices out-of-sample, for short-to medium-term horizon.

• The ARMA-EGARCH family of models are suitable for time-series with serial
correlation and volatility clustering such as Nationwide house price series. The
ARMA(4,3)-EGARCH(1,1) (described in Section 3.3) outperforms the GBM model
under the real-world measure in terms of forecasting short- and medium-term house
prices in the UK.

• Changing the method of parameter estimation may give different results for GBM
parameter estimation; changing the length of historical time-series also affects pa-
rameter estimates.

• The volatility estimates for the same real estate index may vary with the data
generating process assumed, with the econometric method used for parameter esti-
mation, the period of estimation. It is also different across different regions in the
UK.

• Based on the Nationwide index data, a range of values between 3.85% to 6.5%
seems representative for GBM volatility parameter (see Table 2) and 10% or 13%
is then more of a stressed scenario value.

• The NNEG values are very sensitive to LTV assumptions so the design of the ERM
product is important for risk management purposes. The NNEG valuations are
also very sensitive to the roll-up rate R. Since this is a fixed-rate in the UK, an
important risk-management control can be obtained at the outset, when the loan
is issued.

• The GBM-risk-neutral and the computationally equivalent Black model do not
satisfy the theoretical foundations to be used for valuations of NNEGs. GBM is
not only statistically unsound. Short-selling is currently impossible in housing spot
markets. In addition, there is no futures market on residential property in the UK
so Black 76 does not apply here.

• Under current market conditions the GBM-risk-neutral/Black 76 may inflate the
NNEGs values through higher than necessary volatility at long horizons. This effect
may impact on the availability of ERMs and the final cost carried by the borrowers.
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• The GBM-risk-neutral/Black 76 model may swing the opposite way when the risk-
free rates are larger than the rental yield, overestimating future house prices and
underestimating NNEGs.

• For short horizons, such as two years and ignoring seasonality, it is possible for the
Black-Scholes model to give similar forecasts with ARMA-GARCH models, in very
calm market conditions. For long horizons however, by construction, the variance
of house price capital returns increases linearly with time.

• The GBM-risk-neutral/Black 76 is currently inappropriate theoretically, but this
does not imply that the risk-neutral valuation approach is inadequate. On the
contrary, for the valuation of NNEG we suggest the following: select an appropriate
model for house price dynamics, risk-neutralise the process and use Monte Carlo
simulations to get house prices in this risk-neutralised world and then value the
NNEG.

• It is possible to have almost the same NNEG valuations under both GBM and
ARMA-EGARCH approaches, particulary in some specific scenarios such as low
risk-free rates or high rental yield and mainly at very high roll-up rates. Hence,
in the deep in-the-money NNEG region the GBM-risk-neutral/Black 76 and the
ARMA-EGARCH model give almost the same results.

• The GBM-risk-neutral/Black 76 NNEG values are most of the time above the
ARMA-EGARCH NNEG values because the NNEG put option gets in the money at
longer horizon and GBM has returns variance increasing linearly with time whereas
the ARMA-EGARCH is more mean-reverting.

• For the GBM-risk-neutral/Black 76, computationally the NNEG values are driven
by the r− g difference, where r is the risk-free rate and g is the rental yield and by
the volatility σ.

• A positive rental yield larger than a low risk-free rate will enforce low level projec-
tions of house prices under a risk-neutral valuation approach, implying high NNEG
values calculated with a risk-neutral measure. At the same time, it is possible to
see high levels of projected house prices, under a real-world dynamics, which will
imply low NNEG valuations. In relative terms then, the GBM-rw NNEG values
will be lower than the GBM-rn NNEG values.

• We derive a rough estimation of rental yield that comes to 1% without taking into
account running costs.
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• It is difficult to understand the role played by the deferment rate, other than try-
ing to impose some model-free no-arbitrage boundary. Deferment rate cannot be
determined reliably at this moment in time.

• A no-arbitrage condition for house forward prices can be determined in terms of
buying and selling costs.

• Cash-flow analysis highlights that the main NNEG risk is focalised after 10 years
after launch of the portfolio, with 25 years the most critical time.
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1 Introduction

The reverse mortgage is a financial instrument that can be tracked back to the 1960s
in the United States, with more activity reintroduced during the early1 1980s, before
spreading to the United Kingdom where it is called equity release mortgage (ERM), in
the mid- to late 1980s. It has been reinvigorated worldwide in the aftermath of the
subprime crisis, this product being popular in the USA and the Caribbean, in the United
Kingdom and some European countries (France), but also in the Far East countries like
Japan, Korea, Hong Kong, Singapore, Australia, see AARP (2005), Addae-Dapaah &
Leong (1996), Chou et al. (2006), Ma & Deng (2013), Mitchell & Piggott (2004).
Under new regulations, ERMs have been endorsed by Robert Merton as a viable source
of funding for the elderly, see Rosato (2016). Moreover, Merton & Lai (2016) discuss a
structural design of ERMs that is meant to improve the risk sharing between the borrower
and the lender while also examining the role of the regulator in the ERM process.
In the United Kingdom, there is often a guarantee embedded in the ERM contract stip-
ulating that any excess of the accrued loan amount above the sale value of the property
after the exit event will be written off by the lender, subject to certain conditions. This
is the no-negative-equity-guaranteed (NNEG) condition that is the primary concern with
ERMs for lenders. In the United Kingdom, an ERM must incorporate an NNEG in order
to meet the Product Standards within the Statement of Principles of the Equity Release
Council2.
Financing an ERM portfolio poses several challenges because of the long and uncertain
maturity profile of the assets. Securitisation used to be a route to get funding and
structure the various risks off-balance sheet in a form attractive to medium term note
investors. Several such securitisations have been launched in the UK.
An issuer of an ERM has to consider many factors that contribute to the price of the
ERM and subsequent valuations. The main factors are age of borrower(s), initial house
price, loan-to-value (LTV), house price growth, current risk-free rate, roll-up rate to be
applied on the loan, mortality tables, long term care (LTV) incidence, prepayment rates,
current yield curve, forward yield curve, funding issues if necessary, idiosyncratic risk due
to postcode house price differences, ratings requirements if any, regulatory requirements
(Solvency II) and most likely the list is not exhaustive. In some countries, such as Japan,
the regulator fixes some important elements in the calculation of NNEG.
In this study, we focus more on the NNEG valuation from a model risk perspective and
the associated valuations with various other important cash-flows defining various costs
of funds. An excellent description of various ERM type contracts can be found in Hosty
et al. (2008). The research has two parts. First, we focus on understanding the issues

1The Federal Home Loan Bank Board approved ERMs in 1979.
2See www.equityreleasecouncil.com/ship-standards/statement-of-principles
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around NNEG valuation and looking in detail at sensitivities (model sensitivity, parame-
ter estimates sensitivity, loan and borrower characteristics sensitivity). The second part
of the research (not yet in this version) takes a portfolio view and it considers various
costs of funds (funding costs, counterparty credit risk, residual hedging costs, cost of
solvency capital, NNEG, other sources of funds).

1.1 Mechanics of ERMs

ERMs must be the primary debt against the house that is used as collateral. The amount
to be borrowed under an ERM, sometimes called the principal limit, is determined in a
direct relationship to the house value. There are no credit requirements on the borrowers
other than keep up with paying their taxes and maintenance costs, paying service charges.
The ERM can be seen as a portfolio of an income security and a crossover put option
that is automatically applied at termination, effectively posting the house as collateral in
the loan back to the lender even if the accumulated outstanding balance is larger.
Depending on jurisdiction, there could be a variety of additional costs related to an ERM.
These include upfront costs for setting up the deal, a monthly charge for securing the
funding of the loan, monthly servicing fees in case the ERM is not on a lump sum basis.
Other important issues related to ERMs are design, securitisation and risk management
under Solvency II. Papers covering some of these issues are Andrews & Oberoi (2015),
Pfau (2016), Merton & Lai (2016). Rufenacht (2012) is an excellent reference for pricing
embedded options in insurance products using a market consistent approach. Nakajima
& Telyukova (2017) and Blevins et al. (2017) consider quantitative analyses of ERM
borrowers.

1.2 Policy consideration

In his letter to Mark Carney, the Governor of Bank of England, Philip Hammond from
HM Treasury, stated:

In discharging its general functions, the PRA must also have regard to the
regulatory principles set out in Section 3B of the Act, which are:[...]

the principle that a burden or restriction which is imposed on a person, or
on the carrying on of an activity, should be proportionate to the benefits,
considered in general terms, which are expected to result from the imposition
of that burden or restriction.

The key word here is “proportionate” and this is why it is imperative to allow insurers
to conduct internal calculations on the risks associated with ERMs. In their document
Prudential Regulation Authority (2017), the PRA made it clear that they will gauge the
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allowance made for the NNEG risk against its view of the underlying risks retained by
the issuer. Their assessment is spanned by the following four principles,

1. Securitisation where firms hold all tranches do not result in a reduction of risk to
the firm.

2. The economic value of ERM cash flows cannot be greater than either the value of
an equivalent loan without an NNEG of the present value of deferred possession of
the property providing collateral.

3. The present value of deferred possession of property should be less than the value
of immediate possession.

4. The compensation for the risks retained by a firm as a result of the NNEG must
comprise more than the best estimate cost of the NNEG.

In Prudential Regulation Authority (2018a) there is a substantial section on feedback
to responses received on various risk-calculation issues on ERMs. On point 2.29 the
PRA considers that the Black-Scholes formula is still appropriate for NNEG put option
valuation, but in CP13/18 they also made it clear that other option pricing frameworks
may be used as long as it can be demonstrated that valuations meet the four principles
enumerated above.
Black-Scholes formula has been reiterated in Prudential Regulation Authority (2018b),
that describes the final methodology on managing illiquid unrated assets and equity
release mortgages. The formula is described with two fixed values for the main two
parameters that are difficult to estimate, the volatility of the house price σ = 13% and
the minimum deferment rate q = 1%.

1.3 Summary of the components of the proposed valuation pro-
cess

The valuation process for NNEG has to clear some important hurdles:

A1 Identify a suitable economic scenario generator including the house price index under
the real-world or physical measure P . This can be useful for other risk-management
calculations such as value-at-risk or expected-shortfall.

A2 Identify a suitable mechanism for switching from real-world measure P to risk-neutral
measure Q. This step is called risk-neutralisation of valuation calculations.

B Specify the model for the random maturity determined by multiple decrements of the
ERM incorporating mortality, move to long-term care and prepayment.
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C Risk-neutral valuation of the contract (ERM or NNEG).

For step A1 insurers can select their preferred ESG (subject to regulatory approval). For
step A2, since this is an incomplete market, there is a need but also some flexibility in
selecting a method for risk-neutralisation (e.g. conditional Esscher transform) but various
methods vary in terms of theoretical and computational complexity. Insurers also have
great flexibility over the choice of maturity distribution model including possible future
mortality improvements, prepayment and so on.
The NNEG value can be considered at the portfolio level or at the loan level. In this
research we focus our analysis on individual loan NNEG calculation. Future research
should continue with investigations on NNEG valuation at portfolio level and the degree
of capital savings that can be made due to diversification of portfolios and possible NNEG
calculation at portfolio level.

2 Literature Review

Earlier models used to price ERM products used static mortality tables. Thus, the trends
in mortality rates for some vintages as well as more extreme mortality jumps observed in
society were largely ignored. Chen et al. (2010) circumvented this problem by combining
a generalised Lee-Carter model with asymmetric jump effects, with an ARMA-GARCH
model for a house price index and keeping the interest rate fixed.
Ma & Deng (2013) presented an actuarial based model for pricing the Korean ERM with
constant monthly payments and also with graduate monthly payments indexed to the
growth rate of consumer prices. They found that any shock to house prices may impact
the younger borrowers more severely.
Wang et al. (2014) developed an analytical formula for calculating the feasible loan-to-
value (LTV) ratio in an adjusted-rate ERM (RM) applied to a lump sum payment. In
their model, interest rates are modelled jointly with the adjustable-rate RM, and the
housing price follows a jump diffusion process with a stochastic interest rate. Assuming
that the loan interest rate is adjusted instantaneously with the short rate given by a CIR
model, they show that the LTV ratio is independent of the term structure of interest rates,
even when the housing prices follow an exponential Lévy process. They raise concerns
about the sustainability of the ERMs at high levels of housing price volatility.
Shao et al. (2015) consider that there are only two main risks that insurers selling ERMs
face, real-estate risk and longevity risk. They investigated the joined effect of real-estate
price risk and longevity risk on the pricing and risk profile of ERM loans. Their stochastic
multi-period model was based on a new hybrid hedonic/repeat-sales pricing model and a
stochastic mortality model with cohort trends (the Wills-Sherris model). They concluded
that using an aggregate house price index and not considering cohort trends in mortality
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may lead to an underestimation of total risk in ERMs.
The literature on ERMs is expanding rapidly, various papers considering different facets
of the ERM risk-management process.

2.1 Risk-neutral Approach

Hosty et al. (2008) describes a risk-neutral (called market consistent) approach where a
lognormal model is calibrated to the Nationwide House Price Index with a house price
volatility taken at 11%, a value obtained by upgrading the 5% p.a. to a higher value
(11%) based on the desmoothing procedure described in Booth & Marcato (2004) for
commercial properties. Although not named clearly, the data-generating process tacitly
assumed by Hosty et al. (2008) for NNEG calculus is a GBM process with the drift
calculated on a risk-neutral basis as a the difference between the yield on government
stock less a rental yield calibrated from the IPD residential property index.
Since that milestone paper, other papers considered various other models, all using risk-
neutral pricing as a valuation principle. Here is a list of models (not necessarily complete)
that priced the NNEG using the risk-neutral approach: Hosty et al. (2008), Kogure et al.
(2014), Alai et al. (2014), Ji et al. (2012),Lee et al. (2012),Wang et al. (2014),Li et al.
(2010),Chen et al. (2010).

2.2 Real-world pricing

When a very good econometric model is identified that fits well the house price data
so that forecasting is robust, an alternative can be considered based on the physical or
real-world measure. The disadvantage of this procedure is that it requires an issuer risk
premium specified exogenously or calibrated from a different market.
Hosty et al. (2008) uses the same GBM model, under a real-world measure, with a drift
specified on a best estimate approach (mean value). Remark that for GBM model the
volatility should be the same under risk-neutral approach and real-world approach. They
recognise some of the shortcomings of this model such as the fact that values of house
price index in a future period is independent from preceding periods. At the same time
they hint that a mean-reversion approach may also be appropriate.
Examples of real-world pricing methodologies are Chinloy & Megbolugbe (1994), Ortiz
et al. (2013), Lew & Ma (2012) and Ma & Deng (2013). Many of these papers fol-
low a deterministic approach to house price growth, which can be quite misleading and
dangerous.

2.3 Navigating through NNEG Models

Here we offer a concise list of main points related to models applied to NNEG valuation.
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The risk-neutralisation of predictive distributions obtained from discrete time economet-
ric models is obtained through several approaches. The main steps are as follows

1. Fit an econometric model to a time series of a house price index; VAR-DCC/GARCH
as in Kim & Li (2017), ARMA-EGARCH was fitted by Chen et al. (2010), Li et al.
(2010), Kogure et al. (2014), Yang (2011), Lee et al. (2012); a VAR model was fitted
by Shao et al. (2015), Alai et al. (2014).

2. Obtain a predictive distribution for the required horizon under the real-world (econo-
metric) measure.

3. Risk-neutralise the predictive distribution. The actual risk-neutralisation step was
done in the literature with several methods:

• the Esscher transform, see Chen et al. (2010), Li et al. (2010), Lee et al. (2012).

• the Wang transform (Wang et al. 2014). Li (2010) pointed out that for this
transform market price of risk is selected based on subjective choices and
parameter uncertainty is difficult to gauge while Tunaru (2015) discussed sit-
uations when this transform may introduce arbitrage.

• the (Bayesian) entropy (Kullback-Leibler) approach; used in Kim & Li (2017),
Kogure et al. (2014).

• stochastic discount factor approach as detailed in Alai et al. (2014) and Shao
et al. (2015), following Ang & Piazzesi (2003) and Ang et al. (2006).

4. Apply other models for risks such as mortality, long term care and prepayment that
are orthogonal to house price risk.

5. Value the target contingent claim.

One should note that other continuous-time models such as the mean-reverting process
in Fabozzi et al. (2012) or in Knapcsek & Vaschetti (2007), a jump-diffusion process as
in Wang et al. (2014), Lee et al. (2012) or Knapcsek & Vaschetti (2007), and the Levy
process also in Wang et al. (2014), are specified under the real-world measure before
switching to a risk-neutral measure.

