

Risk Measures: Beyond Coherence?

Andreas Tsanakas (Lloyd's)

31st Annual GIRO Convention

12-15 October 2004

Hotel Europe

Killarney, Ireland

Agenda

- Risk measures: What are they good for?
- Risk measurement and risk aversion
- Coherent (and other) risk measures
- Beyond coherence:
 - Liquidity and aggregation
 - Background risk
 - A regulatory perspective
- Discussion (hopefully)

Risk Measures

- Risk measures are functions
 - You put in a (loss) distribution
 - You get out a number
- They can be used for
 - Comparing risks
 - Pricing
 - Capital allocation (as in portfolio management)
 - Capital allocation (as in regulatory requirements)

Some risk measures

- Expected loss: (1+λ)·E[X]
- Standard deviation: σ(X)
- Percentile: Pr(X ≤ VaR_a(X)) = a
- Tail Conditional Expectation: E[X|X>VaR_a(X)]
- Lloyd's RBC: E[max{X-(NP+RBC),0}] = NP·ELC

Risk aversion

- A risk measure adds a margin to expected loss.
- Hence it forms a representation of risk aversion:
 - How risk averse are we? How much is the margin?
 - In which way are we risk averse? How do we calculate the margin?
- Ways in which to model risk aversion
 - Exaggerate the probabilities of adverse scenarios
 - Exaggerate the consequences of adverse scenarios

Distorting probabilities (1)

- If working with a probability distribution, the method consists of "blowing up" its tail.
- For a tail function S(x) = Pr(X>x), apply the non-linear transform S^{*}(x) = g(Pr(X>x)).
- The risk measure equals the expected loss under the transformed probability distribution: $\rho(X) = \int_{0}^{\infty} S^{*}(x) dx \quad (\text{recall that } \mu = \int_{0}^{\infty} S(x) dx)$

Transformed Probability Distributions

Transformed Probability Distributions

Transformed Probability Distributions

Distorting probabilities (2)

- If working with samples (e.g. from a DFA model), re-weight them according to (an increasing function of) their ranks.
- After re-weighting, take the average.
- If the CDF is F(x) = Pr(X≤x), this corresponds to:
 ρ(X)=E[X⋅h(F(X))]
 for appropriate increasing function h

Weighting of samples in the distortion approach

Weighted samples

Distorting losses

- An alternative way of modelling risk aversion relies on the transformation of potential losses.
- Method: transform each sample x_i by v(x_i).
- v is a convex and increasing "disutility" function.
- Take the average of the transformed samples.
- Apply inverse v⁻¹ to recover original scale.
 ρ(X) = v⁻¹(E[v(X)]

Utility-like transformation of losses

Properties of risk measures

- Different risk measures are characterised by alternative sets of properties
- Different sets of properties correspond to alternative notions of risk aversion
- Let's have a look...

Coherence (Artzner et al., 1999)

• $\rho(X+Y) \leq \rho(X) + \rho(Y)$,

meaning that pooling risks is always beneficial

• ρ(a·X) = a·ρ(X), a≥0

meaning that the scale of loss does not matter

- Can be constructed by distorting probabilities:
 ρ(X) = E[X·h(F(X))]
- TailVaR is coherent, VaR isn't

Additivity (Gerber, 1974)

- $\rho(X+Y) = \rho(X) + \rho(Y)$ for independent (X,Y)
- $\rho(X+Y) \le \rho(X) + \rho(Y)$ for negative correlation
- $\rho(X+Y) \ge \rho(X) + \rho(Y)$ for positive correlation
- Can be constructed by distorting the losses:

$$v(x) = \exp(\beta X) \Rightarrow \rho(x) = \frac{1}{\beta} \ln E[\exp(\beta X)]$$

Such risk measures are quite sensitive to scale.

Convexity (Föllmer and Schied, 2002)

- $\rho(\lambda X + (1-\lambda)Y) \le \lambda \rho(X) + (1-\lambda) \rho(Y)$
- "Must diversify in order to pool, not pool in order to diversify"
- The two classes described previously are special cases
- Can construct using a combination of distortion and utility approaches (Tsanakas and Desli, 2003 BAJ)

Departures from coherence

- Coherence nowadays forms the most widely accepted set of properties for risk measures.
- However, there are situations where the properties of coherent risk measures may not be appropriate.
- Typically this happens if the scale of potential losses is an issue.
- Three such situations are now described.

Liquidity risk

- In the case that a highly adverse scenario takes place, additional capital will have to be raised.
- Trying to raise £1m and £100m are two very different things.
- Coherent risk measures are scale invariant:
 ρ(aX) ≤ a·ρ(X)

and do not address this issue.

Aggregation risk

- Some people would also argue that you should never accumulate highly correlated risks.
- This is intricately linked with liquidity aggregating many highly correlated positions is like investing in one large risk.
- Coherent risk measures are subadditive:
 ρ(X+Y) ≤ ρ(X) + ρ(Y)
 and again do not take account of this issue.

Convex risk measures to the rescue

 If liquidity and aggregation are concerns, we could use a convex risk measure instead, e.g., "exponential TailVaR":

$$\rho(X) = \frac{1}{\beta} In E \left[e^{\beta X} \mid X > Q_X(a) \right]$$

- For small losses behaves approximately like a coherent risk measure.
- For larger losses it becomes more and more sensitive to liquidity and aggregation.

Sensitivity of risk measures to portfolio size

Background risk

- You hold a risk Y that you cannot get rid of.
- You add some new (say independent) exposure X to that.
- Small amounts of the new risk X diversify your initial exposure.
- The more of X you take on though, the more X dominates your portfolio, hence the less diversification benefit it contributes.

Background risk (cont'd)

- Capital allocation techniques can determine the benefit from taking on exposure in new risk X.
- Consider the portfolio Y+ λ ·X
- Calculate the aggregate risk, using e.g. TailVaR
- Determine the contribution of the new exposure λ·X to the aggregate risk.
- Plot that against exposure λ .

Risk contribution in the presence of background risk

Regulation

- Coherent risk measures encourage the pooling of portfolios.
- It is desirable that such pooling does not increase the shortfall risk.
- Consider two loss portfolios X, Y.
- A regulator suggests a coherent risk measure ρ for determining respective capital ρ(X), ρ(Y).

Regulation (Cont'd)

- The loss from each portfolio, in excess of capital, is borne by "society".
- These losses are respectively: max{X - ρ(X),0}, max{Y - ρ(Y),0}
- Suppose now that the holders of risks X and Y decide to merge them.
- New risk to "society" is: max{X+Y- ρ(X+Y),0}

Regulation (Cont'd)

- It was shown by Dhaene et al. (2004), that, if p is subadditive, the shortfall risk to "society" after the merger can be higher than before.
- Hence pooling can be good for insurers, but bad for policyholders, due to increased shortfall risk!
- A bit controversial but there is something in it.

Conclusion

- There are different ways of constructing risk measures, depending on how our risk aversion is manifested.
- Coherent risk measures are the leading paradigm, but sometimes do not adequately capture risk.
- They can be enriched by introducing some sensitivity to the scale of potential shortfall.