

IFoA Reserving Seminar

Inmarsat Wednesday, 20th June 2018

Format for this Roundtable

Three Themes

- Modelling Inflation Chris
- Business Context James
- Micro Level : Claims Drivers Keith

Roundtable Discussion

- Clustering delegates in six groups
 - two groups per theme; one facilitator per theme
 - one scenario per group; handouts provided
 - one rapporteur per group
 - success is a good discussion in the room and capturing "take away" points

14 September 2018

Modelling Inflation

Chris

Modelling Inflation

A Modelling View of Inflation

$$E[Incremental \ Loss_{AY=i,DY=j}]$$

$$= Exposure_{AY=i}$$

$$* Pure \ Loss \ Rate \rightarrow Year \ 0$$

$$* \prod_{0}^{i} AY \ effect_{t}$$

$$* \prod_{0}^{j} DY \ decay_{t}$$

$$* \prod_{i}^{i+j} CY \ effect_{t}$$

$$\log \left(E(Loss_{i,j}) \right) =$$

$$\log(\mathbf{E_i}) + intercept + \sum_{t=0}^{i} AY_t + \sum_{t=0}^{j} DY_{t,k} + \sum_{t=0}^{i+j} CY_t$$

A Simple Example

OLEP * Base ELR * AY Factor * DY Factor * CY Factor

ΑY

0

Exposure				
<u>AY</u>	<u>OLEP</u>			
2011	1,000			
2012	1,500			
2016	2,000			
2014	1,750			
2015	1,500			
2016	1,500			
2017	1,500			
2018	na			
2019	na			
2020	na			
2021	na			

Constant	AY Direction
Pure ELR	Trends Factor.
75.00%	1.000 1.000
na	1.070 1.070
na	1.020 1.091
na	0.970 1.059
na	0.970 1.027
na	0.970 0.996
na	0.970 0.966
na	na na

CY Direction				
<u>Trends</u>	<u>Factor</u>			
1.000	1.000			
1.020	1.020			
1.040	1.061			
1.030	1.093			
1.010	1.104			
1.000	1.104			
1.005	1.109			
1.005	1.115			
1.005	1.120			
1.005	1.126			
1.005	1.131			

2011	130	231	162
2012	223	365	330
2016	257	542	410
2014	263	464	330
2015	244	405	305
2016	214	376	283
2017	208	366	276
L	oss Dev	elopme	nt Facto
	<u>0-1</u>	<u>1-2</u>	<u>2-3</u>
2011	2.785	1.450	1.281
2012	2.638	1.562	1.272
2016	3.111	1.514	1.242

Dev. Year	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>
Decay	17.3%	175.0%	75.0%	75.0%	75.0%
Factor	17.3%	30.2%	22.7%	17.0%	12.8%
Cum	17.3%	47.5%	70.2%	87.2%	100.0%

Loss Development Factors				
	<u>0-1</u>	<u>1-2</u>	<u>2-3</u>	<u>3-4</u>
2011	2.785	1.450	1.281	1.166
2012	2.638	3 1.562	1.272	1.152
2016	3.111	1.514	1.242	1.147
2014	2.768	3 1.454	1.236	
2015	2.660	1.470	1	
2016	2.759)		