2.4 The geometric Brownian motion model

Studies that used geometric Brownian motion for house prices related to ERM modelling
are Hosty et al. (2008), Kau et al. (1992), Huang et al. (2011), Ji (2011), Ji et al. (2012),
Pu et al. (2014). Szymanowski (1994) argued that the dynamics of house prices is well
represented by a geometric Brownian motion (GBM).
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This is in contradiction with the findings of Case & Shiller (1989) and a large body of
empirical evidence (Tunaru 2017). Using a geometric Brownian motion for house prices
is wrong for several reasons. First of all, the well-documented serial correlation of returns
of property prices is not captured. Secondly, the variance for a GBM increases infinitely
with the time horizon. Last but not least, a GBM will not be able to produce a property
crash since all paths are continuous. A GBM is used to model house prices in the ERMs
literature mainly for computational convenience.
Recent studies accept that house price time-series exhibit serial correlation that inval-
idates the GBM assumption (Kogure et al. 2014). Li et al. (2010) considered the Na-
tionwide House Price index and they remarked that, for this property index, a) there
is a strong positive autocorrelation effect among the log-returns, b) the volatility of the
log-returns varies with time, c) a leverage effect is present in the log-return series. All
these three properties invalidate the use of the GBM for house prices.

3 Modelling Approaches for NNEGs

3.1 Valuations Considerations for ERMs

While some models lead to closed-form solutions that are easier to implement and moni-
tor, more advanced models lead to Monte Carlo simulations for pricing the NNEG option.
Our calculations are organised on a monthly grid and we are going to follow the cash-
flows at the end of each month i ∈ {1, . . . , η} where η is an acceptable provisional end
maturity given by survival to 100 years3. The calculations in general are done for a loan
based on a lump-sum.
We shall denote by Yt = ln

(
Ht
Ht−1

)
the log-return of the house price index at time t.

3.2 Pricing Principles

The important vectors related to NNEG for ERMs are illustrated in Figure 1. There are
two different approaches for calculating NNEGs. One is the market consistent approach
similar to stock option pricing and based on the risk-neutral pricing, and the other is the
classical insurance pricing basis using a real-world pricing measure.

3Actuarial modelling typically assumes a maximum age of 120 rather than 100. NNEG calculations
beyond 100 years are very close to zero due to very small discount factors.
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Figure 1: The important vectors for an ERM. The vector of values are generic only for
illustration purposes. The excess is calculated as the difference between the loan balance
and the accrued funding cost.

3.2.1 Modelling Issues

A very important assumption that simplifies calculations of NNEG value is the following:

Assumption 1 The loan termination is independent of interest rate and house prices.

Lower interest rates are convenient to borrowers since their outstanding balance will grow
at a lower rate. Refinancing may not constitute an incentive due to the transaction costs
and crystallisation of payments to be made to the lender. When property prices decline,
say through a recession, this motivates borrowers to keep the ERM alive.

3.2.2 Risk-neutral pricing

In the absence of an underlying market, liquid and free of counterparty risk, it is not pos-
sible to have a direct risk-neutral approach. In other words, there is no unique martingale
pricing measure. Longevity/LTC and prepayment risks are all defining individually an
incomplete market. Moreover, the maturity of the NNEG embedded option is stochastic.
The NNEG value at the maturity date T is

V (T ) = max[KT −HT , 0] (1)

where KT is the accumulated balance of the loan and HT is the house price, at time T .

11



Under risk-neutral pricing, there is a martingale measure Q such that

V (0) = EQ

[
exp

(
−
∫ T

0
rtdt

)
V (T )

]
(2)

where {rt}t≥0 is a short-rate process.
A common assumption in the NNEG literature is to assume the independence of interest
rate processes from other stochastic process underpinning the modelling of NNEG and
furthermore, using rt ≡ r for computational simplicity and taking as given the termination
of the loan at T , the value of the ERM loan is given by

A(0) = EQ[e−rT min{KT , HT}] (3)

This formula can be further decomposed4 as

A(0) = EQ[e−rT (HT −max(HT −KT , 0))] (4)

= EQ[e−rT (KT −max(KT −HT , 0))] (5)

(6)

Formula (5) gives the value of the risky loan since one can decompose

A(0) = e−rTEQ[KT ]︸ ︷︷ ︸
present value of accumulate balance

− e−rTEQ[max(KT −HT , 0)]︸ ︷︷ ︸
value of the NNEG put option

whereas formula (4) shows that the value of the ERM can be also seen as the value today
of future house possession minus a call option on the value of the house with the strike
price KT

A(0) = e−rTEQ[HT ]︸ ︷︷ ︸
prepaid forward on house

− e−rTEQ[max(HT −KT , 0)]︸ ︷︷ ︸
call option on house

Thus, once the NNEG value embedded in the loan is determined the value of the loan
becomes easily computable since the value of the loan repayment is nothing but a zero-
coupon bond, and lenders must have robust valuation tools for the latter.

3.2.3 Risk-neutral world GBM pricing

The GBM dynamics, when specified by under the real-world measure, follows the dynam-
ics given by the equation

dHt = µHtdt+ σHtdWt (7)

For simplicity we denote by K = L0e
RT the exercise price of our NNEG put option at

maturity T , where L0 is the value of the initial loan. Details of the formulae under GBM
4I thank Andrew Cairns for pointing out this dual interpretation, similar to credit markets.
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are described in Appendix 11.
The volatility under risk-neutral world dynamics and real-world dynamics is the same.
The difference between the two types of modelling comes into the drift that is taken as
r− g under the former. Here g is the rental yield that is “assumed” to play the same role
extra income such as dividends plays for stock.5

The Black-Scholes formula behind the NNEG put option is

Put(H0, K, T ) = Ke−rTΦ(−d2)−H0e
−gtΦ(−d1) (8)

where d1 = 1
σ
√
T

[ln(H0/K) + (r − g + 0.5σ2)T ] and d2 = d1 − σ
√
T .

3.2.4 Real-world GBM pricing

Under this method securities are priced using real-world probabilities derived from the
historical information and a risk-neutral discount rate. Thus

Put(H0, K, T ) = e−r
∗T
[
KΦ (−d2)−H0e

µTΦ (−d1)
]

(9)

where d1 = 1
σ
√
T

[ln(H0/K) + (µ+ 0.5σ2)T ] and d2 = d1 − σ
√
T .

3.2.5 Black 76 Model

Some (Dowd 2018) argued that the “correct” approach is to use the Black (1976) formula
for pricing the NNEG. Under this model pricing the NNEG would be done with the
formula

Put = e−rT [KΦ(−d2)− F (T )Φ(−d1)] (10)

with
d1 = ln(F (T )/K) + 0.5σ2T

σ
√
T

, d2 = d1 − σ
√
T

where r is the risk-free rate of interest and F (T ) is the forward house price for year T ,
that also has the formula

F (T ) = H0e
(r−g)T (11)

where g is the house rental yield and H0 is the current house price.

3.2.6 Limitations of GBM-rn/Black 76 Model

Computationally, Black 76 and the GBM risk-neutral will give the same results (mnemon-
ically we will call this approach the GBM-rn/Black76) so applying Black76 would validate
computationally the Black-Scholes model.

5We consider rental yield here in order to be able to compare GBM risk neutral as used by some
insurers with other approaches. We do not necessarily agree that g 6= 0.
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Unfortunately, Black (1976) model cannot be applied in the current context for the NNEG
market since there is no futures house price contract currently traded in the UK. The
introduction of such a futures contract would complete the market and many of the
current challenges in valuing house price contingent claims would be easily solved. One
of the major impediments in launching the property futures is exactly the development
of a simple and flexible modelling approach for this asset class.
In our opinion, the formula (10) simply does not apply for house prices and this is
unrelated to the Gaussian distribution assumption behind the GBM model. The for-
ward contract on a house price cannot be calculated as in (11), simply imitating the
no-arbitrage formula for a stock paying dividend, where the dividend yield is replaced by
the net rental rate. That formula cannot work because currently we cannot shortsell the
value of a house. Hence, the no-arbitrage principle does not apply here to lock in the
forward price as in the case of corporate stock.
The NNEG put options are not tradeable instruments, not even instruments. They are
embedded options in the ERM contract. Hence, the usual futures contracts cannot be
linked to the NNEG valuations because the interest carry through the marked-to-market
and margining to very long maturities may adversely impact the futures valuation. A
period by period total-return-swap contract may be more useful and indeed this instru-
ment was more used in over-the-counter trades on real-estate residential indices such as
Halifax. Hence, what may work is a forward type of contract. To this end we can remark
that the Black (1976) provides an option pricing formula using futures values and not
forward values. This distinction is also important in the context of stochastic interest
rates and when the futures/forward underlying asset price is correlated with the interest
rates. The futures and forward prices are identical when the interest rates are constant
but even then we cannot circumvent easily the problem explained above, because of the
impossibility of shortselling.
Here are the main reservations about the GBM-rn/Black76 methodology.

• GBM as a data generating process for house prices is totally inappropriate because
it ignores serial correlation and stickiness of prices, as well as clustered volatility
and downward jumps.

• GBM may forecast inflated values of the house price, as demonstrated in Sec-
tion 3.5.3. This can be very dangerous for real-world valuations, making the NNEG
valuations very small because of the overshooting in house prices at longer horizons.

• The assumptions needed to apply the GBM-rn (Black-Scholes) or Black76 (compu-
tationally identical) are not satisfied in financial economics terms.

• Furthermore, GBM-rn/Black76 put values depend heavily on the risk-neutral in-
flation rate of house prices taken as r − g. Hence, NNEG value calculated based
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on either model may be inflated if r − g stays very small (even negative), say low
interest rates or higher rental yield, and may be undervalued if r − g is relatively
large, say high risk-free rates and/or low, zero or negative, rental yield.

• While we agree with the principle of risk-neutral valuation this should not be con-
fused or assimilated with the acceptance of GBM model as data generating process.

• In our report, we demonstrate that is possible to find models that are more suitable
as data generating processes for the house prices.

• A constant rental yield parameter from one year ahead to a long maturity (45 years)
may be unrealistic.

3.3 ARMA-EGARCH Model

The ARMA-EGARCH model is answering two problems encountered when modelling
house prices. First we have serial correlation. The ARMA part of the model should be
able to capture efficiently this effect. Secondly, negative and positive innovations may
have different effects on the conditional volatility, allowing financial markets to react
asymmetrically to bad and good news, even though in absolute value those innovations
may have the same magnitude (Patterson 2000). The model specification should also
ensure that the conditional volatility or variance is always positive.

3.3.1 Model specification under real-world measure

This model is based on a submodel for log-returns and a submodel for conditional volatil-
ities. Hence, as in Li et al. (2010), first we specify an ARMA(m,M)

Yt = c+
m∑
i=1

φiYt−i +
M∑
j=1

θjεt−j + εt (12)

where εt ∼ N(0, ht); and then, for the conditional variance ht the EGARCH(P,Q) model
is specified

ln(ht) = k +
P∑
i=1

αi ln(ht−i) +
Q∑
j=1

βj[|ε̃t−j| − E|ε̃t−j|] +
Q∑
j=1

γj ε̃t−j (13)

with ε̃t = εt√
ht

is the standardized innovation at time t, see Li et al. (2010) for more details.
Here t follows the discrete time grid dictated by the data, either monthly or quarterly for
Nationwide index.
Our main interest is to use this model and obtain forecasts of volatility to long horizons
that can be used for NNEG valuation.
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It follows then that, under the real-world measure Pt

Yt|Ft−1 ∼ N(µt, ht) (14)

where µt = c+∑m
i=1 φiYt−i +∑M

j=1 θjεt−j.
The ARMA and EGARCH exact specifications are selected based on goodness-of-fit di-
agnostic statistics.

3.3.2 Risk-neutralisation of ARMA-EGARCH

Let T be the longest possible maturity for the ERM product; as an example, for a 65 years
old if we consider 100 the longest survivor age then T = 35 and let P be the probability
measure associated with the information set FT . Consider Pt be the projected measure
P on the smaller information set Ft. Following Buhlman et al. (1996), Siu et al. (2004)
and Li et al. (2010), for a given sequence of constants λ1, λ2, . . . , λt, . . . the conditional
Esscher distribution P̃t is defined computationally through

FP̃t(y;λt|Ft) =
∫ y
−∞ e

λtxdFPt(x|Ft)
EPt(eλtYt|Ft)

(15)

The key to the risk-neutralisation under the conditional Esscher measure is to observe
that the moment generating function of Yt given Ft−1 under P̃t is calculated from

EP̃t(e
zYt ;λt|Ft−1) = EPt(e(z+λt)Yt |Ft−1)

EPt(eλtYt |Ft−1) (16)

Because Yt|Ft−1 ∼ N(µt, ht) so then it can be proved that

EP̃t(e
zYt ;λt|Ft−1) = e(µt+htλt)z+ 1

2htz
2 (17)

The risk-neutral-measure is identified from the local martingale condition by finding those
λqt such that

EP̃t(e
Yt ;λqt |Ft−1) = er−g (18)

16



with r the risk-free rate and g the rental yield6. This gives the risk-neutralising constants

λqt =
r − g − µt − 1

2ht
ht

(19)

Combining things together gives the sequence of risk-neutral measures Qt such that

EQ̃t(e
zYt ;λqt |Ft−1) = e(r−g− 1

2ht)z+ 1
2htz

2 (20)

which shows that the risk-neutralization effect is to keep the same type of normal distri-
bution but change by translation the parameters. Thus, under Qt, we have that

Yt|Ft−1 ∼ N(r − g − 1
2ht, ht) (21)

For pricing the NNEG we need to calculate the following risk-neutral expectation, see Li
et al. (2010),

e−r(k+0.5+δ)EQ[
(
L0e

R(k+0.5+δ) −Hk+0.5+δ
)+

] (22)

For simplicity let us denote by τ = k + 0.5 + δ which is the known maturity given by
the termination of the ERM and K = L0e

R(k+0.5+δ) is the accrued balance at τ which
is known. Hence the option above is a put option on Hτ . Now, a correct approach will
have to take a path-dependent approach and build recursively the chain of conditional
volatilities (variances) to the required maturity. For example, for maturity τ , the house
price Hτ can be calculated as

Hτ = H0 exp(
i=τ∑
i=1

Yi)

using Monte Carlo simulation based on (21) for the risk-neutral measure and based on (14)
under the real world measure. We shall refer to this Monte Carlo simulation approach7 as
the ARMA-EGARCH risk neutral (ARMA-EGARCH-rn) for the former and the ARMA-
EGARCH real world (ARMA-EGARCH-rw).

6In the absence of market prices for forwards/futures or total return swaps on property, selecting a
martingale measure is done with the conditional Esscher transform. An excellent discussion of technical
issues involved with using the conditional Esscher transform to identify a martingale measure under
the incomplete market setting, in relation to GARCH models, can be found in Siu et al. (2004). For
calibration purposes the local martingale condition described here arises by constructing a self-financing
portfolio with one unit of the asset S and all rental cum-income invested in the bank account. Under
the bank account numeraire, the portfolio discounted is a martingale. In other words, under the martin-
gale measure as identified above, the normalised gains process is a martingale, see Bjork (2009) for an
exposition how to deal with dividend income in asset pricing. The rental income should be considered
net of running costs where possible. Another difficulty with rental income is that when using pounds
rental income, for option pricing purposes the present value of all future rental income is needed and
calculating that looks very difficult, particularly for long horizons.

7A similar procedure applies for the ARMA-GARCH family of models.
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3.4 GBM for house price index

We first consider the case where underlying property prices follow a geometric Brownian
motion which is written as;

dHt = µHtdt+ σHtdWt, µ ∈ R, σ ∈ R+ (23)

where µ is the drift rate of house prices, and σ is the volatility of house price. dWt denotes
standard Wiener process increments under physical measure P.
This model is referred as the Black-Scholes model in the NNEG literature by an abuse
of nomenclature since the Black-Scholes model does not apply at this point in time for
real-estate markets. The main advantage of this model is computational, since it leads
to closed-form solutions for the NNEG put option prices. The risk-neutralised version

dHt = (r − g)Htdt+ σHtdWt (24)

is often used directly, particularly when the rental yield g is assumed to be given.

3.5 Parameter estimation under real-world measure

3.5.1 GBM data generating process

For the GBM process specified in (24) we estimate the model parameters on the monthly
log-return series of the Nationwide house price series between 1991 and 2016. The reason
for using this historical time series rather than the quarterly Nationwide series going back
to 1974 as used in other studies was that, for the monthly series, our sample size is almost
double the sample size of the quarterly series. Models from the GARCH family require a
longer sample in general to be able to fit reliably their parameters. Note though that in
Table 2 we analyse volatility estimation under different methods of estimation and over
different time periods.
One criticism that can be brought against the use of monthly data is that for Nationwide
the historical time series available stops in 1991 and hence is missing the big house price
fall between 1988 and 1991, which was larger than the 2007-2010 drop.8 Since it is also
feasible to use quarterly Nationwide house price series going back to 1952, and we are
also employing this quarterly series for robustness checks of our analysis, for forecasting
five years out-of-sample.
The Nationwide price series and its corresponding log-returns series used in our analysis
are illustrated in Figures 2a and 3d. From these series we keep an out of sample of 24
months 2016-2018 for a comparative forecasting exercise.

8I am grateful to Guy Thomas for pointing this out.
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Figure 2: Nationwide House Price Index Monthly between Jan 1991 and Sep 2018.

For the GBM model, after discretizing at monthly frequency, we use three methods to
estimate the parameters from historical data, the maximum likelihood estimation (MLE),
method of moments (MM) and generalised method of moments (GMM). In Table 1, we
report the estimation results for drift and volatility parameters. For Nationwide we
noticed that the MLE and MM methods give very close results. However, the GMM
method gives a slightly lower volatility and almost half the drift rate when compared to
the other two models. This indicates that the potential of model risk is real.

