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Agenda

Risk measures: What are they good for?
Risk measurement and risk aversion
Coherent (and other) risk measures
Beyond coherence:

Liquidity and aggregation 
Background risk
A regulatory perspective

Discussion (hopefully)



Risk Measures

Risk measures are functions
You put in a (loss) distribution
You get out a number

They can be used for 
Comparing risks
Pricing
Capital allocation (as in portfolio management)
Capital allocation (as in regulatory requirements)



Some risk measures

Expected loss: (1+λ)·E[X]
Standard deviation: σ(X)
Percentile: Pr(X ≤ VaRa(X)) = a 
Tail Conditional Expectation: E[X|X>VaRa(X)]
Lloyd’s RBC: E[max{X-(NP+RBC),0}] = NP·ELC
…



Risk aversion

A risk measure adds a margin to expected loss.
Hence it forms a representation of risk aversion:

How risk averse are we? How much is the margin?
In which way are we risk averse? How do we 
calculate the margin?

Ways in which to model risk aversion
Exaggerate the probabilities of adverse scenarios
Exaggerate the consequences of adverse scenarios



Distorting probabilities (1)

If working with a probability distribution, the 
method consists of “blowing up” its tail.
For a tail function S(x) = Pr(X>x), apply the 
non-linear transform S*(x) = g(Pr(X>x)). 
The risk measure equals the expected loss 
under the transformed probability distribution:
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Transformed Probability Distributions
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Distorting probabilities (2)

If working with samples (e.g. from a DFA model), 
re-weight them according to (an increasing 
function of) their ranks. 
After re-weighting, take the average.
If the CDF is F(x) = Pr(X≤x), this corresponds to:
ρ(X)=E[X·h(F(X))]
for appropriate increasing function h



Weighting of samples in the distortion approach
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Weighted samples
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Distorting losses

An alternative way of modelling risk aversion 
relies on the transformation of potential losses.
Method: transform each sample xi by v(xi). 
v is a convex and increasing “disutility” function.
Take the average of the transformed samples.
Apply inverse v-1 to recover original scale.

ρ(X) = v-1(E[v(X)]



Utility-like transformation of losses
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Properties of risk measures

Different risk measures are characterised by 
alternative sets of properties
Different sets of properties correspond to 
alternative notions of risk aversion
Let’s have a look…



Coherence (Artzner et al., 1999)

ρ(X+Y) ≤ ρ(X) + ρ(Y),
meaning that pooling risks is always beneficial
ρ(a·X) = a·ρ(X), a≥0
meaning that the scale of loss does not matter
Can be constructed by distorting probabilities:
ρ(X) = E[X·h(F(X))]
TailVaR is coherent, VaR isn’t



Additivity (Gerber, 1974)

ρ(X+Y) = ρ(X) + ρ(Y) for independent (X,Y)
ρ(X+Y) ≤ ρ(X) + ρ(Y) for negative correlation
ρ(X+Y) ≥ ρ(X) + ρ(Y) for positive correlation
Can be constructed by distorting the losses:

Such risk measures are quite sensitive to scale.
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Convexity (Föllmer and Schied, 2002)

ρ(λX+(1-λ)Y) ≤ λ ρ(X) + (1-λ) ρ(Y)
“Must diversify in order to pool, not pool in order 
to diversify”
The two classes described previously are 
special cases
Can construct using a combination of distortion 
and utility approaches (Tsanakas and Desli, 
2003 BAJ)



Departures from coherence

Coherence nowadays forms the most widely 
accepted set of properties for risk measures.
However, there are situations where the 
properties of coherent risk measures may not 
be appropriate.
Typically this happens if the scale of potential 
losses is an issue.
Three such situations are now described.



Liquidity risk

In the case that a highly adverse scenario takes 
place, additional capital will have to be raised.
Trying to raise £1m and £100m are two very 
different things.
Coherent risk measures are scale invariant:
ρ(aX) ≤ a·ρ(X) 
and do not address this issue.



Aggregation risk

Some people would also argue that you should 
never accumulate highly correlated risks.
This is intricately linked with liquidity –
aggregating many highly correlated positions is 
like investing in one large risk.
Coherent risk measures are subadditive:
ρ(X+Y) ≤ ρ(X) + ρ(Y)
and again do not take account of this issue.



Convex risk measures to the rescue

If liquidity and aggregation are concerns, we 
could use a convex risk measure instead, e.g., 
“exponential TailVaR”:

For small losses behaves approximately like a 
coherent risk measure.
For larger losses it becomes more and more 
sensitive to liquidity and aggregation.
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Sensitivity of risk measures to portfolio size
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Background risk

You hold a risk Y that you cannot get rid of.
You add some new (say independent) exposure 
X to that.
Small amounts of the new risk X diversify your 
initial exposure.
The more of X you take on though, the more X 
dominates your portfolio, hence the less 
diversification benefit it contributes.



Background risk (cont’d)

Capital allocation techniques can determine the 
benefit from taking on exposure in new risk X.
Consider the portfolio Y+ λ·X
Calculate the aggregate risk, using e.g. TailVaR
Determine the contribution of the new exposure 
λ·X to the aggregate risk.
Plot that against exposure λ.



Risk contribution in the presence of background risk
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Regulation

Coherent risk measures encourage the pooling 
of portfolios. 
It is desirable that such pooling does not 
increase the shortfall risk.
Consider two loss portfolios X, Y. 
A regulator suggests a coherent risk measure ρ
for determining respective capital ρ(X), ρ(Y).



Regulation (Cont’d)

The loss from each portfolio, in excess of 
capital, is borne by “society”.
These losses are respectively:
max{X - ρ(X),0},    max{Y - ρ(Y),0}
Suppose now that the holders of risks X and Y 
decide to merge them.
New risk to “society” is: 
max{X+Y- ρ(X+Y),0} 



Regulation (Cont’d)

It was shown by Dhaene et al. (2004), that, if ρ
is subadditive, the shortfall risk to “society” after 
the merger can be higher than before.
Hence pooling can be good for insurers, but 
bad for policyholders, due to increased shortfall 
risk!
A bit controversial but there is something in it.



Conclusion

There are different ways of constructing risk 
measures, depending on how our risk aversion 
is manifested.
Coherent risk measures are the leading 
paradigm, but sometimes do not adequately 
capture risk.
They can be enriched by introducing some 
sensitivity to the scale of potential shortfall.
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