Incremental Loss / Forecast Triangle

147

250

292

249 230

214

219

111

178

220

188

173

169

157

2

U L/R

78.2%

1,227 81.8% -2.3%

14.8%

-4.1%

-0.8%

6.0%

-7.5%

1,346 89.8%

1,721 86.1%

1,495 85.4%

1,358 90.5%

1,256 83.7%

<u>Ult</u> 782

14 September 2018

Structural Driver Model

$$\log\left(E(\boldsymbol{Loss}_{i,j})\right) =$$

 $\log(\boldsymbol{E}_i)$

AY Structural Drivers

$$+\sum_{t=1}^{AY_t}DY_t$$

$$\sum_{n=1}^{N} \beta_{-}AY_{n} * \sum_{t=1}^{t} SD_{-}$$

$$+\sum_{t=1}^{\prime} DY_t$$

CY Structural Drivers

$$+\sum_{t=i+1}^{i+j} CY_t + \sum_{t=i+1}^{N} CY_t$$

$$\beta_{-}CY_{m} * \sum_{i=1}^{l+j} SD_{-}CY_{n}$$

14 September 2018

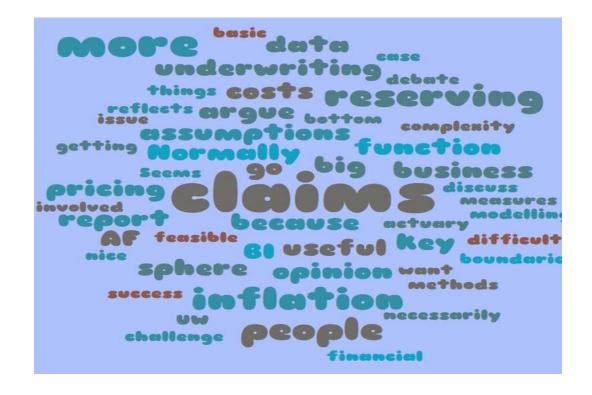
1. GLM

- The reserving team implemented a GLM-based model for the current year.
- The chief actuary commended the team for their rigour and identifying the inflationary contributors and "common trends".
- They used on-level earned premium as their exposure base and found the ultimate net loss ratio trend to be -2% p.a. after adjusting for a fitted calendar year trend of +0.5% p.a.
- Note: The standard Link Ratio methods were less favourable.
- A. What unknowns would you be <u>more</u> worried about than for your standard link-ratio methods?
- B. How would you decide what <u>weight</u> to give the GLM results and would this be different if the relative method indications were reversed (e.g., standard methods more favourable, GLM less favourable)

ty ies

2. Past Trend Analysis

- The reserving team have refined their inflation analysis.
- They now re-segment their data to allow for business-mix effects, remove shock losses and other outliers, and obtain economic forecasts of their inflation drivers. Historically, the actual versus projected has been good.
- A. Is this a good approach?
- B. What factors make your models susceptible to modelling error that we need research for?



Business Context

James

Business Context

3. Financial Plan Assumptions Mismatch Reserving Risk

- During the reserve-risk assessment, analysis of smart phone inflation found an inflation rate of 2% +/- 1% p.a. These figures were agreed as assumptions to the latest capital calculation.
- In a department not so far, far away, the financial planning team provided their estimate of gross written premium. They allowed for 7% rating increases, as a result of claims-cost inflation being expected to be the same figure.
- A. Who is right?
- B. Why could they be different?
- C. What happens if the reserving actuaries are wrong, should they revisit their analysis in the next reserve review?

4. Underwriting Assumptions Mismatch Reserving

- The inflation committee at an insurer produced a joint inflation figure for household contents of 5% p.a. after pricing analysis showed flat inflation (0%) and reserving analysis gave 10.2% p.a.
- Underwriters suggested the agreed figure of 5% was very generous of them, reserving actuaries are after all known to be prudent!
- A. How could these estimates differ?
- B. Is a single rate sensible?
- C. How could we get a better estimate in reserving?

Micro Level: Claims Drivers

Keith

Micro Level: Claims Drivers

```
Capital
thinking
  actuaries
```


5. Concordia Shipping Loss – a Step Change?

- The Costa Concordia, a multi-story liner carrying over 4,000 passengers and crew, ran aground in January 2012 and capsized off Italy's west coast, killing 32 people.
- Loss estimate may rise to \$2bn. The costs of removal were high, as it was
 decided for environmental reasons to remove the wreck piece-by-piece and
 re-float. LOF [Lloyd's Open Form], a salvage contract, was amended quite a
 few years ago to incorporate the ability to be paid for the prevention of
 pollution.
- A. Could this have been foreseen?
- B. How could links between Claims and the rest of the business save Institute and Faculty of Actuaries

6. Escape of Water – a Creeping Trend?

- According to The Association of British Insurers, escape of water causes approximately £2million worth of damage every day. In the last three years, the average cost of these claims has risen by 31% to £2,638. ABI suggested this area may be a number-one priority in 2018.
- Factors such as more hidden or integrated pipework and less damage-resilient building materials may contribute towards higher claim costs.
- Also more plumbed-in domestic appliances; more central heating; an increase in en-suite bathrooms and downstairs toilets; more complex plumbing systems; hidden and integrated plumbing and the use of less damage-resilient materials such as chipboard could also be factors.
- A. Are the incidence of plumbed appliances/DIY linked to economy? Does this matter?
- B. Could joint analysis help reduce risk for customers, whilst minimising risk for the insurer too?

 Institute and Facul

Questions

Comments

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