Table 1: Parameter estimates (annualised) for the GBM process applied to the monthly
Nationwide index, between Jan 1991 and Sep 2016, and Halifax Jan 1983 and Dec 2014

Nationwide Halifax
Method of Estimation µ σ µ σ

Maximum Likelihood (MLE) 5.36% 3.94% 5.80% 3.96%
Generalized Method of Moments (GMM) 3.33% 3.84% 6.45% 2.27%
Method of Moment (MM) 5.36% 3.94% 5.88% 3.96%

The volatilities quoted in other studies are much larger, around 10%. A possible ex-
planation is that they used quarterly data for a longer period going back to 1974 and
reporting the sample statistic for standard deviation rather than a volatility parameter
associated with a specific data-generating process. Another line of reasoning is to say
that the volatility of the residential index is approximately 5%, but then using desmooth-
ing it comes to 11% (Hosty et al. 2008). The volatility of an individual house price may
be higher than the index since the index benefits from the diversification effect. Same
argument will apply if calculations for volatility are considered at the regional level. At
the same time there is a selection bias of properties that become the collateral in the
ERM loans that may dampen the volatility effect in the opposite direction.
The exact values used for volatilities may vary from lender to lender based on portfolio
composition, vintage, etc.
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Table 2: Estimation of annualised drift and volatility parameters from Nationwide quar-
terly time series 1974-2018 for the entire UK and also across regions, using three methods
of estimation: maximum likelihood estimation (MLE), method of moments (MM) and
generalised method of moments (GMM).

Region MLE MM GMM
µ σ µ σ µ σ

Period 1974-2018
North 6.52% 6.67% 6.52% 6.69% 6.36% 6.51%
YorksHside 6.50% 6.69% 6.50% 6.71% 6.10% 6.49%
NorthWest 6.89% 5.62% 6.89% 5.63% 6.65% 5.53%
EastMids 7.02% 6.03% 7.03% 6.04% 6.83% 5.90%
WestMids 6.93% 6.16% 6.93% 6.17% 6.75% 6.17%
EastAnglia 7.24% 6.92% 7.25% 6.94% 7.01% 6.72%
OuterSEast 7.50% 6.26% 7.50% 6.27% 7.07% 6.07%
OuterMet 7.69% 5.89% 7.70% 5.91% 7.33% 5.75%
London 8.29% 6.42% 8.29% 6.44% 7.91% 6.33%
SouthWest 7.45% 6.18% 7.45% 6.20% 7.14% 6.03%
Wales 6.61% 6.63% 6.61% 6.65% 6.26% 6.52%
Scotland 6.45% 5.43% 6.45% 5.44% 6.25% 5.38%
NIreland 6.71% 8.12% 6.72% 8.15% 6.74% 7.70%
UK 7.07% 5.11% 7.07% 5.12% 6.85% 5.03%

Period covered in Hosty et al. (2008) paper 1974-2006
North 8.76% 7.02% 8.77% 7.05% 8.67% 6.82%
YorksHside 8.64% 7.01% 8.64% 7.04% 8.80% 6.83%
NorthWest 9.13% 5.64% 9.13% 5.66% 9.01% 5.60%
EastMids 8.91% 6.34% 8.91% 6.36% 8.89% 6.22%
WestMids 8.83% 6.49% 8.83% 6.52% 8.64% 6.48%
EastAnglia 8.95% 7.27% 8.95% 7.30% 9.03% 7.00%
OuterSEast 9.02% 6.47% 9.02% 6.50% 8.93% 6.31%
OuterMet 9.02% 6.00% 9.02% 6.02% 8.92% 5.86%
London 9.38% 6.40% 9.39% 6.43% 9.33% 6.25%
SouthWest 9.27% 6.42% 9.27% 6.44% 9.24% 6.26%
Wales 8.74% 6.62% 8.74% 6.64% 8.54% 6.52%
Scotland 8.44% 5.37% 8.44% 5.39% 8.42% 5.41%
NIreland 9.38% 6.52% 9.38% 6.54% 8.96% 6.59%
UK 8.82% 5.06% 8.82% 5.08% 9.02% 4.95%

Period 2007-2018
North 0.10% 4.24% 0.01% 4.29% 0.16% 4.25%
YorksHside 0.35% 4.58% 0.35% 4.63% 0.34% 4.52%
NorthWest 0.46% 4.21% 0.46% 4.26% 0.39% 4.21%
EastMids 1.69% 4.08% 1.69% 4.13% 1.76% 3.97%
WestMids 1.63% 4.13% 1.63% 4.17% 1.49% 4.13%
EastAnglia 2.42% 5.21% 2.42% 5.26% 2.65% 4.87%
OuterSEast 3.10% 5.09% 3.10% 5.14% 3.26% 4.78%
OuterMet 3.84% 5.20% 3.84% 5.25% 4.08% 4.96%
London 5.02% 6.24% 5.02% 6.31% 4.29% 6.17%
SouthWest 2.22% 4.64% 2.22% 4.69% 1.92% 4.62%
Wales 0.47% 5.72% 0.47% 5.78% 1.28% 4.97%
Scotland 0.77% 4.60% 0.77% 4.65% 0.60% 4.49%
NIreland 0.10% 10.03% -1.97% 10.06% 0.25% 9.71%
UK 2.02% 4.42% 2.02% 4.47% 1.96% 4.29%

Here we conducted a sensitivity analysis with respect to the estimation of the parameters
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of the geometric Brownian motion when applied to house price time-series in the United
Kingdom. Table 2 reports the estimates for rate of growth of house prices µ and volatility
σ, under GBM, across various regions, and using three methods of estimation.
There is variability in the estimates of house price expected growth rate and volatility,
across regions, depending on the period of estimation and method of estimation. Recall
that the estimates for monthly data of the same Nationwide series were slightly different
as well. One can note that post subprime crisis the volatility is smaller than before the
crisis and the expected growth rate decreased also substantially.
Comparing the volatility value obtained in Table 2 for the period 1974-2006 for the entire
UK we notice a small discrepancy between our estimated figures (5.06%, 5.08% and
4.95%) and the reported figure of 5% in Hosty et al. (2008), who also report an annual
volatility of 11% after applying a desmoothing9 process as described in Booth & Marcato
(2004) for commercial real estate. Furthermore, Hosty et al. (2008) also argue that
the regional effects may also add another 2-3% to the volatility estimate, bringing the
volatility estimate to a possible 13% value.
We do not believe that using a volatility estimate derived from a desmoothing process
would be valid to use, a) for housing real estate and b) as an input into a Black-Scholes
formula requiring a risk-neutral volatility10. This point is important since in the NNEG
literature 10% volatility is taken as indicative for the UK. Based on the results in Table 2
we can see that a value of 10% is already a very conservative stressed upwards estimate.
The Nationwide house price index does not incorporate any adjustments for the fact that
old houses are being replaced by new and much more expensive houses. There is no
clear mechanism on how old houses are replaced by new ones. The longest time series on
house prices in the UK goes back to 1952. It is difficult to capture precisely this effect.
Insurers can take a conservative view and apply a dilapidation discount as a haircut at
the termination of the contract. The dilapidation discount rates should increase with
time.

3.5.2 Rental Yield

Under risk-neutral world, the dynamics for both GBM and ARMA-EGARCH models
depend locally on the risk-neutral drift r − g, where r is the risk-free rate and g is the
rental yield. The latter parameter plays the role of dividend yield in equity share price
models.

9We cannot see any plausible financial economics argument to use desmoothing for a house price
index. Smoothing is documented in commercial real estate markets and not in housing markets. A
description of this technique, some criticism and some adjustments for improvement are reported in Cho
et al. (2003).

10If a risk manager would like to pursue a smoothing type of modelling for real estate we have described
briefly in section 11.4 a procedure that is valid theoretically and that applies also a more rigorous risk-
neutralisation procedure.
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The dynamics of the GBM as a continuous-time model with drift adjusted for dividend
yield is based on the assumption that all dividends are reinvestable immediately in the
equity stock. This cannot be the case for the standard house owner because of a lack of
granularity (fungibility) of real estate housing markets.
As with the dividend yield, when g increases r−g decreases and therefore the risk-neutral
distribution translates to the left. This effect increases the put options. Ceteris paribus,
one may increase NNEG values by taking higher values for rental yield and decrease
NNEG values by decreasing rental yields.
The rental yield data coming out of the Office of National Statistics and presented in
Fig. 9 indicates possible challenges in modelling rental yields dynamically.
Remark that the data represents private property rental yields but this pool of properties
represents a minority stake in the total pool of properties in the UK. Furthermore, it is
not clear whether the properties that will form the collateral in ERM loans are impacted
at all by rental yields since lenders will not accept tenancy involved in ERM. Furthermore,
while a house price index may be assumed to get some rental income, the ERM borrowers
do not have access to this income flow. The rental yield concept may introduce an
undesirable asymmetric future valuation view between the borrower and the lender on
the same collateral house.
There seems to be a lot of variation in the evolution of rental yields over time, with
a large drop observed at the end of 2009 and first half of 2010. There is also great
variation across regions in terms of rental yields evolution that needs to be managed
idiosyncratically similar to the same issue for volatility. In this study we used an average
value of 1% that is representative for 2018 in the UK for baseline scenarios, and we
considered higher and lower values (including negative) for sensitivity scenarios discussed
later on.
If the concept of rental yields is accepted for housing properties then, given the strong
influence on NNEG put options, a dynamic model for rental yields would be desirable
but also challenging.

3.5.3 Finding the ARMA-EGARCH model

For the ARMA-EGARCH models we consider a forward model selection procedure. From
all models that fit well data we select the model using an Occam’s razor approach,
looking for the simplest possible model (i.e. the smallest number of parameters) that
has significant parameters but that also provides a very good fit to the data. The model
with superior AIC and BIC goodness-of-fit is preferred.
The model we selected is the ARMA(4,3)-EGARCH(1,1) with parameters in Table 3.
There could be other ARMA-GARCH-type models that may provide a better fit than
the model we have identified. The universe of ARMA-GARCH-type models is very large
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and it is outside the scope of this research to search through the entire universe of this
model class. In addition, we worked only with Gaussian errors in the GARCH part of the
model but we would highly recommend considering other variants like Student errors.

Table 3: Parameters estimates for the ARMA(4,3)-EGARCH(1,1) model over the
monthly Nationwide house price time series between Jan 1991 and Sep 2016.

Parameter Estimate Std. Error t-value Pr(> |t|)
c 0.0071 0.0000 332.5874 0.0000
φ1 1.0550 0.0006 1843.8657 0.0000
φ2 -0.9056 0.0008 -1160.0216 0.0000
φ3 0.1075 0.0003 427.7951 0.0000
φ4 0.3013 0.0006 485.6075 0.0000
θ1 -0.7604 0.0005 -1562.1327 0.0000
θ2 1.0739 0.0003 3682.6783 0.0000
θ3 -0.0465 0.0001 -321.3835 0.0000
k -0.4436 0.1565 -2.8341 0.0046
α1 -0.0669 0.0473 -1.4133 0.1576
β1 0.9529 0.0170 56.1970 0.0000
γ1 0.1795 0.0829 2.1651 0.0304

(a) histogram of standardized residuals
(b) autocorrelation of standardized residu-
als
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Figure 3: Goodness-of-fit for the ARMA(4,3)-EGARCH(1,1) model for Nationwide House Price
Time-series Monthly Jan 1991 to Sep 2016.

The goodness-of-fit usual checks presented in Figure 3 are very good, the in-sample fit
is excellent and the conditional volatilities series are in the expected range, varying in
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a mean-reverting fashion around the value of 1% (monthly) or 3.16% on an annualised
basis. One can also notice conditional volatilities as low as 0.5% (1.6% annualised) or
1.6% (5% annualised).

3.6 Forecasting Comparison

Ultimately, a good model for house price returns should have good forecasting power, at
least at short and medium horizon. We retained the out-of-sample period of 2016-2018,
monthly, to compare the forecastability of various models.
In Table 4, we report some measures of forecasting accuracy such as root mean squared
error (RMSE) and mean average error (MAE) as well as the Diebold-Mariano test (see
Appendix 11.5 for more details) for comparing GBM model under different estimation
methods with the selected ARMA-EGARCH model, based on the out-of-sample data for
monthly Nationwide index. The models in bold provide superior forecasting performance
by comparison with the paired model. The test statistic is compared with critical values
of standard normal distribution N(0, 1). If we fail to reject the null, i.e. the p-value is
between 0.05 and 0.95 at 90% confidence level, then the two models compared produced
similar forecasts. Otherwise, the model in the direction of the statistic (1 if negative, 2
if positive) will give better forecasts.
For the short forecasting horizon of two years ARMA(4,3)-EGARCH(1,1) model produces
similar forecasts with the GBM specification, under any of the three parameter estimation
method.

Table 4: Comparing GBM model under different estimation methods with the selected
ARMA-EGARCH model with Diebold Mariano test over the out-sample of 24 months
(Oct 2016-Sep 2018).

MODEL RMSE MAE
GBM-MLE 0.00579 0.0004982
GBM-GMM 0.00581 0.0050080
GBM-MM 0.00563 0.0041140
ARMA(4,3)-EGARCH(1,1) 0.0151 0.0126

Diebold-Mariano Forecast Accuracy Testing
MODEL 1 MODEL 2 STATISTIC P-VALUE
GBM-MLE GBM-GMM -2.3477 0.0278
GBM-MLE GBM-MM -2.1684 0.0407
GBM-MLE ARMA(4,3)-EGARCH(1,1) 0.2327 0.8180
GBM-GMM GBM-MM 0.4038 0.6900
GBM-GMM ARMA(4,3)-EGARCH(1,1) 0.2649 0.7934
GBM-MM ARMA(4,3)-EGARCH(1,1) 0.2637 0.7943

In Figure 4, we illustrate the forecasting error for the out-of-sample Nationwide monthly
time series for the last two years. Our results show that it is possible, at a given point in
time and for a given forecasting horizon, to have very different models that give similar
futures house price values.
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Figure 4: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide
House Price Index Monthly for ARMA(4,3)-EGARCH(1,1) and GBM model specifications, over
the out-of-sample period Oct 2016 to Sep 2018.

One may argue that 2016-2018 was a very benign period for house prices in the UK. We
have also redone the analysis for a five year out-of-sample period, with both monthly and
quarterly data, the latter going back to 1952.
In Figure 5, we redo the same analysis for the forecasting error for the out-of-sample
Nationwide monthly time series with five years out of sample. Now, the ARMA(4,3)-
EGARCH(1,1) outperforms the GBM house price forecasting. Moreover, now the MLE
estimates for GBM dominates the MLE and GMM method, confirming that there is
substantial parameter estimation risk even for such a simple model as GBM.
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Figure 5: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide
House Price Index Monthly for ARMA(4,3)-EGARCH(1,1) and GBM model specifications, over
the out-of-sample period Oct 2013 to Sep 2018.
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Some analysts may like to use the quarterly Nationwide house price data because it goes
back to 1952, so it may have more chances to capture more extreme movements. We
redid the analysis using this version of Nationwide index time series with five years out of
sample analysis. The results are presented in Figure 6 and they show again the superiority
of the ARMA-EGARCH model in terms of forecasting future house prices.
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Figure 6: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide
House Price Index Quarterly for ARMA(4,3)-EGARCH(1,1) and GBM model specifications,
over the out-of-sample period Q4 2013 to Q3 2018.

In Table 5, we present the forecasting testing result based on monthly frequency and
refitted models.11 Even for this much longer period the forecasting under the ARMA-
EGARCH model is net superior to the forecasting under GBM. A similar conclusion can
be drawn from Table 6 where the same analysis is carried out with quarterly data.

Table 5: Comparing forecasting (monthly) under the GBM model with different estima-
tion methods versus the ARMA(4,3)-EGARCH(1,1) model with Diebold Mariano test
over the out-sample of 60 months (Oct 2012-Sep 2018).

MODEL RMSE MAE
GBM-MLE 0.0079 0.0067
GBM-GMM 0.0081 0.0069
GBM-MM 0.0090 0.0078
ARMA(4,3)-EGARCH(1,1) 0.0063 0.0051

Diebold-Mariano Forecast Accuracy Testing
MODEL 1 MODEL 2 STATISTIC P-VALUE
GBM-MLE GBM-GMM -3.9838 0.0002
GBM-MLE GBM-MM -6.7823 0.0000
GBM-MLE ARMA(4,3)-EGARCH(1,1) 3.7681 0.0004
GBM-GMM GBM-MM -6.0371 0.0000
GBM-GMM ARMA(4,3)-EGARCH(1,1) 3.9739 0.0002
GBM-MM ARMA(4,3)-EGARCH(1,1) 4.8545 0.0000

11For ease of comparison we retained the GBM model with the three estimation methods and
ARMA(4,3)-EGARCH(1,1) that again provides a good fit to the data in-sample.
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Table 6: Comparing forecasting (quarterly) under the GBM model with different estima-
tion methods versus the ARMA(4,3)-EGARCH(1,1) model with Diebold Mariano test
over the out-sample of 20 quarters (Q4 2012-Q3 2018).

MODEL RMSE MAE
GBM-MLE 0.0147 0.0129
GBM-GMM 0.0176 0.0158
GBM-MM 0.0189 0.0170
ARMA(4,3)-EGARCH(1,1) 0.0063 0.0055

Diebold-Mariano Forecast Accuracy Testing
MODEL 1 MODEL 2 STATISTIC P-VALUE
GBM-MLE GBM-GMM -4.0356 0.0007
GBM-MLE GBM-MM -3.9256 0.0009
GBM-MLE ARMA(4,3)-EGARCH(1,1) 3.6009 0.0019
GBM-GMM GBM-MM -3.4400 0.0027
GBM-GMM ARMA(4,3)-EGARCH(1,1) 4.3231 0.0004
GBM-MM ARMA(4,3)-EGARCH(1,1) 4.3598 0.0003

For the NNEG put option pricing we are going to simulate forecasting pathways, on
a monthly grid, for the conditional variance series {ht}{t≥0}. The graphs in Figure 7
describe the conditional simulated pathways for variance series and returns series under
ARMA(4,3)-EGARCH(1,1) model. For some months volatilities can spike up leading to
potentially high local NNEG values.
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Figure 7: Simulated paths (for illustrative purposes only) for the conditional volatilities and
conditional returns under the ARMA(4,3)-EGARCH(1,1) model for 45 × 12 months ahead at
55 age.

4 Assumptions for Baseline Calculations and Sensi-
tivities

Our baseline scenario inputs (as well as additional scenarios that are part of the sensitivity
analysis) are selected based on discussions with experts working on ERMs and using
public available tables from Legal & General, Just Group and Equity Release Council,
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as of November/December 2018. The assumptions made for the inputs of our analysis
reflect current market conditions on the ERM market in the UK.
The baseline scenarios and sensitivity analysis are spanned by the following essential
inputs: a vector of LTV loadings for the vector of age group, risk-free rate r or a
term structure of risked-free rates {rt}t≥0; fixed roll-up rate R; rental yield g, mortal-
ity/morbidity/prepayment rates, house price volatility σ.
The role of the assumptions presented here is to contour a profile of standard loans as
currently issued on the ERM market in the UK. Furthermore, starting from baseline
scenarios described in the market published offers, we can design more realistic what-if
scenarios that can be of interested to various market participants.

4.1 LTV

The LTVs are taken from Legal & General Table, see Table 12 in Appendix 10.3, from
which we selected only the values for the age groups we focus in our analysis. The values
are presented in Table 7. The baseline scenario is the Flexible only option, the other
sets of LTVs, Flexible Plus, Flexible Max and Flexible Max Plus are used as sensitivity
scenarios.

Table 7: Loan to values (LTVs) for various equity release mortgages issued 29/11/2018.
Source: Legal & General

Age Flexible Flexible Plus Flexible Max Flexible Max Plus
60 17.00% 21.00% 27.50% 29.50%
65 22.50% 26.50% 32.20% 35.10%
70 28.50% 33.00% 36.60% 41.10%
75 32.40% 37.00% 42.00% 47.00%
80 36.50% 42.00% 48.00% 51.50%
85 41.50% 47.00% 50.50% 53.00%
90 and over 41.50% 47.00% 50.50% 53.00%

In addition, as a sensitivity exercise we also consider the following LTV loadings taken
from ERC and described in Table 8.

Table 8: Loan to values (LTVs) for various equity release mortgages issued 18/11/2018
and 29/11/2018. Source: ERC

Age of the youngest applicant ERC1 ERC-Lite Max ERC Premier Flexible
60 20.00% 15.00% 25.00% 13.50%
65 25.50% 20.00% 30.00% 19.00%
70 30.00% 25.00% 35.00% 25.00%
75 35.00% 30.00% 40.00% 28.90%
80 40.00% 35.00% 45.00% 33.50%
85 45.00% 40.00% 50.00% 38.00%
90 and over 50.00% 45.00% 55.00% 38.00%

We consider the following average initial house prices in our calculations: for a new lump
sum customer 310,000 in line with the Equity Release Council (2018).

28



The house price risk determines the NNEG risk which is managed through two channels,
by charging a portion of the interest rate risk as the customer mortgage rate (called roll-
up rate) to cover this potential fall and by insisting on a low LTV. LTVs are in general
age-dependent, with lower LTVs for “younger” borrowers and higher LTVs for “older”
borrowers, the difference reflecting the expectation of the lender of exit rates. There is
also a differentiation by single life and joint life too; in this report we considered only
joint life. There are lenders who are willing to give larger amounts of cash to borrowers
that can prove that they are in poor health.

4.2 Risk-free rate

For the risk-free rate we take r = 1.75% that is close to the average 20 year swap rate
from Bloomberg in the last three years, see Figure 8. For sensitivity we are going to
consider r ∈ {2.0%, 2.5%; 1.25%, 0.75%}. Figure 8 illustrates the evolution of ERM rates
in the United Kingdom versus the funding proxy of a 20 year swap rate.
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Figure 8: Average of top ERM customer rates against 20 year swap rates: Source Hosty
et al. (2008) until 2006, Bloomberg and other combined by us using monthly interpolation.

4.3 Roll-up rate

For the roll-up rate we take the following two baseline rates: R1 = 4.15%(AER),
that is advertised for properties in London and South East by Legal & General (R1 =
4.13%(AER), that is advertised for properties in the Rest of UK by Legal & General) and
R2 = 5.25% which is in line with the average rates reported in Equity Release Council
(2018). For sensitivity we are going to take the baseline scenario rates and increase and
decrease them by 1% and by 2% roughly, so the values R ∈ {6.15%, 7.15%; 3.5%, 2.5%}
will describe the sensitivity values of roll-up rates. In addition, in conjunction with the
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LTV scenarios Flexible Plus, Flexible Max and Flexible Max Plus, we are going to use
Rfp = 4.43% (AER), Rfm = 4.99% (AER) and Rfmp = 5.80%, respectively and also for
the Premier Flexible LTV curve, Rpf = 4.00% (AER). Furthermore, in conjunction with
ERC-Lite and Max ERC LTV scenarios, we are going to use Rlite = 3.85% (AER) and
Rmax = 4.56%, respectively.

4.4 Rental yield

Any additional income produced by an asset, the collateral house in our case, needs to be
adjusted for in any contingent claim calculations under risk-neutral (market valuation)
approach. The concept of rental yield has been introduced into real estate valuation by
analogy with the link between dividends and share prices. However, it can be argued
that the buyer of a house is not the equivalent to an investor buying a house as an
investment asset. For the majority of buyers, houses play the role of a consumption
asset and not that of an investment asset. There is no evidence that rental yields are
driving future house prices so the expected house prices at various future long horizons
cannot be determined with growth models in the same way expected share prices may be
determined with growth models linked to dividends.
This issue is also in plain view with other similar assets that are purchased for consump-
tion mainly, such as cars or yachts. Although cars can be rented and yachts can be
chartered, the rental rates and the chartered rates are not the main determinants of the
prices of cars or yachts.12 The opposite is true for commercial real estate where indeed,
the buyers of commercial real-estate are looking mainly at the rental yield they can gen-
erate, and therefore the commercial real estate can be considered an investment asset
and rental yields do make sense.
Computationally, there are challenges in pinpoint estimation of the rental yield for the
UK. The PRA (see PRA CP13-18, paras 2.12-2.15) arrive at 2% by calculating net rental
yield as the gross rental yield (5%) minus maintenance costs, management costs, voids,
with central estimate for net rental yield as 2% but 1% permitted as a minimum value.
Moreover, it seems that currently some insurers use a value of g = 2% in line with
previous studies such as Hosty et al. (2008), Dowd (2018) and so on (see Appendix 10),
while others use g = 0%. Here we are going to take g = 1% p.a. as our average rental yield
representative for 2018. For sensitivity analysis we also take g ∈ {2%, 3%;−0.5%, 0%}.
ERM insurers may use external expertise to determine the rental yield appropriate to
their portfolios. The more precise calculations are challenging because, for houses the
buy-to-let percentage of a houses portfolio is relatively small and it varies geographically
with London and South-East as the main area. Hence, the idiosyncratic component
of rental yields is quite large. This spatial lack of homogeneity of buy-to-let activity,

12We thank Guy Thomas for this last point.
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together with the fact that less than 20% of a housing portfolio may be considered to be
associated with rented properties, makes it very difficult to consider rental yields as the
main drivers of house prices.
Some might challenge “there is no evidence that rental yields are driving future house
prices.” Some would argue that the growth in buy-to-let drove increases in prices. The
comparison between dividend yield calculation and rental yield calculation refers only
to the accounting arithmetic and not to the financial economics attached to it. There
are many differences in financial economics terms between dividend payments and rental
payments. Dividends may be seen as a drain on company value although many economists
may challenge this point of view, rent is not a drain on property value. The discussion
may continue with differentiating between investment and consumption assets but some
practitioners also argued that commercial real estate is driven by rental value despite
rent not being a drain on value. The important point in calculating the rental yield is
how this would be paid in real-terms not what it signifies or what it should represent for
a house buyer or seller.

4.5 Estimating Rental Yield with Rental Income Data

The split roughly 80% houses owned for consumption and the remaining 20% involved in
some way with renting (although the percentage of buy-to-let properties for investment
purposes is even smaller) may be used to determine the rental yield if data on the rental
income becomes available. The Office for National Statistics has been gathering data on
rental yields for a 10% of all properties rented out. From their data we have calculated
the monthly sterling rental values average for England taking into account the weights
and income given by property type.13. The monthly rental yield for England is then
calculated by dividing the average sterling rental sum to the average property price in
England in that month. In addition, we also calculated proxy average quartiles estimates
for rental yields using weighted averages of lower, median and upper quartile of monthly
sterling rental figures.14 Figure 9 displays monthly series, average, proxy median and
proxy lower and upper quartiles for England. The mean average monthly rental yield
over this period is 0.4315% (5.1776% annualised) while the mean proxy upper quartile
is 0.48% (5.76% annualised). Note that this rental yield corresponds only to the pool of
properties rented out.

13We left out the rents coming from room only.
14The proxy quartiles do not represent actual quartiles since weight averaging the medians will not nec-

essarily produce the median, for example. We produced these proxies to have a rough idea of distribution
of rental yields.
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Figure 9: Monthly series, average, proxy median and proxy lower and upper quartiles for
England between Oct 2010 and Sep 2018. Source: Author’s calculation based on data
from the Office for National Statistics.

According to the Office for National Statistics, there were about 26.4 million households
in the UK in the 2012 (following 2011 census) out of which approximately 5 million are
rented out properties.15 Hence less than 20% of properties are rented out. This means
that a rough calculation would give a total rental yield, weighted by the 20% representing
the actual renting market, of 1.03% (5.1776%× 20%) per annum.16

An even more precise calculation should take into account the net rental yield which is
calculated as the rental yield net of running costs. The latter is calculated taking into
account three elements.17 First, the voids, defined as the number of months per year the
property stays unrented. The usual rule of thumb is to assume one month’s loss of gross
rental income per annum, so the sterling pound average rental income will be multiplied
by 11/12. Then, letting agent’s fees in the range 10-15% of the rental income plus VAT
(12%-18% including VAT)at the current rate of 20%. We can take the mid-value of 15%
that needs to be deducted from the resulting sum after applying the voids. The third
component refers to maintenance costs that are typically around 15% of the gross rental
income, inclusive of any VAT. Hence, agents’ fee and maintenance cost together will erode

15Personal communication with Rhys Lewis from the Office of National Statistics.
16This is a controversial debating point and an area of judgement. The 20% weighting is my view

as the author and this is open to challenge. It has been debated with other academics and market
practitioners who are not entirely convinced about the weighting being applied. Similar to corporate
dividend payments though, if a component of the index basket does not make any payment in a given
year then its contribution to the extra income yield is marked as zero. In my view this is based on basic
accounting rules and it has nothing to do with the financial economics judgements of “what it should be
paid or might have been paid”.

17The values for these elements were selected upon consultation with specialists in the field.
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the rental income by 30%. The average net rental yield then following from the above
calculations will give an annualised net rental yield of 0.66%.
More realistic calculations carried out by ERM insurers will be aligned with the actual
property, including its size/age and location. Some actuaries questioned the 5%× 0.2 = 1%
because, a) the NNEG put option should be calculated for a single house so in that case
the rental yield is either 5% or 0, reflecting the rental status, and b) the observed rental
yield is not the same as the potential rental yield.
My answer to those point are as follows. Regarding a) the houses that are collateral in
the ERMs, by contractual terms, cannot be rented out since that will complicate legal
aspects at termination end. This implies a rental yield of 0. For b) the rental yield was
calculated from the rental income that is representative across the properties in the index.
If more than 20% of properties become available for renting the rents will dive because of
supply and demand. It is not clear what will happen with the house prices, so we cannot
say either way what will be the effect overall on the house market.
Recall that the 20% of the houses that produce rental income is not a sample of from
the total population of houses that produce rental income. It is the full subset of the
population of houses. Hence, the 80% remaining will not have one house that will pay
rent. Since we are trying to determine the dynamics of the data-generating process, at
the moment, any house price index will have to adjust rental income over the entire
population. Likewise, if 80% of the houses will produce that rental income then we
would multiply 5%× 0.80 to get the relevant rental yield, and if all houses are rented out
producing 5% rental income then 5% is the rental yield on the index.
However, while those issues are important in themselves, our modelling is using a data-
generating process for a house price index. We envisage that the NNEG valuations
obtained in this way are only “indicative”, say for a house that has exactly the same
price as the index. The data-generating process, says GBM, requires the additional
income part to be taken into account at the risk-neutralisation stage. Rental yield is
needed for GBM and for any other model employing the conditional Esscher transform.
Hence, all our calculations are performed based on house index dynamics and not single
house calculations.
When conducting loan-by-loan NNEG valuations insurers may rightly adjust the param-
eters calculated at the index level, such as rental yield or volatility, to reflect the risk in
their portfolio. The adjustment may depend on the geographic area, age of the house,
proximity to new developments such as airports, or to large employers. Thus, while the
index rental yield may be estimated at 1% or 2%, the rental yield used for the individual
loans may go up to 3% or 4%, say, and volatility may be 5% for the index, but it may
be adjusted to 7% or even 10%, to reflect the basis risk.
Another feasible solution would be to calculate the NNEG values conditioned on the
type of the property. Hence, if NNEG(1) represents the NNEG valuation calculated with
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g = 0 and NNEG(2) represents the NNEG valuation (under same model) calculated with
g = 5% then by conditioning we would have that

NNEG = 0.8×NNEG(1) + 0.2×NNEG(2). (25)

This value is evidently different from the value of the NNEG calculated with a weighted
rental yield average.

4.6 Decrement Tables

The mortality table used is the 2015-2017 Office of National Statistics Mortality Table
for Male and Female, see Table 11 in the appendix. For the Joint mortality/survival
tables we do internal calculations based on suggestions of documents from Knapcsek &
Vaschetti (2007).
Our calculations are based on the standard current (period) national mortality tables,
rather than on tables with lower mortality (given the socio-economic group involved)
with mortality improvements. The latter will produce longer decrement maturities and
ceteris paribus larger NNEG values. On the other hand, special products offered to
particular categories of borrowers have special LTVs and we considered those products
in our sensitivity analysis.
For morbidity or long term care (LTC), following discussions with insurance industry
experts, we upgraded the adjustment loadings table previously reported in Hosty et al.
(2008), to the values in Table 9.

Table 9: Percentage loading to base mortality due to long-term care entry.

Age Males (%) Females (%)
≤ 70 6 9

(70,80] 8 24
(80,90] 10 26

(90, 100] 8 16

For the prepayment rates we take the following values in Table 10. The rates in the
first column were derived by adjusting the initial prepayment rates described in Hosty
et al. (2008) to reflect current market prepayment rates based on discussions with three
insurers. The other two are stressed scenarios taking into account the insurers view that
after 20 years prepayment rates flatten out.
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Figure 10: Survival curves under different decrements assumptions based on mortality,
morbidity and voluntary prepayment.

Table 10: Prepayment rates

Year Prepayment rate (%) First stressed scenario (%) Second stressed scenario
1-2 1.0 2.5 3.0
3 2.0 3.5 4.0
4-5 2.5 3.0 3.5
6-8 2.0 2.5 3.0
9-10 2.0 2.0 2.5
11-20 2.0 2.0 2.5
21+ 2.0 2.0 2.0

The survival curves obtained under various decrements look like those illustrated in Fig-
ure 10.

5 Main Results

5.1 Baseline Scenarios

In the absence of market benchmark prices, our sensitivity calculations are gyrating
around pre-defined base case scenarios. To this end, we use the following fixed baseline
case values for the main drivers of the NNEG value. All calculations reported in this
section are done under multiple decrements (mortality, morbidity and prepayment). Like
for like calculations for single decrements are available upon request from the authors.
Figure 29 shows the comparative NNEG valuations, henceforth as percentage of lump
sum advanced, for the first and second baseline scenario (r = 1.75%, R = 4.15%, g =
1%, σ = 3.90% and standard Flexible LTV vector). For the first baseline, both models
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GBM-rn and the Arma-Egarch model give very low NNEG values. The reason for that
is a positive risk-neutral drift (r − g = 0.75%) and a relatively small volatility level
which indicates that overall the pathways values for house prices will be rising enough to
overcome the loan outstanding balance at the rate of R = 4.15%. For the second baseline
scenario, the NNEG values for the Arma-Egarch model are about half the NNEG values
produced by GBM-rn, and both sets of values are larger than the corresponding values
in the first baseline scenario. The main reason for this is the more aggressive roll-up rate
R2 = 5.25%.
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Figure 11: NNEG valuations as percentage of lump sum for GBM-rn and Arma-Egarch-rn ,
under multiple decrement rates for the two baseline scenario with r = 1.75%, g = 1%, σ = 3.90%
and standard Flexible LTV vector valuations.

The NNEG values are higher at earlier ages such as 65, 70 or 75, depending on the market
inputs, contractual LTV and other parameters used for valuation, and they decrease
rapidly after the age of 75.
We can see that, under current market calibration, the better forecasting model ARMA(4,3)-
EGARCH(1,1) has lower NNEGs than GBM calibrated NNEGs. Moreover, a roughly 1%
increase in the roll-up rate pushes up the NNEG values two orders of magnitude. The
same change in roll-up rate may also determine a switch in the peak of the NNEG from
70 to 65.
This relative ordering is the opposite to what was calculated by Li et al. (2010), due
primarily to the assumptions used. Most notably, Li et al. (2010) used a risk free rate
of r = 4.56%, a roll up-rate of R = 6.39% and a rental yield g = 2%. In their GBM
calculations, the assumed volatility is estimated over a sample period that is different
from what is used in this study. The LTV they used is also very different, since the loan
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amount in their study is fixed at GBP 30,000.
To clarify, in our discussion of potential approaches and use of models, we never claim
that there is an expected ordering between NNEG calculations under GBMrn and under
ARMA-EGARCHrn. Taking GBMrn as the fixed reference calculations, two different
models from the same class ARMA-EGARCH may give NNEG results on the other side
of the GBMrn. This is possible. Furthermore, the same model refitted over different
periods of time may again switch sides versus the GBMrn NNEG values. Finally, there
could be several models, all fitting reasonably well the house price time series, which
produce NNEG values varying around GBM NNEG values. It would be wrong to select a
model just because it gives NNEG values above GBMrn values, or below GBMrn values.
Ultimately, we do not have current benchmark values on ERMs to calibrate against.

5.2 Comparison of Baseline Scenarios across LTV loadings
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(c) Flexible Max Plus
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Figure 12: Sensitivity Analysis of NNEG valuation for baseline scenarios w.r.t.different
LTV loadings and r = 1.75%, R = 4.15%, g = 1%, σ = 3.90%.
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The LTVs play a fundamental role in NNEG valuations and they can change the profile
of the NNEG vectors as well as their overall magnitude level. Figure 12 shows the
comparison of the baseline scenarios under various market LTV loadings. The LTV has a
great influence on the final of the NNEG and one can argue that one of the most efficient
methods to manage the NNEG risk is to consider carefully the LTV.
The comparative NNEG calculations presented in Figure 12 indicate that higher LTVs
lead to a steepening of the NNEG values.

5.3 NNEG calculations under a risk-free curve

Figure 13 shows the NNEG values for the two baseline scenarios under a full risk-free
curve described in Appendix 10.10 for 26 December 2018. The calculations indicate lower
NNEG values under a full risk-free curve. Notice that ARMA-EGARCH risk-neutral
values are re-simulated with adjusted drifts every month based on changing risk-free
rates sourced from the full term structure of risk-free rates. Overall, we can see that
there are very small marginal changes in the levels of NNEG, but the profiles of NNEG
vectors under the two baseline scenarios remain the same. The reason for that is that the
only sizeable difference in risk-free rates between our constant rate of r = 1.75% and the
rates indicated in Table 20 is at the front end of the curve. However, the NNEG values
at the immediate maturities are zero due to LTV protection.
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Figure 13: Calculations of NNEGs for baseline scenarios w.r.t. risk-free curve and the
two baseline scenarios R1 = 4.15%, R2 = 5.25%g = 1%, σ = 3.90%.

Without too much reduction of generality, henceforth we will explore sensitivities to other
inputs using a constant risk-free rate(s).
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5.4 NNEG sensitivities with respect to main inputs

5.4.1 NNEG sensitivities with respect to risk-free rate

The risk-free rate impacts NNEG calculations in two ways. The obvious way is via
discount factors, a lower risk-free rate keeping the back end NNEG put payoffs still high,
or, to put it the other way, a high risk-free rate dampening the back end NNEG values.
The second channel of interference is the calibration of the conditional Esscher martingale
measure using r−g as the local drift, which also appears in the GBM-rn. This risk-neutral
local drift makes NNEG put values move in the opposite direction to risk-free rates, the
larger the risk-free value the lower the NNEG, and the lower the risk-free rate r the higher
the NNEG put value.
The analysis presented in Figure 15 shows that both GBM-rn and ARMA-EGARCH-rn
NNEG values decrease when r increases and the NNEGs increase when r decreases. This
is intuitively correct, ceteris paribus a larger r will shift the projected future house price
values in a risk-neutral world upwards, while a lower r will project lower house prices.
Furthermore, under Flexible Max Plus LTV loading, when r = 1.25% or 0.75%, the two
valuation approaches give almost identical values. Around current levels of risk-free rate,
the ARMA-EGARCH-rn valuations are substantially lower than the GBM-rn valuations.
More results under various other LTV loadings are presented in Appendix 12.
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(a) ERC LTV and r = 2%
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(b) ERC LTV and r = 2.5%
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(c) ERC LTV and r = 1.25%
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(d) ERC LTV and r = 0.75%

Figure 14: Sensitivity Analysis of NNEG valuation w.r.t. r under ERC LTV and loading
and R = 4.15%, g = 1%, σ = 3.90%.
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(c) r = 1.25%
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Figure 15: Sensitivity Analysis of NNEG valuation w.r.t. r under Flexible Max Plus LTV
loading and Rfmp = 5.8%, g = 1%, σ = 3.90%

5.4.2 NNEG sensitivities with respect to roll-up rate

The roll-up rate is decisive in the NNEG ending up in the money. It is evident that even
a slight increase in the roll-up rate, compounded monthly to 45-55 years, may inflate the
loan accumulated balance to very high values. Hence, another good tool for risk-managing
the NNEG levels attached to ERMs is having roll-up rates as low as possible.
Figure 16 displays the sensitivities of the NNEG calculations with respect to variations
in the roll-up rate. The NNEG values increase dramatically with the increase in the
roll-up rate R and decrease rapidly with the decrease in the roll-up rate to insignificant
values as soon as R = 3.5%. For large LTV levels and large R the valuations between
GBM-rn and ARMA-EGARCH-rn approaches become indistinguishable.18 Note that for
Max ERC LTV with R = 2.5% the NNEG values are virtually zero. More results under
various other LTV loadings are presented in Appendix 12.

18A comparison of NNEG values on the log-scale is presented in Appendix 12.6.
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(a) ERC LTV R = 6.15%
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(b) ERC LTV R = 7.15%
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(c) Flexible MaxPlus LTV R = 3.5%
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(d) Flexible MaxPlus LTV R = 2.5%

Figure 16: Sensitivity Analysis of NNEG valuation w.r.t.R under ERC and Flexible
MaxPlus LTV loading and r = 1.75%, g = 1%, σ = 3.90%

5.4.3 NNEG sensitivities with respect to rental yield rate

The rental yield g is another important lever for influencing NNEG calculations.
In the models we investigate in this study, the rental yield plays the opposite role to r,
such that a high g will computationally give a lower risk-neutral drift (even negative)
so the pathway of house prices is trending down, boosting the NNEG put values. The
opposite is true for low or even negative g.
The sensitivity of NNEG valuations with respect to the rental yield g under various
scenarios are presented in Figures 17. The NNEG values increase with an increase in
rental yield and decrease with the decrease in rental yield, for both the GBM-rn and
ARMA-EGARCH-rn. Intuitively this is correct, since a larger value for g implies a low
or even negative drift in the risk-neutral world so the projected house prices will be lower
in the future, implying a higher NNEG value. The opposite works in reverse, a smaller
value for g or even zero, as some insurers are using, leads to a more positive drift in
the GBM-rn model that will give increased house prices in the future and hence lower
NNEGs.
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More results under various other LTV loadings are presented in Appendix 12.
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(a) Flexible Plus g = 2%
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(b) Flexible Plus g = 3%

60 65 70 75 80 85 90
Age

0

0.02

0.04

0.06

0.08

N
N

E
G

 (
%

)

GBM-rnMale
GBM-rnFemale
GBM-rnJoint
ArmaEgarch-rnMale
ArmaEgarch-rnFemale
ArmaEgarch-rnJoint

(c) ERC g = −0.5%
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Figure 17: Sensitivity Analysis of NNEG valuation w.r.t.g under ERC with R = 4.15%,
and Flexible Plus LTV loading with Rfp = 4.43%, and r = 1.75%, Rfp = 4.43%, σ =
3.90%.

5.5 NNEG sensitivities with respect to house price volatility

Figures 18 illustrates the NNEG valuations with respect to changes in the volatility of
house prices that impact the GBM-rn approach.
The volatility of the data generating process employed for house prices plays a key role
in any option-type valuation. It is known from option theory that higher volatility will
imply higher values for the NNEG put.
For the ARMA-EGARCH volatility parameters as estimated on the Nationwide monthly
historical time series, we used an almost identical multiplication factor as coming out from
the ratio of GBM volatility in the stressed scenario versus the baseline scenario. For ex-
ample, when we stressed σGBM = 10%, the ratio to the baseline volatility of σGBM = 3.9%
is about 2.5. Hence, we multiply the series of ARMA-EGARCH volatilities by a factor
of 2.5 when redoing the NNEG calculations for the ARMA-EGARCH-rn. Likewise, for
other sensitivity values of σ, we multiply the entire vector of ARMA-EGARCH volatili-
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ties with the appropriate multiplication factor to preserve the same ratio taken for GBM
volatility values.
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(a) σ = 1%
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(b) σ = 2%
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(c) σ = 5%
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(d) σ = 8%
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(e) σ = 10%
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(f) σ = 12%

Figure 18: Sensitivity Analysis of NNEG valuation w.r.t.g under baseline loading and
r = 1.75%, R2 = 5.25% and g = 1%.

It can be noticed that the NNEG values increase with the increase in volatility and
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decrease with the decrease in volatility. Doubling the volatility level seems to increase
the NNEGs by about 75%. The NNEG values increase almost 7 times fold when switching
from σ = 5% to σ = 12%.

5.6 Sensitivity to Multiple Decrement Drivers

5.6.1 NNEG sensitivities with respect to changes in mortality rates
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(a) R1 = 4.15% and mortality up 20%
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(b) R1 = 4.15% and mortality down 20%
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(c) R2 = 5.25% and mortality up 20%
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(d) R2 = 5.25% and mortality down 20%

Figure 19: Sensitivity Analysis of NNEG valuation w.r.t. changes in mortality, for Flex-
ible LTV baseline loading, r = 1.75%, σ = 3.90%.

Here we analyse the effect of ramping up mortality rates by 20% or slowing down mortality
rates by 20% for each of the two baseline scenarios. Increasing the mortality rate will
bring forward the termination of the loans, which in turn will diminish the NNEG values
because the front months values are weighted with larger multiple decrement probabilities.
When the mortality rates decrease the NNEG values at the back end are weighted with
higher multiple decrement probabilities, and so the total NNEG values will be higher
than the baseline scenarios. The impact of 20% increase/decrease of mortality rates on
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NNEG values is quite small. In order to observe larger changes, very large changes in
mortality rates must occur.

5.6.2 NNEG sensitivities due to prepayment rates

Here we analyse the effect of ramping up prepayments by 20% or slowing down pre-
payment by 20% for each of the two baseline scenarios. We also included the scenario
of no prepayments and the scenario when the prepayments increase by 200%. Overall,
prepayment rate changes do not change very much the NNEG profile. Although the
NNEG profile does not change much as prepayment rates change, the value does when
prepayments change significantly.
From discussion with few insurers, the current evidence on prepayments is rather mixed.
For older vintages the prepayment rates are virtually zero. For younger vintages the
prepayment rates used for risk-management are higher than those reported previously in
Hosty et al. (2008). From discussion with insurers, the prepayment due to refinancing is
farther from full capacity. The main driver for prepayment seems to be downsizing when
one member of the couple, usually the husband, dies and the surviving borrower decides
to move into a smaller property.
Prepayment rates should increase in economic times characterised by recessions with
decreasing interest rate regimes following booming periods with high interest rate regimes.
For NNEGs, high prepayments and decreasing roll-up rates are offset by low risk-free rates
r. Prepayments should be of concern when risk-free rates are low and roll-up rates are
high, that is in the aftermath of a crisis such as the subprime crisis. However, most
lenders will try to ramp-up their portfolios in those times and ERM borrowers will not
switch shortly after getting their loan due to ERCs and other psychological factors. In
the aftermath of a crisis one may expect house prices to be low which will reduce the
incentive for refinancing due to the LTV constraint.
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(a) R1 = 4.15% and prepayment down to 0%
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(b) R1 = 4.15% and prepayment up 200%
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(c) R2 = 5.25% and prepayment up 20%
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(d) R2 = 5.25% and prepayment down 20%

Figure 20: Sensitivity Analysis of NNEG valuation w.r.t. changes in prepayment, for
Flexible LTV baseline loading, r = 1.75%, σ = 3.90%.

6 Implied Volatilities

One may consider using the Black-Scholes formula to obtain the implied volatilities from
the ARMMA-EGARCH NNEG values.
Here we exemplify how this can be done using our second baseline scenario. There is
one put option corresponding to each of the annual maturities. For example, a 60 year
old borrower will have 40 maturities to calculate conditionally the NNEG so there are in
theory 40 put options. Each option value will be reverse engineered through the Black-
Scholes formula to obtain the “equivalent” implied volatility.
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Figure 21: Implied vols term-structures from ARMA(4,3)-EGARCH(1,1) model prices
under second baseline scenario and g = 1%.

Figure 21 displays the implied vols term-structures from ARMA(4,3)-EGARCH(1,1)
model prices under second baseline scenario. Only calculations for non-zero NNEGs
were reported. There is clear variation up and down for the implied volatilities, which
is consistent with evolution of volatilities under ARMA-EGARCH. The implied volatili-
ties are annualised and the relatively smaller values are correct since they will drive the
growth of the variance of house price returns linearly with time. Thus, in order to arrive
at the required level under ARMA-EGARCH model, the GBM volatility should be set-up
lower.
Once again, the levels of the implied volatilities seem to suggest that values such as 11%
or 13% may be used as stress values and not as current volatility markers.
Recalculating the implied volatilities under the assumption g = 2% we get the term-
structures of implied volatilities in Figure 22. The overall level is not very much different
from the one seen in the previous figure, but one can notice a distinct downward sloping
pattern.
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Figure 22: Implied vols term-structures from ARMA(4,3)-EGARCH(1,1) model prices
under second baseline scenario with g = 2%.

Some market practitioners believe that for shorter durations, the presence of serial cor-
relation might mean that the BS volatility needed to be higher than historic volatility in
order to fit an ARMA result that did pick up that serial correlation. It is not clear to
me how increasing volatility for a process that does not have serial correlation, such as
the GBM, will induce or recover values as if serial correlation existed. This is an ad-hoc
procedure that does not have, to the best of my knowledge, any grounding into statistical
modelling.

7 Deferment Rate

7.1 PRA condition

The deferment rate has been introduced adjacently to the rental yield concept with the
aim to pinpoint some hard boundary within the NNEG valuation process. Before defining
the concept of deferment rate, we should recall the concept of rental yield. The latter has
been defined as the ratio of rental income to the price of the property. In Section 4.4 we
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described an approximate estimate based on recent rental income data from the Office
of National Statistics. Rental yield g plays an important role for fixing the drift under
risk-neutral measure for both GBM model and ARMA-EGARCH model.
The deferment rate is key to the fourth principle imposed by the PRA. Their definition
is as follows:

By deferment rate, the PRA means a discount rate that applies to the spot
price of an asset resulting in the deferment price. The deferment price is the
price that would be agreed and settled today to take ownership of the asset
at some point in the future; it differs from the forward price of an asset in
that the forward price is also agreed today, but is settled in the future.

The deferment rate should not be confused with the rental yield. The former will be
denoted henceforth by q, to keep in line with the PRA notation. If H0 is the house price
today the deferment price to get the house at future time T is denoted by ←−F (T ) and the
deferment rate q is algebraically defined then as

←−
F (T ) = H0e

−qT (26)

It is evident that←−F (T ) is the prepaid forward price of the house as the underlying asset.
Since the forward price is the future value of the prepaid forward price, it follows that

F0(T ) = erT
←−
F (T ) (27)

and combining the two relationships gives the equivalent condition

F0(T ) = H0e
(r−q)T (28)

One can recognise now the no-arbitrage formula for forward prices on stock index where
the dividend yield has been replaced with the “deferment rate” q.
Computationally, if r − q < 0 then {F0(T )}T≥0 decreases with time to maturity so the
forward house price curve will be in backwardation. Vice versa, if r − q > 0 then
{F0(T )}T≥0 increases with time to maturity so the forward house price curve will be in
contango.
The PRA condition via one of the four principles is requiring←−F (T ) < H0 which from (26)
is equivalent to ask that q > 0. At the same time, the same condition is equivalent to
F0(T ) < H0e

rT . In financial economics terms, the condition says that the forward curve
on house prices will be bounded by the current house price inflated at the risk-free rate.
There are at least two objections one can raise against the approach based on deferment
rate. Based on (28), for NNEG put valuations, the guarantee gets in the money most
likely when r−q < 0. Because of LTV protection, it will less likely be in the money when
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r − q > 0. For risk-management calculation purposes then, it is very important to have
an accurate measurement of q. Lack of data availability and long-term horizon makes
this exercise extremely difficult, if not practically impossible. Note that leasehold data
refers to give up (hypothetically) the property at time T in the future and the financial
economics gains and losses associated with a leasehold are not the same as those for a
prepaid forward contract. Prudential Regulation Authority (2018b) is recommending a
rate of q = 1%. Interestingly, this is close to the rental yield g we estimated from the
rental income data from the Office of National Statistics.
Secondly, the idea that the prepaid forward price should always be lower than the current
house price can be challenged. This condition will work obviously in normal market
conditions and for shorter maturities. However, in the aftermath of financial and economic
crises, conditions may be reversed. For example, in the aftermath of the subprime crisis
house prices dropped significantly. The usual question of “how much should you pay to
get a house in five or ten years time?” should be replaced with the question “what price
can you get on the market to sign now for possession of a house in five or ten years time?”
Even if the house price market was depressed in the aftermath of the subprime crisis,
the expectation of the market would naturally be that the market will recover after some
time and the forward curve will be in contango. Thus, it is possible that the market will
require a prepaid forward that is higher than the current house price.
The identity (28) can be rearranged as

F0(T )
H0

e−rT = e−qT (29)

so to test whether q > 0 we can use data on the left side quantities and see if

F0(T )
H0

e−rT < 1 (30)

If on the contrary F0(T )
H0

e−rT is greater than 1 then this is evidence that q < 0. We shall
call F0(T )

H0
e−rT the deferment condition term (DCT). Hence DCT > 1 is equivalent to

q < 0. Remark from 30 that a negative r automatically increases the possibility that
q < 0, which is consistent with economic periods of deep recession or depression.
In Figure 23, we plot the deferment conditions calculated for the EUREX IPD futures
(first five year maturities). The contracts do not correspond to yearly forward contracts,
they are futures with annual maturity on a December roll, but they suggest what is
plausible to happen in the real estate market. Over the period of this example, in the
aftermath of the subprime crisis, although most of the time there is clear evidence that
q > 0, there is also clear evidence that q < 0 for some maturities, and for some maturities
quite for a sustained period.
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Figure 23: Deferment ratio condition for EUREX futures contracts for the period 4 Feb
2009 to 7 Jul 2009, for all existent five IPD futures contracts.

The futures contracts may be strongly influenced by liquidity, particularly in periods of
low market liquidity such as the period illustrated in Figure 23. However, a similar con-
clusion results from the likewise analysis based on the implied forward prices extracted
from the series of total-return-swaps (TRS) traded over the counter on the same under-
lying IPD index. The data for both analyses has been discussed more amply vis-à-vis
potential arbitrage in Stanescu et al. (2014). The graphs in Figure 24 show that during
2009, over a long period of time the DCT for the December 2012 maturity forward was
above 1, implying a negative deferment rate.

51



0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

D
e
f
e
r
m

e
n
t 

C
o
n
d
it

io
n
 T

e
r
m

Time

31-Dec-10 31-Dec-11 31-Dec-12 31-Dec-13 31-Dec-14

Figure 24: Deferment ratio condition for EUREX futures contracts.

7.2 Arbitrage-Free Bounds if Forwards on House Prices Ex-
isted

Given the high level of model risk for this asset class it may be useful to have some
arbitrage-free bounds that will enforce some market-wide risk-management. The frame-
work described here is inspired by Syz & Vanini (2011). Hence, consider Ht be the value
of a property asset or portfolio or index on a total return basis at time t, and consider
that there is a forward contract on St with maturity T traded with price Ft(T ).
We take into consideration r the risk free interest rate, transaction costs kb or ks for
buying or selling a property respectively, defined for a one way transaction in percentage
terms.
For a given investment horizon T − t = τ , an investor buys a property portfolio Ht by
borrowing the proceeds, including associated friction costs, Ht(1 + kb). Simultaneously,
the investor enters a short forward position in the amount of Ft(T )(1− ks).
At the end of the investment horizon, the investor sells the property portfolio for HT (1−
ks) and also settles the short forward contract Ft(T )(1−ks)−FT (T )(1−ks) and the loan
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with interest, Ht(1 + kb)erτ . To avoid arbitrage

Ft(T )(1− ks)−Ht(1 + kb)erτ ≤ 0. (31)

or equivalently

Ft(T ) ≤ (1 + kb)
(1− ks)

Hte
rτ . (32)

On the other hand, if an arbitrageur could sell a property portfolio short19 in the amount
Ht(1− ks − k3), where k3 represents the value of the possibility to perform a short sale,
that is k3 = 1−ks if short-selling is not allowed and k3 = 0 if full short-selling is possible,
the investor then could enter a long forward position in the amount of Ft(T )(1+kb). The
combined positions at maturity T gives

FT (T )(1 + kb)− Ft(T )(1 + kb)

from the long forward contract and

Ht(1− ks − k3)erτ

from the short-sale position. The joint pay-off will allow the investor to buy property
in the amount of HT (1 + kb) and to close the short position. To avoid arbitrage, since
FT (T ) = HT , we get

Ht(1− ks − k3)erτ − Ft(T )(1 + kb) ≤ 0. (33)

or equivalently

Hte
rτ (1− ks − k3)

(1 + kb)
≤ Ft(T ) (34)

Combining (32) and (34) gives

Ht
(1− ks − k3)

(1 + kb)
erτ ≤ Ft(T ) ≤ Ht

(1 + kb)
(1− ks)

erτ (35)

Considering ρτ as the convenience yield closing the equation

Ft(T ) = Hte
(r+ρτ )τ (36)

we find by reverse engineering the lower and upper arbitrage-free bounds of the conve-
19This may be possible fractionally using a cross-hedging asset, perhaps?!
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nience yield

ρUτ = 1
τ

ln (1 + kb)
(1− ks)

(37)

ρLτ = 1
τ

ln (1− ks − k3)
(1 + kb)

(38)

Syz & Vanini (2011) showed how one can calibrate kb, ks, k3 to over-the-counter house
price derivatives on the Halifax index, endogenously. The values of these parameters can
be also taken exogenously from market information.
From (32) we can see that an upper bound for the prepaid forward price is

←−
F (T ) ≤ H0

1 + kb
1− ks

(39)

Therefore, if kb is the transaction cost for buying the property (stamp duty) and ks is
the cost for selling the property the bound is given by 1+kb

1−ks which is always greater than
1. This allows for both economic scenarios ←−F (T ) < H0 and ←−F (T ) ≥ H0 to coexist.
As of 2018, the stamp duty rate in the UK is 2% for properties (or portions) between
£125,000-250,000, 5% for properties (or portion) between £250,001-925,000, 10% for
properties (or portion) between £925,001-1.5mil. and 12% above that. For exemplifica-
tion we shall consider a property worth £275,000 so then the stamp duty is calculated as
follows: 0% on the first £125,000, 2% on the next £125,000 = £2,500, and 5% on the fi-
nal £25,000 = £1,250. Hence the stamp duty is equal to £3,750 that gives kb = 1.3636%.
In 2018, the average real estate agents’ commission was between 1% and 3% (including
VAT). Here we take ks = 2%. That would give a boundary constant equal to 103.4323%.
Hence the prepaid forward price should be smaller than 1.0343×H0. Transforming this
boundary constant into a deferment-type rate (for one year ahead)

q̃∗ = − ln(1 + kb
1− ks

)

gives q̃∗ ≈ −3.3747%. The above example should be interpreted in an approximate way
since legal costs, moving house costs, and other hidden costs are not represented.

8 Discussion of Results

The current results point out to some early important points.

• In the absence of market prices or recognised benchmark prices, it is difficult to
identify the best model (method) with reference to ERM prices. The best that
can be done under current circumstances is to (a) look for a model that has good

54



forecasting power of house prices; and (b) compare various models across a large
set of scenarios, from standard baseline to stressed scenarios.

• ARMA-EGARCH family of models outperforms the GBM model under real-world
measure in terms of forecasting short- and medium-term house prices. This is not
surprising since the theoretical properties of the GBM model are in contradiction
with the empirical stylised features of house price time series.

• The GBM (Black-Scholes) model is simple to implement but it lacks theoretical
support for this asset class. It may inflate in relative terms the NNEG for the
young age borrowers due to high variance of house prices at long maturities.

• The method of parameter estimation may give different results. For GBM the GMM
parameter estimation method may produce superior forecasting results versus MLE
and MM. At the same time, the estimates under GMM can be substantially different
from the parameter values estimated by MLE or MM.

• Black 76 model theoretical formula for pricing European options is based on the
futures of the underlying asset- house prices in this case. In the absence of a
residential house futures contract, one cannot switch modelling from spot house
prices onto futures.

• Moreover, one common mistake in some papers covering NNEG valuation is to refer
to the forward house prices in relation to the Black 76 model. In addition, if the
forward house prices are produced using a formula that has not been proved from
the first principles, the risk management for ERMs may become unreliable.

• Using multiple decrements will always deflate NNEG values due to earlier ter-
mination. In this study, we reported only multiple decrement results, but single
decrement results are also available from the authors upon request.

• It is possible to get similar NNEG vectors under very different models. Adjusting
volatilities (one value for each maturity) under GBM-rn may lead to a matching of
NNEG values produced by an ARMA-EGARCH model.

Our analysis shows that NNEG values produced by the GBM cannot be considered lower
bounds for NNEGs calculated from more appropriate models, nor upper bounds. The
only exception is the regions of high NNEG risk when the two classes of models (GBM
on one part and the ARMA-EGARCH on the other) come out almost the same.
The valuations under ARMA-EGARCH models may look more complicated computa-
tionally but theoretically they are more robust. There is still a question about what is
the best way to risk-neutralise the results. The current method of risk-neutralisation for
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the ARMA-EGARCH using the conditional Esscher transform still makes use of the r−g
in the martingale calibration and this is slightly concerning.
Further research beyond the timeline of the current study may consider a two-factor
mean-reverting diffusion model, with one factor modelling house prices and a second
factor capturing rental yields.
In the next stage of the research, the following other issues may be considered:

• enlarge the set of models by adding discount curves resulting from stochastic models

• consider how to deal with idiosyncratic house price risk

• include mean-reverting models and jump-diffusion models for house prices

• consider extreme economic scenarios similar to the ones used in rating agencies
methodologies for ERM securitization

• consider the portfolio valuation and the associated cash-flows including various costs
of funds

These further research ideas will be explored in the near future depending on funding
becoming available.
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Notations and Glossary of Terms

The following list of notations are used in this review:
g continuously compounded rental yield
Ht is the house price index at time t
Kt is the accumulated loan balance, usually equal to Kt = L0e

Rt

L0 is the initial loan value
µ is the expected growth rate for house price returns under GBM model
η is the limit total number of months to be considered
ν represents the percentage giving the LTV ratio
q(t) denotes the ERM loan survival probability at time t
R is the roll-up rate charged on the loan; this is the rate at which the loan balance grows
r is the risk free discount rate
σ is the volatility parameter for the house price series

Glossary OF Terms
ARMA-EGARCH: autoregressive moving average exponential autoregressive conditional
heteroskedasticity model
ARMA-EGARCH-rn: refers to the ARMA-EGARCH model under the risk-neutral mea-
sure.
ARMA-EGARCH-rw: refers to the ARMA-EGARCH model under the real-world mea-
sure.
Black76: the Black-Scholes variant referring to pricing European options on futures
conditional Esscher martingale measure: it is a risk-neutral measure constructed in a
specific way when we are in incomplete markets
ERC: early repayment charges
GBM: geometric Brownian motion
GBM-rn: geometric Brownian motion under risk neutral measure
GMM: generalized method of moments
Incomplete market: it is a market where a derivative product cannot be replicated from
portfolios of primary traded assets defining the market
LTV: loan to collateral house value ratio
LTC: long term care risk
MLE: maximum likelihood estimation
MM: method of moments
Morbidity rate: it refers to the rate of borrowers moving into long-term care
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Multiple decrements probability: the probability of termination of contract due to either
mortality, long-term care or prepayment
NNEG: non-negative-equity guarantee
Roll-up rate: the roll-up rate charged on the loan; this is the rate at which the loan
balance grows.
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9 Appendix A

9.1 Mortality Table Office for National Statistics

Table 11: Mortality Table Office for National Statistics 2015-2017
Age Male Female
x qx qx
55 0.56% 0.4%
56 0.61% 0.4%
57 0.61% 0.4%
58 0.68% 0.5%
59 0.75% 0.6%
60 0.85% 0.6%
61 0.96% 0.6%
62 1.02% 0.7%
63 1.12% 0.8%
64 1.22% 0.8%
65 1.26% 0.9%
66 1.47% 1.0%
67 1.64% 1.1%
68 1.58% 1.1%
69 1.89% 1.3%
70 2.09% 1.4%
71 2.28% 1.5%
72 2.57% 1.7%
73 2.72% 2.0%
74 3.18% 2.1%
75 3.53% 2.2%
76 3.82% 2.6%
77 4.27% 2.9%
78 4.60% 3.3%
79 5.42% 3.6%
80 5.72% 4.2%
81 6.38% 4.5%
82 7.21% 5.3%
83 7.89% 6.0%
84 9.07% 6.8%
85 10.42% 7.8%
86 11.49% 8.9%
87 12.06% 9.6%
88 14.22% 11.2%
89 15.38% 12.6%
90 17.01% 14.2%
91 20.26% 16.3%
92 20.79% 17.5%
93 22.32% 19.9%
94 25.25% 22.1%
95 27.05% 23.9%
96 28.71% 25.4%
97 30.49% 27.5%
98 35.92% 28.3%
99 38.74% 31.4%
100 34.60% 32.8%

10 Appendix B

Here are some assumptions previously used in the literature.

10.1 General characteristics

The minimum age for ERMs is 55/60/65. In Italy, the minimum age by law is 65. Dowd
(2018) takes 70 as the base case scenario.
Regarding costs, Hosty et al. (2008) reported the following policy expenses: administra-
tion (initial GBP500; in force GBP60; termination GBP350), distribution and sales 2.5%
of the customer advance, marketing 1% of customer advance.
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Ji (2011) used for the UK the average time delay for house price sale δ = 0.5 year, cost
for selling the property c = 2.5% of the value of property.

10.2 Rental yield

Ji (2011) used for UK the rental yield g = 2% while Dowd (2018) mentions g = 2% and
g = 3% as a base case rate, increasing to g = 4% as a stress test, and varying between
1%, 0% and −2.75% as well. Hosty et al. (2008) used 3.3%.

10.3 LTV

Table 12: Loan to values (LTVs) for various equity release mortgages issued 29/11/2018.
Source: Legal & General

Age Flexible Flexible Plus Flexible Max Flexible Max Plus
55 11.50% 16.00% 21.20% 24.00%
56 12.50% 17.00% 22.40% 25.00%
57 13.50% 18.00% 23.60% 26.00%
58 14.50% 19.00% 24.80% 27.00%
59 15.50% 20.00% 26.00% 28.00%
60 17.00% 21.00% 27.50% 29.50%
61 18.00% 22.00% 28.50% 31.00%
62 19.00% 23.00% 29.50% 32.00%
63 20.00% 24.00% 30.50% 33.00%
64 21.00% 25.00% 31.40% 34.00%
65 22.50% 26.50% 32.20% 35.10%
66 24.00% 28.00% 32.50% 36.20%
67 24.80% 29.00% 33.50% 37.30%
68 25.60% 30.00% 34.50% 38.40%
69 27.00% 31.50% 35.50% 39.50%
70 28.50% 33.00% 36.60% 41.10%
71 29.70% 34.00% 37.70% 42.20%
72 30.50% 35.00% 39.00% 43.40%
73 31.20% 35.50% 40.00% 44.60%
74 31.70% 36.00% 41.00% 45.80%
75 32.40% 37.00% 42.00% 47.00%
76 33.20% 38.00% 43.00% 48.00%
77 34.00% 39.00% 44.00% 49.00%
78 35.00% 40.00% 45.50% 50.00%
79 35.50% 41.00% 46.50% 50.50%
80 36.50% 42.00% 48.00% 51.50%
81 37.50% 43.00% 49.00% 52.50%
82 38.50% 44.00% 49.40% 53.00%
83 39.50% 45.00% 49.80% 53.00%
84 40.50% 46.00% 50.20% 53.00%
85 and over 41.50% 47.00% 50.50% 53.00%

For the LTV we also point to 40% (Dowd 2018), to 27% for new drawdowns and 32% for
new lump sum plans as reported in the Equity Release Council (ERC) 2017 Report.

63



Hosty et al. (2008) is using an initial loan advanced as £20,000 while LTV starts from
15% at age 55 and increases by 1% each year up to 50% at age 90. The minimum house
price is £70,000. This procedure sets the maximum house price20 to 133,333 at age 55.
Similarly, Li et al. (2010) has a minimum house price of £60,000, starts from 17% at age
60 and increases by 1% each year up to 50% at age 90 and an initial loan at £30,000.
An overall average value of 20% seems to be representative, but a more refined table
taken into account age is also useful.

10.4 Interest Rate Risk

The most evident risk affecting ERMs is interest rate risk. Given the long and uncertain
maturity of these loans, one needs to rely on models to simulate future paths for interest
rates. Lenders of ERMs use, in general, two types of rate. The rate R is the rate charged
on the loan. This is the rate at which the loan balance grows. Secondly, there is the
discount rate {rt : t ≥ 0} which is the discount rate used to calculate the present value
of the mortgage loan. Very often in the literature rt ≡ r, which is a constant risk-free
rate used for discounting purposes. There is evidence that, where choice is available,
borrowers will prefer adjustable rates to fixed rates.
From a lender perspective, Cho et al. (2013) advocated using a multi-period cash-flow
model incorporating house price risk, interest rate risk and termination delay. They
argue that the lump sum mortgages are more profitable and less risky than the tenure
ERMs. One possible explanation is that the analytical valuation of an ERM with tenure
payments is far more complex21 than that for a lump sum mortgage.
A very interesting observation (Pfau 2016) linked to interest rates is how the line of credit
of an ERM grows. The loan balance typically grows at a rate given by the reference
interest rate, say one-month LIBOR, a fixed spread reflecting the lender’s profit margin
and plus a fixed mortgage insurance premium. The sum rate is called the effective rate
and is applied to project the growth of the loan balance. The same rate is also applied
to increase the overall principal limit, which for line-of-credit ERM contracts is equal to
the balance of the line-of-credit plus the loan balance and plus set-asides. The design
arbitrage is that interest and insurance premiums are charged only to the loan balance.
The line-of-credit and set-aside accrue under the effective rate as if these rates are also
charged to these ledgers.
Li et al. (2010) assumed a risk-free continuously compounded rate r = 4.56% that is
the average yield from the 20-year nominal zero-coupon British government securities in
the year 2007; and a roll-up rate R = 6.39% continuously compounded obtained as the
average roll-up rate for the top 10 UK equity release providers in May 2007. Ji (2011)

20There seems to be a typo in Hosty et al. (2008) who give 233,333.
21A valuation framework that takes into consideration the mortality risk, interest rate risk and housing

price risk is detailed in Lee et al. (2012).
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used for the UK the following parameters for NNEG valuation: r = 4.75%; rate R = 7.5%
while Dowd (2018) takes as the base case r = 1.5% (and decreasing to 0.5% for a stress
scenario).
For the Korean market, Lew & Ma (2012) reported that the average value of the 10-year
government bond rates was 5.12% between 2002 and 2007 so the expected interest rate
was calculated as 7.12% after adding 2% lender’s margin. Those values were adjusted in
Feb 2012 to be 3.3.% for house prices and 6.33% for the expected interest rate.
Some articles assume independent evolution between house prices and interest rates,
Chinloy & Megbolugbe (1994), Wang et al. (2008). Others assume a two-factor model
correlating house prices and interest rate dynamics (Huang et al. 2011), or a multidimen-
sional regression model as in Chang et al. (2012) and a VAR approach as in Alai et al.
(2014).
The interest rates can be fixed, and many borrowers seem to prefer this route, but it
can be very steep, in some cases the rates being in double digit figures such as 12% or
15%. Annually-adjustable rates can be used to link the payments on the ERMs to a
reference interest rate. The reference rates that have been used on the market are the
1-year constant maturity treasury, the 1-month and 1-year LIBOR, the 10-year Treasury
rate in the USA, and the certificate of deposit (CD) rate in Korea. In order to avoid
liquidity pressures, this rate is usually not allowed to vary by more than few percentage
points within a year.

10.5 Longevity or Mortality Risk

The sellers of ERMs have considered for a long time that longevity risk is diversifiable.
Hence, by pooling a large numbers of loans we could use mortality tables to determine
the terminations of loans. The same idea applies to long-term care risk and prepayment
risk.
The mortality data used in Hosty et al. (2008) is derived from the Continuous Mortal-
ity Investigation Research (CMI “00”) mortality tables. The tables are referred to as
Immediate Annuities Male Lives (IML “00”) and the Immediate Annuities Female Lives
(IFL “00”), adjusted for cohort effects (i.e. where rates of improvement in mortality
have been different for people born in different periods historically). The tables show the
probability of death during any year for an individual of a particular age who is alive at
the start of that year.
Hosty et al. (2008) discussed how to adjust mortality rates for different socio-economic
classes and by property value. Table 14 shows the adjustment factors that occur due to
different socio-economic conditions while Table 15 indicates the adjustment factor by the
type of property.
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Table 13: Longevity expectations based on Immediate Annuities Male and Female Lives.

Year
Expectation of life at birth Expectation of life at age 65
Male Female Male Female

1841 40 42 11 12
1900 49 52 11 12
2000 76 80 16 19
2020 79 83 18 21

Notes: Derived from Continuous Mortality Investigation Research 00 tables.

Table 14: Mortality of different socio-economic classes as a percentage of population
mortality: Source Hosty et al. (2008).

Class Ages 50-64
I 72%
II 77%

IIIN 104%
IIIM 130%
IV 120%
V 180%

Table 15: Mortality assumptions by property value

Property Value Mortality Assumption
up to GBP130k 120% base

GBP130k -GBP250 k 100% base table
GBP250 k-GBP750 k 85% base table

GBP750k + 55% base table

As an additional stress scenario, Dowd (2018) considers the expected (mean) longevity
increased by two years.
One may also use the T08 series of term mortality tables, based on 2007-2010 data
collected by the CMI. We use the Office for National Statistics mortality tables (ONS
tables for 2015-2017).

10.6 Joint Mortality Modelling

In many instances the loan is given to a living couple. The loan will survive as long as
one of the couple survives. One common assumption is to use for a borrowing couple a
95% adjustment factor of the base mortality table for the male and female.
Knapcsek & Vaschetti (2007) calculate the joint cumulative probability of death after j
years for a couple (1, 2) with the formula

P12(j) = P1(j)× P2(j) (40)
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where Pi(j) is the cumulative probability of death by year j for the partner i, with i = 1, 2.
There is also a possible correlation built-in as couples can take care of each other and
survive longer.

10.7 Long Term Care Risk

When premiums were originally set for the HECM22 loans, there was no actual exit data
so the assumption made was that loan exits would occur at 1.3 times the rate of mortality,
see Rodda et al. (2004). The actuarial market practice in the UK calculates morbidity
as a factor of the mortality rate.

Table 16: Percentage loading to base mortality due to long term care entry: Source Hosty
et al. (2008).

Age Male(%) Female(%)
≤ 70 2 3

(70, 80] 4 12
(80, 90] 5 13
(90, 100] 4 8

For multi-state modelling considering the interaction between long-term care entry and
mortality is paramount because there is significantly higher mortality experienced by
long-term care residents compared to “at home” mortality means that to maintain the
same aggregate assumption for mortality by age lighter than average mortality should be
assumed for “at home” lives. Table 16, from Hosty et al. (2008), shows the long-term care
net impact of additional decrements, offset by reductions in at-home mortality, taken to
be the uplifts to base mortality, with intermediate values by linear interpolation.

10.8 House Price Risk

Although CPI and GDP are perceived as major risk factors for the house price inflation
(HPI). However the CPI deflated house price growth and the GDP deflated house price
growth vary significantly from country to country.
Ji (2011) employs the following assumption on initial house values, as detailed in Table 17.

Table 17: Minimum initial house values: Source Institute of Actuaries (2005)

Age of the younger spouse at inception 60 70 80 90
Initial house value 176,500 111,000 81,000 60,000

22The only reverse mortgage insured by the US Federal Government is called a Home Equity Conversion
Mortgage (HECM), and is only available through an Federal Housing Administration (FHA) approved
lender. If you are a homeowner age 62 or older and have paid off your mortgage or paid down a
considerable amount, and are currently living in the home, you may participate in FHA’s HECM program.
The HECM is FHA’s reverse mortgage program that enables you to withdraw a portion of your home’s
equity.
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Lew & Ma (2012) used a housing price growth rate of 3.5% per annum, reflecting the
average house price growth rate in Korea between 1986 and 2006. Moreover, Hosty et al.
(2008) argues that the house price inflation growth rate should be between RPI and the
economic growth plus a “bit”, and he gives 2.5% to 5.5% as a confidence interval for the
house price inflation, “with either extreme difficult to justify”.

10.9 Prepayment Risk

Not very much is known about the values of the prepayment rate for ERMs. In the US in
the early days of the HECM programme, a flat prepayment rate of 0.3 times the mortality
rate of the youngest borrower in the family was used. In Korea, a prepayment rate of 0.2
times the 2010 mortality rate for females was chosen based on Korean demographic data.
Prepayment risk is usually managed with early redemption charges (ERC). Hosty et al.
(2008) describe this feature that varies by different providers. The ERC can be fixed
rate charge or marked to market. In August 2007, the fixed charge scales ranged from
3% flat for the first 5 years and nil thereafter, to 7% initially stepping down to nil after
10 years and some providers applied charges for the first 20 years. Many large providers
were charging mark to market penalties with the ERC applied depending on interest
rate movements between inception and repayment. The ERCs were capped (currently at
either 20% or 25%).
Hosty et al. (2008) considered the following prepayment rates. The first set was taken
from the Norwich Union prospectus for Equity Release Funding (no.5) plc, August 2005,
as follows: ERF1, 4.4% p.a.; ERF2, 3.7%; ERF3, 2.5%; ERF4, 1.4% (prepayment rates
given by number of loans). In addition, the prepayment rates in Table 18 were noted
from Bell & Bain Ltd, Glasgow.

Table 18: Prepayment rates reported in Hosty et al. (2008)

Year Prepayment rate (%)
1-2 1.00
3 2.0
4-5 2.5
6-8 2.0
9-10 1.0
11-20 0.5
21+ 0.25

Ji (2011) separated prepayment rates into two sources, Table 18 for remortgaging of
ERMs and Table 19 for prepayment arising from changes in personal circumstances.

10.10 Discount Factors

One issue that is often neglected in NNEG valuation is the choice of discount factors.
Quite often the discount factors are derived from a unique constant risk-free rate, accepted
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Table 19: Prepayment rates reported in Ji (2011): Source Institute of Actuaries (2005)

Year Prepayment rate (%)
1 0.0
2 0.0
3 0.15
4 0.3
5 0.3
6+ 0.75

in the framework described by Knapcsek & Vaschetti (2007), see also Dowd (2018).
Kogure et al. (2014) used df(t) = (1 + r)−t with r = 0.5% for the Japanese market. Li
et al. (2010) use returns from Treasury-bills as a proxy for short-term interest rate and
Kim & Li (2017) employed the 91-day certificate of deposit as a proxy for the same risk-
free rate. Hosty et al. (2008) used a constant risk-free rate equal to 4.5% but considers
the discount rate as 4.75%, effectively extracting the NNEG risk premium by applying
the same time invariant risk premium of 0.25%.
Wang et al. (2014) and Lee et al. (2012) employ a CIR short-rate model for discount
curves, which will also fit in the framework described in Knapcsek & Vaschetti (2007).
We used in our calculations the risk-free curve on 26 December 2018, downloaded from
Bloomberg. This is described in Table 20.

Table 20: GBP Risk-free term structure of interest rates on 26 December 2018.

Maturity 26/12/2018
1M 0.67%
3M 0.73%
6M 0.77%
1Y 0.74%
2Y 0.72%
3Y 0.72%
4Y 0.78%
5Y 0.88%
6Y 0.92%
7Y 0.98%
8Y 1.05%
9Y 1.16%

10Y 1.26%
12Y 1.37%
15Y 1.47%
20Y 1.71%
25Y 1.76%
30Y 1.78%
40Y 1.69%
50Y 1.68%

10.11 Costs of Funds

Hosty et al. (2008) stated the following annualised funding costs based on the informa-
tion from the wholesale banking markets at the time of their research: average swap
rate 5.10%; funder’s margin over LIBOR 0.40%, redemption profile insurance and risk
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premium 0.25%, cost of solvency capital 0.07%.
The cost of redemption profile insurance is discussed in more detail in Hosty et al. (2008).
The idea is that funders of ERMs will buy insurance to rematch earning LIBOR on the
full outstanding balance of the portfolio, irrespective if the portfolio level falls below best
estimate such as if multiple decrements are faster than predicted, in which case there
is a cost of breaking swaps, or if the portfolio level is higher than the best estimate
such as in the case of delayed multiple decrements due to cohort behaviour, innovation
in medicine etc. in which case more swaps must be added. The financial instrument
that helps managing this risk is the balance guaranteed swap (BGS). Hosty et al. (2008)
mentions that before 2007 a full cover BGS had a cost of 70 bps p.a. and buyers of
BGS usually reduced this hedging costs by using a narrower confidence interval around
expected redemption portfolio profile.
The pricing and management of the BGS has been discussed in Fabozzi et al. (2009),
Fabozzi et al. (2010) and, more recently, in more detail in Tunaru (2017). The standard
pricing is done based on a portfolio of swaptions or amortising swaptions. One problem
frequently ignored by BGS market makers is that when a swaption is exercised, the
inherited swap, although contributing positively towards hedging the desired risk short
term, it may change later on into a liability. Pricing can be done also with a portfolio
of caps or with a portfolio of floors, that are more expensive than swaptions but they do
not carry any downside.
Another problem here is that the notional is not always amortising or accreting (negative
amortisation). The outstanding balance depends on remaining loans, individual loan
balance growth, house prices and age of borrowers. Therefore, the BGS price will be
more difficult to calculate than the usual BGS price related to forward mortgages.

11 Appendix C

The GBM dynamics is specified under the real-world measure using the equation

dHt = µHtdt+ σHtdWt (41)

For simplicity, we denote by K = L0e
RT the exercise price of our NNEG put option at

maturity T .

11.1 Risk-neutral world GBM pricing

Under risk-neutral world the dynamics changes only in the drift to

dHt = (r − g)Htdt+ σHtdWt (42)
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where g is the rental yield.23.
The Black-Scholes formula behind the NNEG put option is

Put(H0, K, T ) = e−rTEQ (max[K −HT , 0]) (43)

where Q is the risk-neutral measure implied by the Black-Scholes model. Then

Put(H0, K, T ) = Ke−rTΦ(−d2)−H0e
−gtΦ(−d1) (44)

where d1 = 1
σ
√
T

[ln(H0/K) + (r − g + 0.5σ2)T ] and d2 = d1 − σ
√
T .

11.2 Real-world GBM pricing

Under this method securities are priced using real-world probabilities derived from the
historical information and a risk-neutral (funding rate) discount rate.
This would be valued under real-world measure as

Put(H0, K, T ) = e−r
∗TEP (max[K −HT , 0]) (45)

where r∗ should be the risk-adjusted interest rate reflecting the premium charged for
investing in this market.
Using the usual trick that

EP (max[K −HT , 0]) = EP
(
(K −HT )1{HT<K}

)
= EP

(
K1{HT<K}

)
− EP

(
HT1{HT<K}

)
= KP (HT < K)− EP

(
HT1{HT<K}

)
(46)

One can show with standard calculations that

P (HT < K) = Φ
(
− 1
σ
√
T

[
ln(H0/K) + (µ− 0.5σ2)T

])

and
EP

(
HT1{HT<K}

)
= H0e

µTΦ
(
− 1
σ
√
T

[
ln(H0/K) + (µ+ 0.5σ2)T

])

Thus
Put(H0, K, T ) = e−r

∗T
[
KΦ (−d2)−H0e

µTΦ (−d1)
]

(47)

where d1 = 1
σ
√
T

[ln(H0/K) + (µ+ 0.5σ2)T ] and d2 = d1 − σ
√
T .

23We consider rental yield here in order to be able to compare GBM-rn as used by some insurers with
other approaches. We do not necessarily agree that g 6= 0
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11.3 Black 76 Model

Some argued that the “correct” approach is to use the Black (1976) formula for pricing
the NNEG. Under this model pricing the NNEG would be done with the formula

Put = e−rT [KTN(−d2)− F (T )N(−d1)] (48)

with
d1 = ln(F (T )/KT ) + 0.5σ2τ

σ
√
T

, d2 = d1 − σ
√
T

where r is the risk-free rate of interest, KT is the strike price for period T calculated as
KT = L0e

R×T (here L0 is the initial loan value) and F (T ) is the forward house price for
year T , which also has the formula

F (T ) = H0e
(r−g)T (49)

where g is the house rental rate and H0 is the current house price.

11.4 De-smoothing approach

One approach to deal with serial-correlation in house prices that is apparently being
used by life actuaries working on annuities is to use a desmoothing procedure and get the
modelling that way. While we do not fully agree with the standard desmoothing procedure
that is normally applied to commercial real estate valuations because the indices there
are appraisal based, a potentially good line of modelling in the context of real estate
derivatives is described in van Bragt et al. (2015), see also an earlier report van Bragt
et al. (2009) or Tunaru (2017). They consider the observed real estate price index as
the convex combination of an “efficient market” price or true market price y(t) and the
previously observed market price a(t− 1)

a(t) = Ky(t) + (1−K)a(t− 1)

with K a confidence parameter linking the two. This model is equivalent to an expo-
nentially weighted moving average (EWMA) model that is well-known in financial risk
management. To account properly for time value of money the model is adjusted using
an expected annual return π

a(t) = Ky(t) + (1−K)(1 + π)a(t− 1)

van Bragt et al. (2015) assume that the underlying market returns follow a random walk
process with drift. For a total return real estate index, they prove that the price of a
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forward contract would then be equal to

Ft(T ) = 1
df(t, T ) [y(t)(1− αK,T (t) + a(t)αK,T (t)]

where αK,T (t) = (1−K)T−t.
Moreover, van Bragt et al. (2015) derive an approximate formula for the forward and a
European put option contingent on a real estate index, using techniques developed for
pricing Asian options and based on calculate the first moment M1 and the second moment
M2 of a(t), under the risk-neutral measure. Thus, the forward price formula is

Ft(T ) = M1;

while the European put option formula for strike X is

p(t) = df(t, T )[Φ(−d2)− Ft(T )Φ(−d1)]

with σ =
√

1
T−t ln

(
M2
M1

)
, d1 = ln(Ft(T )/X)+0.5σ2(T−t)

σ
√
T−t , d2 = d1 − σ

√
T − t.

The model developed by van Bragt et al. (2015) can also be adapted to include seasonality
effects and there are analytical formulae for pricing swaps on real-estate index as well.

11.5 Forecasting Measures

The root mean squared error (RMSE) is defined as the squared root of the average
squared forecasting errors. The mean absolute error (MAE) is defined as the average
of the absolute values of forecasting errors. A lower RMSE or MAE indicates a better
forecasting method or model. The forecasting measures may be higher because of a couple
of really bad forecasts or outliers.
An improved approach for comparing forecasting methods (models) is the Diebold Mar-
iano test Diebold & Mariano (1995). This test is based on a loss function L for the
forecasting error et and it calculates the loss differential between two methods 1 and 2 as

d12t = L(e1t)− L(e2t)

Under the appropriate technical assumptions the Diebold-Mariano statistic is defined as

DM12 = d12

σ̂d12

where d12 = 1
T

∑t=T
t=1 d12t and DM → N(0, 1).

The null hypothesis is that the two models produce equal expected forecast loss. The
alternative is that one model has a superior (lower) expected forecast loss than the other
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one. Usually a quadratic loss function is used, i.e. L(et) = e2
t .

11.6 Workshop on NNEG on 28 January 2019

On 28 January 2019, I organised a Workshop on NNEG Valuations at CEQUFIN, Kent
Business School, University of Kent.
Participants: Dr Daniel Alai, Dr Jaideep Oberoi, Dr Pradip Tapadar, Dr Vali Asimit,
Professor Radu Tunaru, Enoch Quaye.
We had interesting discussions on the current state-of-the-art NNEG valuation and ERM
modelling. There was some consensus that the experience learned in dealing with ERMs
in other countries may be useful in streamlining modelling efforts on the NNEG valuation
for the UK market.
It was widely recognised that this asset class presents characteristics that make any
financial modelling challenging but, at the same time, participants were aware (and some
of participants were the authors) of many suitable models proposed to value NNEGs,
with advantages and disadvantages.
Here are some of the main ideas that came out of that meeting.

1. As the underlying market is incomplete, pricing NNEG based on risk-neutral con-
cepts will always be controversial. It might also be worthwhile to consider the full
distribution of the outcomes, based on the real-world projections of the underlying
economic variables. I am sure there are plenty of finance/economic/actuarial mod-
els suitable for your purpose. Then it will be easier for the reader of your work, to
get a good grasp of the “price of NNEG” you propose, within the context of the
full underlying distribution. (Pradip Tapadar)

2. I was wondering why you multiply the rental yield by the proportion of properties
that are rented out. In other words, why is 5.1776% divided by 5. I just do
not see how it is relevant whether other properties are being rented out or not in
determining the appropriate rental yield for a certain property. The 80% that are
not rented out presumably could be rented out and could provide 5.1776% yield
(on average). (Daniel Alai)

3. It would be good to see crossover point type calculations, particularly for cash-flows
calculated at portfolio level. (Daniel Alai)

4. It would be really helpful if you could get some data on ERM products from insurers
to do an in-house calibration of various methods. Specifically, if the deferment rate
is considered important, then a useful estimate of this rate could be obtained from
the prices of home reversion agreements that were offered for some time in the
market. To estimate this, a method such as the one employed by Cocco and Lopes
(2015) might be useful. (Jaideep Oberoi)
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5. Basis risk is very important and future research may consider it in an extended
methodology. (Jaideep Oberoi)

6. The Federal Housing Administration in the US uses indicative projections of house
prices to determine maximum allowable loan to value ratios. (Jaideep Oberoi)

7. It is important to consider unbundled sources of risk to determine their impact on
the NNEG, especially given issues with individual risks being modelled separately
with some degree of estimation uncertainty. (Jaideep Oberoi)

8. It is better to use a more complex statistical model such as ARMA-EGARCH that
fits house prices well than use a computationally simpler model like GBM/Black-
Scholes that does not fit well house prices. (Vali Asimit)

9. Fitting an ARMA-EGARCH model and risk-neutralise paths with the conditional
Esscher transform is not a very complex task and both are frequently used in
actuarial modelling. (Vali Asimit)

11.7 ARMA-GJR Results

We have also redone the analysis using the ARMA-GJR model. Here are the main
outputs showing that again a model of this type would be preferable to the GBM model.
The graphs in Figures 25 and 26 indicate that the ARMA(4,2)-GJR(1,1) model will
outperform the GBM model for two year and five year forecasting horizon.
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Figure 25: Comparison of out-of-sample forecasting error (actual minus forecast) for Nation-
wide House Price Index Monthly for ARMA(4,2)-GJR(1,1) and GBM model specifications, over
the out-of-sample period Oct 2016 to Sep 2018.
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Figure 26: Comparison of out-of-sample forecasting error (actual minus forecast) for Nation-
wide House Price Index Monthly for ARMA(4,2)-GJR(1,1) and GBM model specifications, over
the out-of-sample period Oct 2013 to Sep 2018.

Regarding the NNEG valuations, the NNEG values depicted in Figure 27 for the baseline
scenario shows a similar performance to the ARMA-EGARCH. For comparison we also
report the valuations for the 2014 versus 2018 scenario calculations, in Figure 28.
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(a) R = 4.15%
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Figure 27: NNEG valuations as percentage of lump sum for GBM-rn and Arma-GJR-rn, under
multiple decrement rates for the two baseline scenario with r = 1.75%, g = 1%, σ = 3.90% and
standard Flexible LTV vector valuations.
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(a) r = 3.21%, R = 6.50%
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Figure 28: NNEG valuations as percentage of lump sum for GBM-rn and Arma-GJR-rn, under
multiple decrement rates for the two baseline scenario with g = 1%, σ = 3.90% and standard
Flexible LTV vector valuations.

12 Additional Simulation Results

12.1 NNEGs at different points in time

We consider two baseline scenarios, one representative for 2014 when the average risk-free
rate taken as proxy with the 20-year swap rate (r = 3.21%) and the average ERC roll-up
rate R = 6.50%, and another representative for 2018, with the average 20-year swap rate
r = 1.89% and the average ERC roll-up rate R = 4.75%. The other inputs are taken as
identical, although obviously some variations may have existed.
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(a) Baseline 2014 (b) Baseline 2018

Figure 29: NNEG valuations as percentage of lump sum for GBM-rn and Arma-Egarch-rn,
under multiple decrement rates for the two baseline scenarios in 2014 and 2018 with g =
1%, σ = 3.90% and standard Flexible LTV vector valuations.

12.2 Legal & General London and South East LTV loading
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(a) r = 1.25%
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Figure 30: Sensitivity Analysis of NNEG valuation w.r.t.r under London and South East
LTV loading and R = 4.13%, g = 1%, σ = 3.90%.
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(a) R = 6.15%
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Figure 31: Sensitivity Analysis of NNEG valuation w.r.t.r under London and South East
LTV loading and r = 1.75%, g = 1%, σ = 3.90%.
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(a) g = 2%
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Figure 32: Sensitivity Analysis of NNEG valuation w.r.t.g under London and South East
LTV loading and r = 1.75%, R = 4.13%, σ = 3.90%.

12.3 Flexible Max LTV loading
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(a) r = 2%
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(b) r = 2.5%
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(c) r = 1.25%
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Figure 33: Sensitivity Analysis of NNEG valuation w.r.t.r under Flexible Max LTV
loading and Rfm = 4.99%, g = 1%, σ = 3.90%.
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(a) g = 2%
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(c) g = −0.5%
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Figure 34: Sensitivity Analysis of NNEG valuation w.r.t.g under Flexible Max LTV
loading and r = 1.75%, Rfm = 4.99%, σ = 3.90%.

12.4 Max ERC LTV loading
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(a) r = 2%
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(b) r = 2.5%
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(c) r = 1.25%
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Figure 35: Sensitivity Analysis of NNEG valuation w.r.t.r under Max ERC LTV loading
and Rmax = 4.56%, g = 1%, σ = 3.90%.
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(a) g = 2%
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(b) g = 3%
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(c) g = −0.5%
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Figure 36: Sensitivity Analysis of NNEG valuation w.r.t.g under Max ERC LTV loading
and r = 1.75%, Rmax = 4.56%, σ = 3.90%.

12.5 ERC-Lite
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(a) r = 1.25%
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Figure 37: Sensitivity Analysis of NNEG valuation w.r.t.r under ERC-Lite LTV loading
and Rlite = 3.85%, g = 1%, σ = 3.90%.
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(a) R = 6.15%
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(b) R = 7.15%

Figure 38: Sensitivity Analysis of NNEG valuation w.r.t.R under ERC-Lite LTV loading
and r = 1.75%, g = 1%, σ = 3.90%.
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(a) g = 2%

60 65 70 75 80 85 90
Age

0

2

4

6

8

10
N

N
E

G
 (

%
)

GBM-rnMale
GBM-rnFemale
GBM-rnJoint
ArmaEgarch-rnMale
ArmaEgarch-rnFemale
ArmaEgarch-rnJoint

(b) g = 3%

Figure 39: Sensitivity Analysis of NNEG valuation w.r.t.g under ERC-Lite LTV loading
and r = 1.75%, Rlite = 3.85%, σ = 3.90%.

12.6 Comparison of NNEGs for increasing R

Here we compare the NNEGs under the two approaches, on the log-scale, for increasing
roll-up rate R.
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Figure 40: Comparison of NNEGs for increasing R, Flexible LTV and r = 1.75%, σ =
3.90%.

13 Cash Flows Analysis

In this section, we follow the cash flows for a hypothetical portfolio of ERMs with male
and female borrowers of various ages and various loan characteristics.

Table 21: Descriptive statistics for a hypothetical ERM portfolio.

AgeBand Prop Value (mil GBP) Initial Loan (mil GBP) Weight Average Maturity
MALE
<60 16.74 2.30 0.85% 27.69
60-64 204.29 38.80 11.28% 24.59
65-69 440.82 109.20 26.30% 21.01
70-74 447.95 135.87 28.73% 15.78
75-79 264.12 89.63 18.09% 8.02
80-84 141.98 54.52 10.36% 3.00
84+ 56.73 23.54 4.39% 3.00
FEMALE
<60 14.26 1.92 0.75% 28.20
60-64 198.71 37.79 11.31% 25.19
65-69 427.18 105.76 26.26% 22.41
70-74 451.05 136.99 29.83% 18.35
75-79 262.88 89.51 18.58% 12.55
80-84 121.52 46.80 9.15% 4.57
84+ 51.77 21.48 4.13% 3.00
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13.1 General Set-up

In this section, we will consider the portfolio effects when looking at the cash flows
analysis. To this end we considered several portfolios characterised by various features,
trying to stay as close as possible with the portfolio assumptions in Hosty et al. (2008).
Our main portfolio takes the view that all borrowers live exactly to their expected lifetime.
Note that the lifetime expectancy of a 60 year old will differ from the lifetime expectancy
of a 70 year old and so on, and it will be also different between males and females.24

The portfolio has 10,000 loan contracts in total, 4927 female and 5073 males. The initial
property value is distributed as follows

• 100k - 2500 borrowers on Flexible LTV

• 200k - 2500 borrowers on Flexible LTV

• 310k - 2500 borrowers on Flexible LTV

• 950k - 2500 borrowers on Flexible Max Plus LTV

We are going to follow the following cash flow variables, where i denotes the loan number
and t the year ahead.

• Nt = number of loans (males/females) terminating during time t

• K(i)
t = accumulated balance for loan i at time t

• Kt = ∑
iK

(i)
t is the portfolio outstanding balance at time t

• τ (i)
t = indicator variable if termination for loan i arrives in year t (taken as 1) or

not (taken as 0)

• C(i)
t = min(H(i)

t , K
(i)
t )× τ (i)

t is the cash obtained in year t from loan i

• Ct = ∑
iC

(i)
t money in cash account at time t; this is replenished every time a loan

is terminated

• ACt = portfolio accrued cash at time t; this is calculated recursively ACt =
ACt−1(1 + r) + Ct.

• Pt = ∑
i P

(i)
t is the total payment expected on the portfolio on year t, P (i)

t =
K

(
t i)× τ

(i)
t .

• P 4Y
t = Pt+1 + Pt+2 + Pt+3 + Pt+4

24Another portfolio randomises arrival of termination event between the current age of the borrower
and 100, so for example for a 65 year old female we draw a random number between 1 and 35. As an
extreme portfolio we also consider cash-flows for a portfolio where all borrowers go to 100 years. The
results for this latter portfolio are not reported here but they are available from authors upon request.
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• Ht = ∑
iH

(i)
t = total expected value of house collateral at time t

• EAR(i)
t = E(max[K(i)

t −H
(i)
t , 0]) NNEG exposure at risk for loan (i) at time t

• EARt = ∑
iEAR

(i)
t = total NNEG exposure at risk due to house collateral

Dilapidation costs, together with other termination costs such as sale fees, legal fees,
taxation fees, etc. are considered as a haircut rate θ that is applied to the terminal value
of the house. We made portfolio calculations with θ = 0 and θ = 10%.
Following Hosty et al. (2008), we adjust some of the inputs to reflect various socio-
economic factors.

13.2 Portfolio Calculations with GBMrn and ARMA-EGARCH

The calculations are based on the assumption that the loans are terminated exactly at
the expected future lifetime maturities, for male and female borrowers.
The graphs in Figure 41 show the payments due in year t on the loan in the surviving
portfolio. Making calculations under GBM house price modelling the peak for male
borrowers will be in year 4 while the peak for female borrowers will be in year 23, followed
closely by 19. After roughly 30 years the dynamics in this portfolio does not expect any
payments/terminations.
A different picture is portrayed however, for the total payments due over the next four
years. Loans for males coming to an end seem to peak after 13-15 years and for females
after 18 years.

(a) due year t (b) due next four years

Figure 41: Payments profiles due at various horizons.

In Figure 42, we show the evolution of the number of loans terminated and the cash
collected from terminated loans with interest paid on the money account at the risk-free
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rate. The accrued cash starts slow and it ramps up more abruptly under the expected life
approach, between year 10 and 25, with more collections coming from male borrowers.

(a) Number of loans terminated (b) Accrued cash

Figure 42: Number of loan terminations from portfolio and the accrued cash collected
from loans, including interest at risk-free rate, based on expected life for terminations.

(a) GBM (b) ARMA-EGARCH

Figure 43: EAR portfolio measures, male and female borrowers, using expected life for
termination.

The NNEG risk is finely captured in the graphs in Figure 43. This important risk is
dominated by female borrowers as expected, since they live longer, and it is high in
the region between 18 years and 27 years, if calculations are made based on expected
lifetime, under GBM modelling of the house prices. Under ARMA-EGARCH model, the
risk manifests itself earlier and it is overall one order of magnitude greater. The reason
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for this is that under GBM model, due to inflated variances at the long-term maturities,
house prices are very large, offsetting the NNEG risk. On the contrary, the ARMA-
EGARCH model keeps house price growth more subdued, implying that NNEG risk may
be larger and for a larger part of the portfolio. Hence, under real-world valuation the
ARMA-EGARCH model may give higher NNEG values than the GBM real world NNEGs.
Recall that the opposite was highlighted for risk-neutral calculations. The explanation is
that the risk-neutral drifts are changing the direction of the projected house prices while
volatilities stay the same.
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